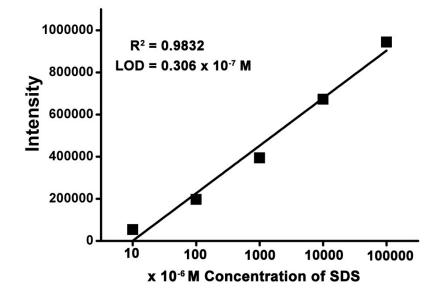

Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Graphene Oxide Based Fluorescent Sensor for Surfactants

Govindaraj Usha,^a Ramesh Prakash,^a Karuppasamy Karpagalakshmi,^a Sundaram Ramalakshmi,^a Lakshminarayanan Piramuthu,^a Cheng Yang^b and Narayanan Selvapalam^{a*} ^aCenter for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University), Krishnankoil, 626126 Tamil Nadu State, India. and ^bKey Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China Email:n.selvapalam@klu.ac.in



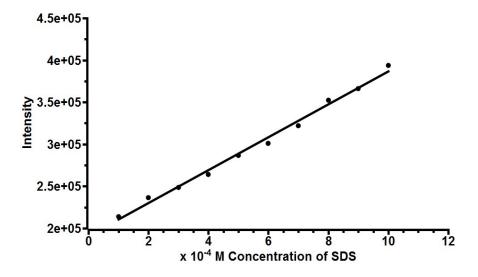
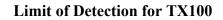
Limit of Detection for CTAP

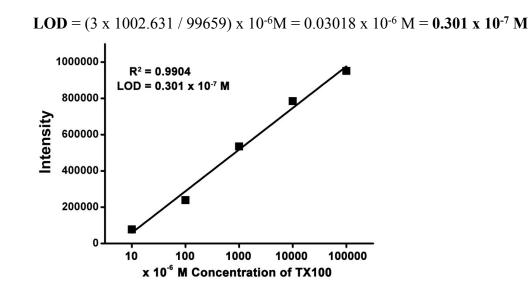
Figure S1: Linear plot of fluorescence intensity of CTAP at different concentration from 10^{-1} to 10^{-5} M

Limit of Detection for SDS

 $LOD = (3 \times 1002.631 / 97995) \times 10^{-6}M = 0.03069 \times 10^{-6} M = 0.306 \times 10^{-7} M$

Figure S2: Linear plot of fluorescence intensity of SDS at different concentration from 10^{-1} to 10^{-5} M.


Figure S3. Calibration curve for SDS (10⁻³ to 10⁻⁴ M) using RBGO

Recycle potential of the sensor RBGO with SDS surfactant

Figure S4. Recycle potential of the sensor RBGO has been examined with 10⁻³ M concentration of SDS, which indicates that it last for less than two cycles.

Figure S5: Linear plot of fluorescence intensity of TX100 at different concentration from 10^{-1} to 10^{-5} M.

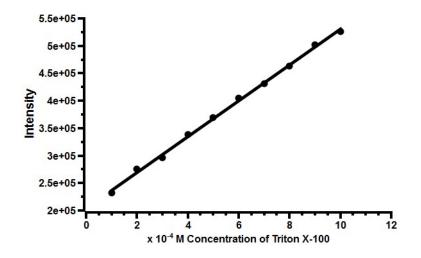


Figure. S6. Calibration curve for TX100 (10⁻³ to 10⁻⁴ M) using RBGO