Supporting Information

Use of fluorogenic Al³⁺ - Quinolinyl-azo-naphtholato complex for the determination of F⁻ in aqueous medium by visible light excitation and application on ground water fluoride analysis

Chandana Sen, Sunanda Dey, Chiranjit Patra, Debashis Mallick, Chittaranjan Sinha*

Sl. No.	Contents	Scheme/Fig./Table
		No.
1.	FTIR spectrum of HL in KBr disk.	Fig. S1
2.	FTIR spectrum of [AlL ₂] ⁺ NO ₃ in KBr disk.	Fig. S2
3.	¹ H-NMR spectrum of HL in CDCl _{3.}	Fig. S3
4.	¹ H-NMR spectrum of $[AlL_2]^+$ complex in DMSO-d _{6.}	Fig. S4
5.	HRMS spectrum of the receptor HL.	Fig. S5
6.	HRMS spectrum of the $[AlL_2]^+$ complex.	Fig. S6
7.	Synthetic process of the complex [AlL ₂] ⁺ NO _{3.}	Scheme S1
8.	Probable mechanism of <i>azo-hydrazo</i> tautomerisation of the chemosensor HL in methanol.	Scheme S2
9.	Absorption spectra of HL and different metals.	Fig. S7
10.	Determination of binding constant of HL for Al ³⁺ from fluorescent titration data.	Fig. S8
11.	Linear response curve of HL at 612 nm depending on the Al ³⁺ concentration.	Fig. S 9
12.	ESI-MS spectrum of in-situ generated [AlL ₂] ⁺ Complex with F ⁻ ion; inset: zooming image from mass 50-290.	Fig. S10
13.	Job's plot of the chemosensor HL for Al ³⁺ .	Fig. S11
14.	Linear response curve of $[AlL_2]^+$ at 612 nm depending on the F ⁻ concentration.	Fig. S12
15.	Calibration plot between emission intensity of [AlL ₂] ⁺	Fig. S13

Table of Contents

	(Reference) at 612 nm vs volume of F ⁻ for the analysis of F ⁻	
	contamination in drinking water of Raghunathpur-I and	
	Purulia-I in West Bengal.	
16.	Some important bond length and bond angles of HL	Table S1
17.	Some important bond length and bond angles of [AlL ₂] ⁺	Table S2
18.	Contour plots of some selected molecular orbitals of HL.	Fig. S14
19.	Contour plots of some selected molecular orbitals of [AlL ₂] ⁺	Fig. S15
	complex.	
20.	MO composition of HL.	Table S3
21.	MO composition of $[AlL_2]^+$.	Table S4
22.	Vertical electronic transitions calculated by	Table S5
	TDDFT/B3LYP/CPCM method for HL and [AlL ₂] ⁺ .	

Fig. S1 FTIR spectrum of HL in KBr disk.

Fig. S2 ¹H-NMR Spectra of probe HL in CDCl_{3.}

Fig. S3 Mass Spectrum of the probe HL.

Fig. S4 FTIR spectrum of [AlL₂]NO₃ in KBr disk.

Fig. S5 ¹H-NMR Spectra of probe [AlL₂]⁺ in DMSO-d₆.

Fig. S6 13 C NMR Spectrum of the [AlL₂]⁺.

Fig. S7 Mass Spectrum of the $[AlL_2]^+$.

Scheme S1 Synthetic process of the complex [AlL₂]NO₃.

Scheme S2 Probable mechanism of *azo-hydrazo* tautomerisation of the chemosensor HL in methanol.

a

Fig. S8 (a) Absorption spectra of chemosensor (30 μ M) in the presence of different metal ions (Ba²⁺, Ca²⁺, Co²⁺, Cd²⁺, Cr³⁺, Cu²⁺, Fe²⁺, Fe³⁺, Hg²⁺, K⁺, Na⁺, Mg²⁺, Mn²⁺, Pb²⁺, Zn²⁺, Ni²⁺, Pd²⁺ and Al³⁺) (30 μ M) in aqueous solution. (b) Vial images under visible light.

Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

$$1/(F-F_o) = 1/{K_a(F_{max}-F_o)[M^{n+}]^x} + 1/[F_{max}-F_o]$$

Here F_0 , F and F_{max} indicate the emission in absence of, at intermediate and at infinite concentration of metal ion respectively.

Plot of $[1/(F-F_0)]^2$ vs $1/[Al^{3+}]$ gives a straight line indicating 1:2 complexation between HL and Al^{3+} where K_a is found to be $2.54 \times 10^5 M^{-1}$.

Fig. S9 Determination of binding constant of HL for Al³⁺ from fluorescent titration data.

Fig. S10 Linear response curve of HL at 612 nm depending on the Al³⁺ concentration.

Fig. S11 ESI-MS spectrum of in-situ generated [AlL₂]⁺ Complex with F⁻ ion; inset: zooming image from mass 50-290.

Fig. S12 Job's plot of the chemosensor HL for Al^{3+} .

Fig. S13 Linear response curve of $[AlL_2]^+$ at 612 nm depending on the F⁻concentration.

Fig. S14 Calibration plot between emission intensity of $[AlL_2]^+$ (Reference) at 612 nm vs volume of F⁻ for the analysis of F⁻ contamination in drinking water of Raghunathpur-I and Purulia-I in West Bengal.

Table S1 Some important bond length and bond angles of HL

Bond	Length (Å)
O(1) - C(1)	1.38
C(1) - C(2)	1.40
C(2) - N(1)	1.40
N(1) - N(2)	1.28

N(2) - C(3)	1.41
C(3) - C(4)	1.43
C(4) - N(3)	1.37

Bond	Angle (°)
O(1) - C(1) - C(2)	118.7
C(1) - C(2) - N(1)	112.98
C(2) - N(1) - N(2)	118.79
N(1) - N(2) - C(3)	114.69
N(2) - C(3) - C(4)	116.56
C(3) - C(4) - N(3)	119.81

Table S2 Some important bond length and bond angles of $[AlL_2]^+$

Bond	Length (Å)
N(1) - N(2)	1.31
N(2) - Al	1.94
Al- N(3)	2.00
N(3) - N(4)	1.28
O(1) - Al	1.88
O(2) - Al	1.86
N(5) - Al	1.99

N(6) - Al	2.08

Bond	Angle (°)
N(5) - Al - N(2)	81.94
N(2) - Al - O(2)	83.94
O(2) - Al- N(3)	87.31
N(3) - Al - N(6)	81.01
N(6) - Al – O(1)	92.52
O(1) - Al- N(5)	97.86

Fig. S15 Contour plots of some selected molecular orbitals of HL.

Fig. S16 Contour plots of some selected molecular orbitals of $[AlL_2]^+$ complex.

МО	Energy (eV)	Naphthol	Quinoline	Azo
LUMO+10	2.65	00	100	00
LUMO+9	2.65	18	79	03
LUMO+8	2.57	98	02	00
LUMO+7	1.5	52	31	17
LUMO+6	1.49	100	00	00
LUMO+5	1.06	43	53	04

Table S3 MO composition of HL.

LUMO+4	-0.02	99	01	00
LUMO+3	-0.25	47	39	14
LUMO+2	-0.38	11	85	04
LUMO+1	-1.17	27	69	04
LUMO	-2.31	34	33	33
НОМО	-5.31	11	13	76
HOMO-1	-5.43	63	27	10
HOMO-2	-6.36	50	44	06
HOMO-3	-6.43	89	10	01
HOMO-4	-6.61	02	94	04
HOMO-5	-6.91	00	100	00
HOMO-6	-7.43	63	28	09
HOMO-7	-8.36	30	66	04
HOMO-8	-8.41	87	12	01
HOMO-9	-9.01	88	03	09
HOMO-10	-9.22	05	90	05

Table S4 MO composition of $[AlL_2]^+$

МО	Energy (eV)	Al	Ligands(HL)
LUMO+10	0.48	01	99
LUMO+9	0.22	00	100
LUMO+8	0.11	02	98
LUMO+7	-0.13	01	99
LUMO+6	-0.53	00	100
LUMO+5	-0.78	00	100
LUMO+4	-0.85	00	100
LUMO+3	-1.22	00	100
LUMO+2	-2.01	00	100
LUMO+1	-2.21	01	99
LUMO	-3.06	01	99
НОМО	-3.87	01	99
HOMO-1	-5.08	00	100
НОМО-2	-5.5	00	100
НОМО-3	-5.87	00	100
HOMO-4	-6.12	02	98
HOMO-5	-6.27	00	100
HOMO-6	-6.45	01	99
HOMO-7	-6.85	01	99
HOMO-8	-7.07	01	99
НОМО-9	-7.33	00	100
HOMO-10	-7.48	00	100

Table S5 Vertical electronic transitions calculated by TDDFT/B3LYP/CPCM method for HLand $[AlL_2]^+$.

	Excitation energy (eV)	Wavelength (nm)	Oscillation frequency(f)	Key Transitions	Nature of transitions
HL	2.7869	528	0.7206	(99%) HOMO→LUMO	ILCT
$[AlL_2]^+$	2.2142	559.94	0.1193	(37%) HOMO \rightarrow LUMO+5	ILCT