Perylenediimide based 'On-Off' chemosensor for detection of nucleoside triphosphate: Efficient ensemble for alkaline phosphatase activity

Lalit Singh Mittal^a, Poonam Sharma^b, Navdeep Kaur^b and Prabhpreet Singh^{b*}

^aDepartment of Chemistry, MG DAV College, Bathinda,- 151 001, India

^bDepartment of Chemistry, UGC-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar- 143 005, India

SUPPORTING INFORMATION

NMR Spectroscopy

¹H and ¹³C NMR spectra were recorded on a BRUKER Biospin AVANCE-III FT-NMR HD-500 spectrophotometer using CDCl₃ or DMSO (d_6) as solvent. The peak values were obtained as ppm (δ) and referenced to tetramethylsilane (TMS) for ¹H NMR spectroscopy and the residual solvent signal for ¹³C NMR spectroscopy. Data are reported as follows: chemical shifts in ppm, coupling constant J in Hz; multiplicity (s = singlet, bs = broad singlet, t = triplet, q = quartet, m = multiplet). ¹H NMR titration of **BAB-PDI** against GTP was performed in DMSO (d_6) - H₂O (9:1 v/v) on a Bruker-AVANCE-II FT-NMR AL400 spectrophotometer. Addition of higher amounts of water leads to precipitation of the compound. All the data were then processed in delta software to draw the stacking spectra of **BAB-PDI** and **BAB-PDI**+GTP complex at different concentrations.

UV-Vis and Fluorescence Spectroscopy Measurements

The absorption spectra were recorded on SHIMADZU-2450 spectrophotometer equipped with a Peltier system to control the temperature. Quartz cells of 1 cm in length were used for sample measurements. The spectral bandwidth and the scan rate were fixed at 2 nm and 140 nm min⁻¹, respectively. Fluorescence titrations were performed on a Varian Carey Eclipse fluorescence spectrophotometer (slit width: excitation = 10 nm, emission = 2.5 nm) with excitation at 500 nm, unless otherwise stated. Quartz cells of 1 cm in length were used for sample measurements. The concentration of HEPES buffer (pH 7.4) was 0.01 M. Stock solutions for various measurements of **BAB-PDI** was prepared in DMSO and dilutions of these stock solution was used for the photophysical measurements. Stock solutions (0.1 M) of NPPs were prepared in deionized

Millipore water and were diluted as required. The solution of **BAB-PDI** was added in various 10 mL volumetric flask or directly in 3 mL cuvette and subsequently different concentrations of NPPs were added. The solutions were diluted with HEPES buffer-DMSO (9:1 v/v, pH 7.4).

Detection limit

The detection limit was calculated based on the fluorescence titrations. To determine the S/N ratio, the emission intensity of **BAB-PDI** (10 μ M) without GTP was measured by 3 times and the standard deviation of blank solution (without addition of GTP) measurements was determined. The detection limit was then calculated with the equation

Detection limit = $3\sigma bi/m$

Where, σbi is the standard deviation of blank solution (without addition of GTP) measurements; m is the slope between intensity versus sample concentration.

Synthesis

2.6.1 Synthesis of compound **3**: In a 100 ml two-neck RBF purged with nitrogen, CuI (0.96 gm, 10 mol%) and benzotriazole (1.21 gm, 20 mol%) was dissolved in DMSO (10 mL) and stirred at RT under N₂ atm. To this solution, 4-bromophenol (8.79 gm, 51.11mmol), benzimidazole (**4**) (5.0 gm, 42.37 mmol) and potassium *tert*-butoxide (5.69 gm, 61.01 mmol) were subsequently added at RT under N₂ atm and then resulting solution was stirred at 110° C for 24 h. After completion of the reaction the mixture was treated with aqueous solution of EDTA and extracted with ethyl acetate. After evaporating the organic layer, the crude mixture was column chromatographed using gradient of 40% ethyl acetate:hexane to isolate pure compound **3**, as solid, 75% yield.¹H NMR (CDCl₃+DMSO-*d*₆, 300 MHz): δ 7.03 (d, 2 H, *J* = 9.3Hz, ArH), 7.28-7.33 (m, 4H, ArH), 7.45-7.48 (m, 1H, ArH), 7.80-7.83 (m, 1H, ArH), 8.07 (s, 1H, OH), 9.50 (s, 1H, Bim-C2H); IR (ATR): v = 3436, 2587, 1615, 1519, 1375, 1231, 924 cm⁻¹

2.6.2 Synthesis of PDI 1: The mixture of compound 3 (37 mg, 0.18 mmol) and K_2CO_3 (36 mg, 0.26 mmol) was stirred in N-methyl-2-pyrrolidone (NMP) at room temperature. Then compound PDI 2 (50 mg, 0.070 mmol) was added under N₂. The reaction mixture was stirred at 80 °C for 8 h. After cooling to RT, the reaction mixture was poured into 1 N HCl and the precipitates were filtered, washed with water and then dried under vacuum to give 50 mg of crude product which

was further purified by column chromatography (SiO₂, chloroform/ethyl acetate) to isolate pure PDI **1** as red color solid, yield 33 mg (0.034 mmol, 48.5%); $R_f = 0.5$ (chloroform/ethyl acetate 96:4). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 1.25-1.48 (m, 6H, cyclohexyl), 1.72-1.76 (m, 6H, cyclohexyl), 1.89-1.91 (m, 4H, cyclohexyl), 2.51-2.54 (m, 4H, cyclohexyl), 4.99-5.03 (m, 2H, cyclohexyl), 7.36-7.38 (m, 8H, ArH), 7.57 (dd, $J_1 = 6.0$ Hz, $J_2 = 3.0$ Hz, 2H, ArH) 7.59-7.61 (m, 4H, ArH), 7.91 (dd, $J_1 = 6.0$ Hz, $J_2 = 3.0$ Hz, 2H, ArH), 8.14 (s, 2H, perylene-ArH), 8.41 (s, 2H, BIm), 8.66 (d, J = 8.0 Hz, 2H, perylene-ArH), 9.57 (d, J = 8.5 Hz, 2H, perylene-ArH) ppm; ¹³C NMR (125 MHz, TFA:CDCl₃ (1:9), 25 °C): δ 25.3, 26.5, 29.2, 55.8, 113.0, 121.1, 122.9, 124.6, 125.6, 125.8, 126.0, 127.8, 128.5, 128.7, 129.3, 129.4, 129.8, 130.6, 131.7, 132.0, 133.6, 139.3, 154.3, 157.5, 164.5, 165.1 ppm; IR (ATR): v = 2924, 2852, 1697, 1655, 1593, 1455, 1329, 1507, 741 cm⁻¹.

Figure S1: (Top) Plot of fluorescence and absorption energy versus ET (30) scale; (Bottom) plot of stokes shit versus ET (30) and Chi R polarity scale.

Figure S2: The plot of gradual change in fluorescence intensity of **BAB-PDI** (10 μ M) in water (10% DMSO) taken at 577 nm vs. change in pH of the solution.

Figure S3: (a) Job's plot (fluorometrically) showing **BAB-PDI**:GTP (1:2) complex recorded in HEPES buffered solution (pH 7.4) containing 10% DMSO (v/v); (b) Benesi-Hildebrand plot of **BAB-PDI** in the presence of increasing concentrations of GTP.

Figure S4: (a) Emission spectrum of **BAB-PDI** (10 μ M) on addition of ATP recorded in HEPES buffer–DMSO (9:1 v/v, pH 7.2); (b) Plot showing the variation of emission intensity at 577 nm in response to addition of ATP.

Figure S5: (a) Emission spectrum of **BAB-PDI** (10 μ M) on addition of CTP recorded in HEPES buffer–DMSO (9:1 v/v, pH 7.2); (b) Plot showing the variation of emission intensity at 577 nm in response to addition of CTP.

Figure S6: (a) Emission spectrum of **BAB-PDI** (10 μ M) on addition of UTP recorded in HEPES buffer–DMSO (9:1 v/v, pH 7.2); (b) Plot showing the variation of emission intensity at 577 nm in response to addition of UTP.

Figure S7: (a) Emission spectrum of **BAB-PDI** (10 μ M) on addition of ADP recorded in HEPES buffer–DMSO (9:1 v/v, pH 7.2); (b) Plot showing the variation of emission intensity at 577 nm in response to addition of ADP.

Figure S8: (a) Emission spectrum of **BAB-PDI** (10 μ M) on addition of GDP recorded in HEPES buffer–DMSO (9:1 v/v, pH 7.2); (b) Plot showing the variation of emission intensity at 577 nm in response to addition of GDP.

Figure S9: (a) Emission spectrum of **BAB-PDI** (10 μ M) on addition of UDP recorded in HEPES buffer–DMSO (9:1 v/v, pH 7.2); (b) Plot showing the variation of emission intensity at 577 nm in response to addition of UDP.

Figure S10: (upper panel) Emission spectrum of **BAB-PDI** (10 μ M) on addition of GTP in the pool of monophosphates (50 μ M each); (lower panel) emission spectrum of **BAB-PDI** (10 μ M) on addition of GTP in the individual monophosphates (100 μ M) recorded in HEPES buffer–DMSO (9:1 v/v, pH 7.2).

Figure S11: (upper panel) Emission spectrum of **BAB-PDI** (10 μ M) on addition of GTP in the pool of diphosphates (25 μ M each); (lower panel) emission spectrum of **BAB-PDI** (10 μ M) on addition of GTP in the individual diphosphates (50 μ M) recorded in HEPES buffer–DMSO (9:1 v/v, pH 7.2).

Figure S12: Fluorescence spectra of **BAB-PDI**+GTP complex (ensemble) (10 μ M) with ALP (inactive) in HEPES buffer–DMSO (9:1 v/v, pH 7.4) recorded at regular interval of time.

S No	Paner details	Solvent	۵.	2	NPP sensing	Mechanism	ALP	Rio
5.110.	i aper uctans	medium	I∿abs	r∿em	THT sensing	Wittenanism	activity	imaging
		meanin			and LOD		activity	imaging
							sonsitivity	
							sensitivity	
	Present	90% HEPES	510	577nm	19.3 nM	Fluorescence	YES	No
	Manuscript	Buffer	nm		(GTP)	method		
1.	Talanta, 2019,	Alkaline	494	530	ssDNA with	Fluorescence	0.025 mU	No
	195, 566–572		nm	nm	poly-T tail		mL^{-1}	
		Phosphatase			could	method		
		Buffer (500						
		mM Tris-HCl,			form stable			
		pH 9.0, 10 mM			DNA duplex			
		MgCl ₂)			with the			
					addition of			
					Hg^{2+}			
2.	Talanta, 2019,	Tris-HCl	380	428	$2.0 imes 10^{-8}$		No	No
	197, 451–456	buffer(pH=7.3)	nm	nm	1 7 1			
				and	mol L ⁻¹			
				515	(ATD)			
				nm	(AIF)			
						~		
3.	Analytica	aqueous buffer	289	340	$0.12 \mu\text{M}$ for	Spectrophotometric,	No	No
	Chimica Acta,	solution (MES	nm	nm	ATP	fluorometric and		
	2019, 1057,	or MOPS in				electrochemical		
	51-59					method		
		appropriate pH						
		intervais)						
4	Sensors &	10 mM	540		Ca ²⁺	Colorimetric assay	5.4	No
т.	Actuators B	Tris-HCl	nm	_	Ca	Colorinetric assay	5.7	110
	Chemical	buffer (850uI			and PPi		U/L ALP	
	2019 289 85_	pH = 8.0					Detection	
	92							
	,2							
5.	Microchimica	PBS	-	-	13 fM	Electro-chemical	No	No
	Acta, 2019,					apta sensing		
	186 240	(10 mM, pH						
		7.4)						
6.	Sensors &	10 mM pH 8.0	652	-	GTP	Colorimetric	0.009 U/L	No
	Actuators B.	Tris-HCl	nm			method		
	Chemical	buffer			Hydrolysis			
	2018, 275, 43–							
	49	(containing 5						
		mM MgCl ₂						
		and 0.1 mM						
		ZnCl2)						
	A	LIEDER 1. CO.	420		mmont and to do	Coloningstric	0.10.17/1	NI-
7.	Analytica	HEPES buffer	420		pyropnosphate	Colorimetric	0.19 U/L	INO
	Chimica Acta,	(10 mM, pH						

Table S1: Comparison of BAB-PDI Sensor and ALP activity assay in Literature:

	2018, 1004,	7.4)	nm		(PPi)	method		
	74-81							
8.	ACS Appl.	HEPES	325	545	ATP Sensing	Time-Resolved	No	No
	Mater.	1 66 (10)	nm	nm	but LOD not	Luminescence		
	Interfaces,	buffer (10 mM			mentioned			
	2017, 9,	NaCl, I mM						
	722–729	MgC12						
		pH74						
		, pii 7.4)						
9.	Talanta, 2017,	Tris-HCl, pH	325	524	3'-	Fluorescence	0.1	No
	169, 64–69	7.0	nm	nm	phosphorylated		mU/mL	
					(DNA-P)	method	ALP	
					Binding		Detection	
					_			
10.	Biosensors	Tris–HCl (pH	490	510	-	fluorescence probe	ALP	No
	and	7.33)	nm	nm			activity	
	Bioelectronics,	containing 0.5					assay	
	2016, 77, 242–	mM MgCl2						
	248							
11	Anal Cham	Tria IIC1 nII -	116	510	2.0 mL CODa	Eluorogoonoo	1411/1	No
11.	2015 87	тиз-пСі, рп – 7 4	440	516	3.0 IIIL CQDS	riuorescence	1.4 U/L	INO
	2015, 87,	/.4		11111	triphosphate	method		
	2700 2775				unphosphate			
					(ATP 50.0uL)			
12.	New J. Chem.,	Tris-HCl	400	528	0.03µmol L ⁻¹	Fluorescence assay	0.01 U mL-	No
	2014, 38,	buffer, pH =	nm	nm	for ATP		1	
	4574-4579	7.0						
12	Cham	UEDES buffor	612	675	5 4 nnh (1 04	aalarimatria and	(0. 200 mU	Vas
15.	Commun	(10 mM nH =	nm	075 nm	×10-8	fluorescent sensor	(0-200 InO)	105
	2014 50	(10 mN, pH		1111	~10	nuoreseent sensor		
	4438-4441	1.2)			M) for GTP			
	++50-+++1				,			
14.	Bioorganic &	10 mM sodium	488	520	ATP	Fluorescence	0.02	No
	Medicinal	acetate (pH	nm	nm		method	units/L for	
	Chemistry	7.0)					ALP	
	Letters 2011,							
	21, 5088-5091							