Gold nanoparticle etching induced by an enzymatic-like reaction for

the colorimetric detection of hydrogen peroxide and glucose

Manman Lu^{a,b}, Linjing Su^{*b,c}, Yanghe Luo^{a,b}, Xionghui Ma^{*d,e}, Zhenhua Duan^{b,c}, Dongjian

Zhu^{b,c} and Yuhao Xiong*b,c

^a College of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China

^b College of Food and Bioengineering, Hezhou University, Hezhou, 542899, P. R. China

^c Institute of Food science and Engineering Technology, Hezhou University, Hezhou, 542899, P. R. China

^d Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China;

^e Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, P. R. China

* Corresponding author:

Tel.: +86-774-5229756

Fax.: +86-774-5228605

E. mail : xiongyuhao@yeah.net

maxionghui@foxmail.com

linjingsu@163.com

Preparation of mixed-valence MoO₃ nanosheets

Mixed-valence MoO₃ nanosheets were prepared by liquid exfoliation assisted by sonication followed by photochemical reduction ¹. Briefly, 3.0 g of commercial MoO₃ powder was dispersed in 200 mL of an ethanol/water mixed solution (50:50 vol.%) and then sonicated for 180 min at a power of 380 W. Then, the transparent supernatant containing a high concentration MoO₃ nanosheets was obtained by filtration through a 0.25 μ m nylon membrane filter. Next, a certain volume of the MoO₃ nanosheet solution was irradiated with a 19 W UV lamp for 20 min. The obtained solution, which was blue in colour, contained mixed-valence MoO₃ nanosheets.

Preparation of AuNPs using mixed-valence MoO₃ nanosheets

First, 10 mL of mixed-valence MoO_3 nanosheet solution and 5 mL of $HAuCl_4$ (0.2 wt.%) were mixed well. Then, this solution was allowed to stand for 20 min to trigger gold nucleation via the reduction of the MoO_3 nanosheets. The reaction was kept for another 12 h in a refrigerator at 4 °C to promote complete conversion for the formation of AuNPs. The final AuNP solution, which was burgundy in colour, was stored in a refrigerator at 4 °C without any washing or purification.

Fig. S1 UV-vis absorbance spectra of the MoO₃ nanosheets samples with different UV irradiation time. The inset shows the corresponding photograph.

Fig. S2 UV-vis absorbance spectra of blue color mixed valence state MoO₃ nanosheets with different preservation time.

Fig. S3 (a) UV-vis absorbance spectra of HAuCl₄/ mixed valence state MoO₃ nanosheets solution at different time, (b) UV-vis absorbance spectra of obtained AuNPs solution with different preservation time. The inset shows the corresponding photographs.

Fig. S4 (a) UV-vis absorption spectra, (b) linear calibration plots for H_2O_2 detection (the vertical coordinates $\Delta A = A_0-A$, where A_0 and A are the absorbance intensities in the absence and presence of H_2O_2 , respectively.) and (c) corresponding color change photograph.

Materials used	Signal probe	One-pot of detection	Linear range (µM)	Detection limit (µM)	References	
Fe ₃ O ₄ -Au@ SiO ₂	TMB	No	10-130	0.5	[2]	
FeWO ₄	TMB	No	4-60	0.67	[3]	
Fe-MIL-88NH2	TMB	No	2-300	0.48	[4]	
Au@Ag	C-dots	No	0.5-300	0.2	[5]	
Gold nanorods	Gold nanorods	Yes	0.1-1,1-10	0.1	[6]	
Gold nanobipyramids	Gold nanobipyramids	Yes	0.05-90	0.02	[7]	
Silver	Silver	Yes	0 2 100	0.2	٢٥٦	
Nanoprism	Nanoprism		0.2-100	0.2	٢٥]	
AuNPs	AuNPs	Yes	1-10	0.45	This work	

Table S1 Comparative analysis of various colorimetric sensors employed for glucose detection

Table S2 Recovery experiments of glucose detection

Sample	Initial amount (mM)	Added (mM)	Found (µg)	Recovery (%)	RSD (n=5) (%)
Water chestnut	0.1	0.01	0.11	100	1.6
		0.5	0.64	108	2.0
		1.0	1.12	102	2.3

References:

1. L. Su, Y. Xiong, Z. Chen, Z. Duan, Y. Luo, D. Zhu and X. Ma, Sen. Actuat. B-Chem., 2019, 279, 320-326.

2. X. He, L. Tan, D. Chen, X. Wu, X. Ren, Y. Zhang, X. Meng and F. Tang, Chem. Commun., 2013, 49, 4643-4645.

3. T. Tian, L. Ai, X. Liu, L. Li, J. Li and J. Jiang, Ind. Eng. Chem. Res., 2015, 54, 1171-1178.

4. Y.L. Liu, X.J. Zhao, X.X. Yang and Y.F. Li, Analyst, 2013, 138, 4526-4531.

5. W. Liu, F. Ding, Y. Wang, L. Mao, R. Liang, P. Zou, X. Wang, Q. Zhao and H. Rao, Sen. Actuat. B-Chem., 2018, **265**, 310-317.

6. Z. Zhang, Z. Chen, F. Cheng, Y. Zhang and L. Chen, Biosens. Bioelectron., 2017, 89, 932-936.

7. S. Xu, L. Jiang, Y. Liu, P. Liu, W. Wang and X. Luo, Anal. Chim. Acta, 2019, 1071, 53-58.

8. Y. Xia, J. Ye, K. Tan, J. Wang and G. Yang, Anal. Chem., 2013, 85, 6241-6247.