Development of a novel UHPLC-UV combined with UHPLC-QTOF/MS fingerprint method for the comprehensive evaluation of Nao-Luo-Xin-Tong: multi-wavelength setting based on traditional Chinese medicinal prescription composition

Lina Wang,¹ Yanling Wang,¹ Guangyun Tong,¹ Yu Li¹, Mengnan Lei,¹ Huan Wu,¹ Bin Wang,^{*1,2} Rongfeng Hu,^{*1,3}

1. Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.

2. Institute of pharmaceutical chemistry, Anhui Academy of Chinese Medicine, Hefei, 230038, P. R. China

3. Anhui "115" Xin'an Medicine Research & Development Innovation Team, Anhui Academy of Chinese Medicine, Hefei, 230038, P. R. China

E-mail: wangbin5654@163.com; rongfenghu2003@hotmail.com

Table of contents

	page
Materials and instruments	2
Preparation of standard and sample solutions	2
UHPLC-UV method	2
UHPLC -QTOF/MS method	2-3
Investigation of fingerprint methodology	3
Figure S1-S3	4
Table S1	4
Table S2	5
Table S3-S4	6
Table S5-S7	7
Table S8	8
Figure S4-S5	8
Table S9	9-11
Figure S6-S9	12
Figure S10-S13	13
Figure S14-S17	14
Figure S18-S21	15
Figure S22-S25	16
Figure S26-S30	17
Figure S31-S34	18
Figure S35-S39	19
Figure S40-S44	20
Figure S45-S49	21

1. Experiments

1.1 Materials and reagents

The four standard substances Hydroxy safflower yellow A, Calycosin-7-O- β -D-glucoside, Ginsenoside Rb₁ and Hypoxanthine were purchased from Shanghai Yuan Ye Biotechnology Co., LTD. The two standard substances Ligustilide and Ferulic acid were purchased from the China Food and Drug Administration. The other two standard substances Notoginsenoside R₁ and Gastrodin were supplied by the China National Institute for the Control of Pharmaceutical and Biological Products and the Maclean Biotechnology Co., LTD., respectively. In addition, the herbals of *Astragali radix, Carthamus tinctorius, Panax notoginseng, Ligusticum chuanxiong* hort, *Angelicae Sinensis, Gastrodia elata* and *Scolopendra* were all obtained from the pharmacy of Tong Ren Tang. The pure of acetonitrile and methanol was chromatographic grade and the double distilled water was used throughout the course of the experiment.

1.2 Preparation of standard and sample solutions

The stock solutions of Ginsenoside Rb₁, Gastrodin, Hypoxanthine, Hydroxy safflower yellow A, Ferulic acid, Ligustilide, Calycosin-7-O- β -D-glucoside and Notoginsenoside R₁ were prepared with 90% methanol, respectively, and subsequently dilute to scale mark of flask. Finally, the each solutions of 8 kinds of standard substance were obtained at the concentration of 0.69 mg/mL, 0.65 mg/mL, 0.64 mg/mL, 0.72 mg/mL, 0.6 mg/mL, 2.0 mg/mL, 0.57 mg/mL and 0.58 mg/mL, respectively. All the solutions were stored at 4 °C before analysis.

The mixed standards solution were prepared through absorbing abovementioned eight kinds of standard solutions(100 μ L) and subsequently placing in the 1 mL volumetric flask, and finally diluting with 90% methanol to the scale.

According to the prescriptions of NLXT: 30.0 g *Astragali radix*, 10.0 g *Carthamus tinctorius*, 4.0 g *Panax notoginseng*, 6 g *Ligusticum chuanxiong* hort, 10.0 g *Gastrodia elata*, 10.0 g *Angelicae Sinensis* and 2.0 g *Scolopendra*, a total 73 g herbs was immersed in 576 mL 75% ethanol. This mixed solution was heated to reflux extraction for 1 hour and then filtered by Buchner funnel. The residue was reflux extracted with 576 mL 75% ethanol again and then filtered. Combine the twice filtered solution and steam until nearly dry, subsequently refrigerate it at -80 °C for 24 h. After 48 h vacuum freeze drying, the freeze-dried powder of Nao-Luo-Xin-Tong was prepared. Weigh 50 mg the freeze-dried powder in volumetric flask and fix volume to scale using 90% methanol. The solution was ultrasound for 20 min and was filtered with 0.22 μ m microporous membrane. Finally, the analysis solution of NLXTD, **S**₁, was obtained. The other 11 batches sample solutions, **S**₂ - **S**₁₂, were prepared according to this method.

1.3 UHPLC -UV method

All samples were performed on an Agilent -Eclipse Plus C₁₈ column (2.1 mm × 100 mm, 1.8 μ m). The column temperature and the sample chamber temperature were retained at 30 °C and 10 °C, respectively. Moreover, the UV wavelength was set at 203 nm, 254 nm, 320 nm and 403 nm, respectively. The mobile phase of **UHPLC** was consisted of A (water containing 0.1% formic acid) and B (acetonitrile), and the gradient was set as follows: 0 - 3 min, 1% B; 4 - 8 min, 3% B; 10 - 12 min, 10% B; 14 - 19 min, 14% B; 20 - 25 min, 18% B; 25 - 48 min, 18% - 35% B; 50 - 55 min, 58% B; 56 - 60 min, 95% B; 61 - 65 min, 1% B. Finally, we obtained the optimal chromatographic results when the flow rate was 0.2 mL/min and sample injection volume was 1 μ L.

1.4 UHPLC -QTOF/MS method

The MS analysis was performed on an ACQUITY I-Class **UHPLC** equipment coupled with a Xevo G2-XS QTOF/MS detector (Waters Corp. Milford, MA, USA) via an electrospray interface. The chromatographic separation of all samples was performed on an Eclipse Plus C_{18} column (Agilent Corp.) (dimension 2.1 mm × 100 mm, 1.8 µm particle size). The temperature of column and autosampler were maintained at 30 °C and 10 °C, respectively. The **UHPLC** system runs a gradient elution program consisting of water with 0.1% formic acid

(solvent A) and acetonitrile (solvent B). The linear gradient was optimized and was described as follows: 0 - 3 min, 1% B; 4 - 8 min, 3% B; 10 - 12 min, 10% B; 14 - 19 min, 14% B; 20 - 25 min, 18% B; 25 - 48 min, 18% - 35% B; 50 - 55 min, 58% B; 56 - 60 min, 95% B; 61 - 65 min, 1% B, which was delivered at 0.2 mL/min. Mass spectrometry analysis was conducted in positive and negative ion modes. The optimized conditions of QTOF/MS were: capillary voltage, 2.5 kV(ESI+) or 2.0 kV(ESI-); source temperature, 120 °C (+) or 110 °C (-); sampling cone, 40 kV; cone gas flow, 50 L/h; desolvation gas temperature and flow rate were 350 °C and 600 L/h, respectively; scan range, 50 – 1200 m/z; data acquisition rate, 0.5 s. MSE model was selected for acquisition: the lower collision energy was 10 V, the higher collision ramp energy was 20 - 40 V. To ensure the accuracy, the m/z values of all ions acquired in the QTOF/MS were real-time adjusted by Lock Spray. Leucine-enkephalin was selected as lock mass compound for positive ion mode ([M+H]⁺: 556.2771) and negative ion mode ([M-H]⁻: 554.2615).

1.5 Investigation of fingerprint methodology

1.5.1 Precision test: The 1 μ L solution of sample S₁ was selected to inject for 6 times. Their chromatograms were recorded and the relative retention time and relative peak area of each common peak were investigated. Taking Hypoxanthine in *Scolopendra* as the reference peak (peak 3), the results showed the RSD of the relative retention time and the relative peak area were <1.7 and <3.8%, respectively. Thus, the precision of the **UHPLC** is good.

1.5.2 Stability test: The 1 μ L solution of sample S₁ was selected to inject at 0, 2, 6, 4, 8, 10, 12 and 24 h. The chromatograms were recorded and the relative retention time and relative peak area of each common peak were investigated. Taking Hypoxanthine in *Scolopendra* as the reference peak (peak 3), the results showed the RSD of the relative retention time and the relative peak area were <2.0 and <3.2%, respectively. Thus, the stability of the samples S₁ within 24 h is good.

1.5.3 Repeatability test: The 1 μ L solution of sample S₁ was selected to inject for 6 times. The chromatograms were recorded and the relative retention time and relative peak area of each common peak were investigated. Taking Hypoxanthine in *Scolopendra* as the reference peak (peak 3), the results showed the RSD of the relative retention time and the relative peak area were <1.8 and <3.6%, respectively. Thus, the repeatability of method is fine.

Fig. S1 The common pattern diagram of NLXTD fingerprint chromatograms at 254 nm

Fig. S2 The common pattern diagram of NLXTD fingerprint chromatograms at 320 nm

Fig. S3 The common pattern diagram of NLXTD fingerprint chromatograms at 403 nm

Sample pretreatment	Solvents extract	Area of peak 21	Area of peak 32
Reflux extraction	75% ethanol	1533	881
Liquid ammonia	/	563	124
Reflux extraction	Petroleum ether	657	389
Reflux extraction	Chloroform	1289	652

1400

1024

872

598

Methanol

Acetonitrile

Reflux extraction

Reflux extraction

Table S1 Investigation of sample preparation with different pretreatment and various solvents for 60 min

Peak	t	\$1	57	63	54	\$5	56	57	58	50	\$10	\$11	\$12	Contras	t _R	Area
reak	¢R	51	52	33			30	57	30	35	510	511	512	t	RSD(%)	RSD(%)
1	1.38	9135.4	9135.4	9117.0	9218.8	9808.4	9897.1	10830.3	9512.8	9135.4	9086.6	9227.1	9689.7	9482.8	0.10	5.44
2	2.00	903.9	903.9	866.8	897.2	945.8	951.7	1042.6	883.8	903.9	916.4	948.3	1006.7	930.9	0.40	5.52
3	2.37	1109.7	1109.7	1095.1	1078.8	1150.7	1178.0	1328.4	1194.5	1109.7	1125.6	1130.9	1196.2	1150.6	1.01	5.90
4	4.69	129.7	129.7	115.4	124.2	115.6	117.2	127.2	114.9	129.7	181.1	184.4	195.3	138.7	1.33	21.49
5	5.58	55.3	55.3	37.1	35.4	34.7	35.6	56.4	32.8	55.3	50.9	54.4	60.0	46.9	0.99	22.71
6	6.34	472.3	472.3	444.4	421.8	447.0	454.4	515.3	444.3	472.3	453.8	461.6	510.8	464.2	0.76	5.84
7	8.01	155.7	155.7	170.6	175.7	161.4	167.6	192.3	170.3	155.7	163.7	164.7	176.3	167.5	0.81	6.37
8	9.30	152.2	152.2	165.1	162.0	162.7	164.7	188.3	160.3	152.2	140.8	142.9	152.2	158.0	0.70	7.90
9	11.59	297.8	297.8	337.3	325.4	349.8	349.4	368.0	321.6	297.8	257.6	227.7	268.3	308.2	0.24	13.58
10	12.06	381.1	381.1	406.9	409.2	426.8	438.2	484.7	414.1	381.1	350.5	306.4	363.0	395.3	0.09	11.58
11	12.54	550.0	550.0	469.6	478.7	613.7	620.0	680.3	582.3	550.0	518.1	385.4	551.2	545.8	0.16	14.24
12	14.12	141.0	141.0	223.0	141.6	196.7	203.3	214.2	154.9	141.0	159.5	46.3	69.0	152.6	0.22	35.41
13	15.09	162.8	162.8	164.8	160.3	165.4	156.5	181.2	148.2	162.8	181.3	176.3	181.1	167.0	0.27	6.41
14	15.49	64.1	64.1	70.8	68.1	65.4	66.7	77.1	57.3	64.1	65.0	64.2	59.2	65.5	0.22	7.78
15	15.99	346.2	346.2	321.6	322.7	360.7	354.5	404.9	334.6	346.2	352.8	363.8	373.4	352.3	0.13	6.44
16	16.45	85.9	85.9	73.1	82.1	94.5	85.1	102.9	88.4	85.9	86.9	90.8	96.1	88.1	0.07	8.52
17	17.77	180.2	180.2	186.3	290.2	195.4	203.0	363.1	325.0	180.2	171.9	175.1	194.2	220.4	0.21	30.04
18	20.63	84.9	84.9	120.7	131.6	207.2	217.7	225.0	204.7	84.9	125.3	118.9	134.7	145.0	0.27	37.14
19	21.68	174.9	174.9	146.1	152.5	149.1	147.3	134.8	152.7	174.9	177.4	152.7	182.3	160.0	0.17	9.85
20	21.86	231.7	231.7	239.8	232.3	224.0	233.4	207.3	233.7	231.7	220.8	177.7	226.1	224.2	0.16	7.51
21	22.59	1516.2	1516.2	1533.4	1522.1	1649.7	1611.8	1331.2	1653.4	1516.2	1485.5	1225.3	1635.5	1516.4	0.07	8.44
22	24.71	123.2	123.2	130.2	128.1	129.9	168.5	140.8	121.4	123.2	117.5	116.5	124.6	128.9	0.22	10.9
23	27.88	154.4	154.4	167.6	158.3	137.5	145.1	152.7	137.8	154.4	153.8	145.2	148.1	150.8	0.21	5.69
24	32.21	124.4	124.4	91.2	104.3	94.9	100.5	168.0	151.3	124.4	115.4	120.8	139.4	121.6	0.06	18.88
25	34.01	249.5	249.5	353.3	356.1	318.6	318.7	358.2	323.3	249.5	240.7	247.2	269.5	294.5	0.08	16.23
26	36.08	260.0	260.0	274.7	267.0	190.5	184.0	213.1	189.7	260.0	254.4	244.1	272.6	239.2	0.08	14.51
27	45.83	150.7	150.7	156.3	157.3	112.6	109.1	125.3	107.8	150.7	153.8	148.3	169.2	141.0	0.09	15.07
28	50.99	169.7	169.7	258.6	252.0	59.3	62.6	65.8	121.2	169.7	206.3	199.1	196.8	160.9	0.02	43.33
29	52.17	323.6	323.6	505.8	505.6	146.4	141.1	147.7	134.5	323.6	461.2	416.3	333.4	313.6	0.01	45.52
30	52.57	180.6	180.6	307.8	304.9	72.2	69.1	72.3	70.2	180.6	282.3	245.1	183.9	179.1	0.02	51.67
31	54.18	595.8	595.8	596.3	637.4	205.4	200.4	217.0	215.0	595.8	679.0	594.4	661.7	482.8	0.01	42.22
32	54.30	638.5	638.5	895.7	847.4	275.6	260.8	277.7	269.1	638.5	705.5	615.4	640.9	558.6	0.03	41.08
33	57.27	202.7	202.7	334.6	347.5	139.0	144.1	143.9	137.7	202.7	331.2	313.5	340.8	236.7	0.01	37.68
34	57.65	33.9	33.9	268.1	276.3	136.9	153.0	132.9	135.2	33.9	276.6	293.8	316.3	174.2	0.01	62.0
35	58.04	354.8	354.8	554.5	556.4	353.0	357.0	350.2	355.8	354.8	507.2	481.9	524.4	425.4	0.01	21.13
36	58.39	68.1	68.1	90.2	92.0	69.6	74.4	68.4	78.8	68.1	117.6	112.9	114.6	85.2	0.02	23.22
37	58.77	40.2	40.2	46.2	45.9	13.6	12.2	14.3	12.7	40.2	48.8	38.1	38.5	32.6	0.01	45.05
38	58.94	868.9	868.9	982.5	992.4	292.8	278.5	327.6	286.9	868.9	958.3	847.6	878.3	704.3	0.01	43.32
39	59.45	88.9	88.9	97.2	96.6	25.5	26.3	39.5	26.0	88.9	119.7	108.2	90.5	74.7	0.01	46.68
40	59.72	1702.8	1702.8	1945.1	1941.5	586.7	544.0	612.6	557.2	1702.8	1884.6	1682.1	1767.6	1385.8	0.02	43.72

 $\label{eq:solution} \textbf{Table S2} \quad \text{The data of common peaks of 12 batches NLXTD at 203 nm}$

Pea	t _R	S1	S2	S3	S4	S5	S 6	\$7	S8	S9	S10	\$11	S12	Contrast	t _R RSD(%	Area RSD(%
k))
1	1.40	453.7	559.3	662.2	658.5	703.8	714.3	712.7	663.8	638.8	640.8	643.8	677.4	644.1	0.36	11.34
2	2.01	133.6	216.0	211.0	202.8	224.4	248.8	235.2	227.1	226.0	226.5	214.9	238.7	217.1	1.03	13.42
3	2.39	325.5	336.3	331.7	331.9	361.2	417.8	368.1	364.8	348.7	352.2	364.1	396.0	358.2	0.96	7.64
41	13.52	35.9	33.6	33.1	33.3	37.5	35.8	36.5	33.1	30.3	32.3	34.0	36.5	34.3	0.21	6.16
15	16.03	267.1	182.7	135.4	89.2	222.7	95.0	139.1	129.7	130.8	138.6	115.4	125.0	147.6	0.21	35.26
17	17.81	144.0	141.6	142.8	141.0	153.5	152.5	149.8	144.0	112.0	113.9	110.9	117.4	135.3	0.22	12.29
42	22.36	39.5	40.6	16.9	17.4	17.4	17.5	58.7	33.7	33.8	52.9	33.3	30.0	32.6	0.16	42.87
21	22.56	87.7	88.2	52.4	53.0	54.4	55.2	109.6	75.4	74.4	110.0	77.1	58.3	74.6	0.11	28.14
22	24.70	218.5	61.3	70.1	67.1	58.8	64.7	61.7	64.8	67.3	68.5	45.9	45.8	74.5	0.26	61.77
43	27.51	100.8	108.2	107.9	112.6	32.7	38.1	40.9	43.2	132.6	133.2	128.8	137.6	93.1	0.20	44.87
24	31.17	70.3	72.2	70.8	71.4	62.5	61.9	63.2	61.7	68.4	66.7	66.3	69.4	67.1	0.21	5.84
26	36.00	102.5	105.0	102.9	103.7	66.0	64.3	64.3	63.9	93.8	96.1	91.7	97.6	87.7	0.14	19.95
28	51.09	119.5	116.0	114.1	113.8	74.9	71.4	75.0	72.9	32.5	34.9	31.3	33.4	74.1	0.06	47.69
44	51.31	159.6	157.4	154.3	157.3	89.0	84.4	87.2	84.6	141.4	151.1	137.2	149.2	129.4	0.01	25.1
29	52.15	45.9	45.5	44.9	44.4	27.5	25.8	26.3	25.5	37.7	41.2	35.6	38.3	36.6	0.01	22.6
31	54.18	230.6	254.6	255.5	262.3	80.7	80.3	85.8	85.3	282.2	317.3	278.5	310.2	210.3	0.02	46.07
32	54.34	351.9	348.3	343.5	339.7	106.2	96.0	98.2	94.4	259.7	293.4	245.5	261.6	236.5	0.04	45.68
34	57.65	173.6	161.0	160.3	160.7	96.9	115.3	113.9	111.4	190.4	202.8	172.7	200.9	155.0	0.01	23.78
35	58.13	243.7	210.7	208.1	210.5	69.0	82.7	85.3	79.1	186.9	206.4	194.3	194.7	164.3	0.01	39.31

 Table S3
 The data of common peaks of 12 batches NLXTD at 254 nm

 Table S4
 The data of common peaks of 12 batches NLXTD at 320 nm

Pea	t _R	S1	S2	S 3	S 4	S5	S 6	\$7	S 8	S 9	S10	\$11	\$12	Contrast	t _R RSD(%	Area RSD(%
ĸ))
1	1.41	168.0	166.3	161.1	165.1	178.1	178.9	182.4	171.7	165.6	176.9	179.3	188.0	173.5	0.08	4.78
2	1.99	28.8	27.8	27.5	28.3	31.2	31.5	32.0	30.8	29.4	19.4	20.9	22.2	27.5	0.30	15.70
3	2.35	50.2	55.3	51.5	51.1	52.5	61.3	62.1	57.8	46.4	46.2	42.7	60.2	53.1	0.68	11.95
10	12.14	171.0	176.3	166.8	71.7	77.8	78.1	77.2	68.2	65.1	66.9	67.4	69.3	96.3	0.36	47.26
11	12.53	240.3	238.6	233.4	239.9	257.4	249.4	252.7	231.5	219.7	223.2	232.4	253.4	239.3	0.19	5.03
41	13.49	27.7	27.4	24.9	29.2	31.3	35.9	39.7	39.7	39.3	37.0	40.1	41.5	34.5	0.24	17.34
15	16.00	264.0	273.5	439.3	277.4	410.5	262.3	257.2	268.5	463.7	284.6	289.4	314.6	317.1	0.36	23.72
45	17.54	46.8	48.0	48.2	47.1	51.0	50.8	49.5	48.4	45.9	45.7	44.2	40.0	47.1	0.20	6.40
17	17.78	102.1	102.2	102.8	102.0	108.1	105.9	104.4	104.6	102.2	105.2	104.3	107.8	104.3	0.23	2.07
19	21.64	228.1	225.4	204.5	211.4	202.7	199.2	198.4	133.8	208.8	204.7	202.6	199.6	201.6	0.22	11.63
22	24.68	45.6	44.1	44.0	45.9	42.2	44.4	58.3	43.2	44.1	44.2	42.3	75.9	47.8	0.26	20.47
46	41.46	175.8	175.4	173.8	171.1	61.9	57.2	59.0	47.7	121.2	144.0	117.0	134.1	119.9	0.09	42.64
31	54.16	1131.5	1161.5	1156.2	1149.0	360.0	342.4	356.9	349.2	974.5	1092.3	946.6	1050.9	839.3	0.02	43.61

Pea k	t _R	S1	S2	S3	S4	S5	S6	S7	58	S9	S10	S11	S12	Contrast	t _R RSD(%)	Area RSD(%)
11	12.57	408.6	401.6	390.1	396.9	439.0	435.9	440.4	259.6	396.0	396.6	405.8	373.1	395.3	0.14	12.03
13	15.09	178.2	187.1	507.3	165.4	195.6	566.4	567.0	536.7	184.2	501.1	509.5	654.4	396.1	0.20	48.77
15	15.98	73.1	71.0	244.1	65.3	73.7	277.0	278.5	258.1	63.1	251.1	253.0	316.3	185.4	0.11	56.20
47	16.73	35.3	32.9	88.4	31.2	32.0	95.9	99.4	92.2	35.4	94.7	97.8	120.7	71.3	0.12	48.26
17	17.79	20.9	19.5	18.3	18.5	17.8	18.0	19.4	18.0	18.0	17.2	17.6	21.2	18.7	0.06	6.86
48	17.94	50.5	49.2	45.9	45.2	49.1	48.8	47.2	44.4	43.9	42.5	41.8	48.7	46.4	0.05	6.22
19	21.60	699.8	699.1	669.2	682.9	861.1	848.3	852.9	799.8	704.4	735.2	750.0	872.5	764.6	0.13	10.13
21	22.56	27.7	27.6	28.1	27.6	47.6	47.2	50.1	47.2	29.8	70.3	71.2	33.6	42.3	0.04	37.95
23	27.81	59.8	57.6	56.7	56.1	56.2	55.4	56.3	54.5	54.7	55.1	54.9	68.9	57.2	0.07	6.94

 Table S5
 The data of common peaks of 12 batches NLXTD at 403 nm

Table S6The similarity results of 12 batches of NLXTD at 250 nm

Peak	S1	S2	S3	S 4	S5	S6	S7	S 8	S9	S10	S11	S12	Contrast
1	1	0.92	0.863	0.847	0.723	0.693	0.611	0.787	0.866	0.874	0.851	0.861	0.887
2	0.92	1	0.953	0.934	0.774	0.767	0.681	0.896	0.926	0.919	0.928	0.916	0.951
3	0.863	0.953	1	0.985	0.822	0.827	0.785	0.876	0.905	0.876	0.906	0.889	0.957
4	0.847	0.934	0.985	1	0.82	0.829	0.775	0.868	0.901	0.88	0.904	0.895	0.953
5	0.723	0.774	0.822	0.82	1	0.972	0.921	0.848	0.78	0.77	0.793	0.79	0.894
6	0.693	0.767	0.827	0.829	0.972	1	0.942	0.858	0.798	0.778	0.812	0.802	0.9
7	0.611	0.681	0.785	0.775	0.921	0.942	1	0.769	0.716	0.688	0.725	0.7	0.832
8	0.787	0.896	0.876	0.868	0.848	0.858	0.769	1	0.922	0.905	0.937	0.917	0.947
9	0.866	0.926	0.905	0.901	0.78	0.798	0.716	0.922	1	0.981	0.988	0.984	0.965
10	0.874	0.919	0.876	0.88	0.77	0.778	0.688	0.905	0.981	1	0.978	0.991	0.954
11	0.851	0.928	0.906	0.904	0.793	0.812	0.725	0.937	0.988	0.978	1	0.981	0.968
12	0.861	0.916	0.889	0.895	0.79	0.802	0.7	0.917	0.984	0.991	0.981	1	0.961

Table S7The similarity results of 12 batches of NLXTD at 320 nm

Peak	S1	S2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	S10	S11	S12	Contrast
1	1	0.993	0.983	0.988	0.772	0.799	0.826	0.831	0.955	0.978	0.971	0.978	0.981
2	0.993	1	0.984	0.992	0.77	0.797	0.808	0.814	0.948	0.971	0.963	0.965	0.976
3	0.983	0.984	1	0.98	0.815	0.81	0.819	0.831	0.972	0.966	0.963	0.961	0.981
4	0.988	0.992	0.98	1	0.777	0.802	0.813	0.82	0.957	0.979	0.972	0.97	0.98
5	0.772	0.77	0.815	0.777	1	0.96	0.903	0.905	0.876	0.803	0.834	0.798	0.866
6	0.799	0.797	0.81	0.802	0.96	1	0.935	0.924	0.884	0.845	0.877	0.836	0.889
7	0.826	0.808	0.819	0.813	0.903	0.935	1	0.992	0.858	0.825	0.85	0.882	0.893
8	0.831	0.814	0.831	0.82	0.905	0.924	0.992	1	0.87	0.831	0.855	0.89	0.899
9	0.955	0.948	0.972	0.957	0.876	0.884	0.858	0.87	1	0.981	0.987	0.965	0.987
10	0.978	0.971	0.966	0.979	0.803	0.845	0.825	0.831	0.981	1	0.997	0.978	0.985
11	0.971	0.963	0.963	0.972	0.834	0.877	0.85	0.855	0.987	0.997	1	0.976	0.989

12	0.978	0.965	0.961	0.97	0.798	0.836	0.882	0.89	0.965	0.978	0.976	1	0.985
----	-------	-------	-------	------	-------	-------	-------	------	-------	-------	-------	---	-------

Peak	S1	S2	S 3	S 4	S5	S 6	S7	S 8	S9	S10	S11	S12	Contrast
1	1	0.931	0.922	0.924	0.998	0.937	0.938	0.909	0.923	0.935	0.935	0.906	0.97
2	0.931	1	0.926	0.911	0.998	0.94	0.941	0.913	0.933	0.938	0.939	0.91	0.973
3	0.922	0.926	1	0.917	0.912	0.998	0.998	0.985	0.923	0.998	0.998	0.995	0.986
4	0.924	0.911	0.917	1	0.998	0.933	0.934	0.904	0.917	0.93	0.931	0.901	0.968
5	0.998	0.998	0.912	0.998	1	0.931	0.931	0.909	0.999	0.927	0.928	0.901	0.966
6	0.937	0.94	0.998	0.933	0.931	1	0.951	0.991	0.938	0.999	0.999	0.996	0.993
7	0.938	0.941	0.998	0.934	0.931	0.951	1	0.991	0.939	0.999	0.999	0.995	0.994
8	0.909	0.913	0.985	0.904	0.909	0.991	0.991	1	0.912	0.988	0.988	0.996	0.98
9	0.923	0.933	0.923	0.917	0.999	0.938	0.939	0.912	1	0.935	0.936	0.908	0.971
10	0.935	0.938	0.998	0.93	0.927	0.999	0.999	0.988	0.935	1	0.926	0.994	0.992
11	0.935	0.939	0.998	0.931	0.928	0.999	0.999	0.988	0.936	0.926	1	0.994	0.992
12	0.906	0.91	0.995	0.901	0.901	0.996	0.995	0.996	0.908	0.994	0.994	1	0.981

Table S8The similarity results of 12 batches of NLXTD at 403 nm

Fig. S4 The QTOF/MS-TIC of NLXTD extracts in negative ion mode

No.	<i>t</i> _R (min)	Identification	Formula	Cal. m/z [M-H] ⁻ /[M-HCOO] ⁻	Cal. m/z [M+H] ⁺ /[M+Na] ⁺	Ref.
1	1.14	Valine	C ₅ H ₁₁ NO ₂	/	118.0876	15d
2	1.16	L- Pyroglutamic acid	C ₅ H ₇ NO ₃	128.0352	130.0503	13d
3	1.21	Proline	C ₅ H ₉ NO ₂	/	116.0709	15d
4	1.22	Thymine (Peak 1)	$C_5H_6N_2O_2$	/	127.0511	15c
5	2.17	Uridine (Peak 2)	C ₉ H ₁₂ N ₂ O ₆	243.0614	/	15c
6	2.30	Citric acid	$C_6H_8O_7$	191.0182	215.0171	13d
7	2.33	Hypoxanthine (Peak 3)	C ₅ H ₄ N ₄ O	135.0308	137.0456	15a,b
8	2.40	3-[6-O-(D-galactopyranosyl)-β- galactopyranosyl]oxy-1,2-propan-ediyl diacetate	C ₁₉ H ₃₂ O ₁₅	499.1647	501.1814	10a
9	6.15	Gastrodin (Peak 6)	$C_{13}H_{18}O_7$	331.1041	/	13a,d
10	11.40	Jineol	$C_9H_7NO_2$	160.0408	162.0555	15a,b
11	11.50	Tryptophan	$C_{11}H_{12}N_2O_2$	203.0816	205.0963	14a
12	11.55	Hydroxy safflower yellow A (Peak 9)	C ₂₇ H ₃₂ O ₁₆	611.1629	613.1791	10b
13	12.50	Parishin E (Peak 11)	$C_{19}H_{24}O_{13}$	459.1147	/	13b,d
14	12.60	6-Hydroxykaempferol -3, 6-O-7-O- glucuronide	C ₃₃ H ₃₈ O ₂₃	801.1727	803.1897	10c
15	13.38	Chlorogenic acid (Peak 41)	C ₁₆ H ₁₈ O ₉	353.0878	/	14a
16	14.48	p-Hydroxybenzaldehyde	$C_7H_6O_2$	121.0298	/	13b,c
17	15.09	Ferulic acid (Peak 13)	$C_{10}H_{10}O_4$	193.0487	/	14a
18	15.11	Notoginsenoside J (Peak 14)	$C_{42}H_{74}O_{16}$	879.4968	/	11a
19	16.28	Parishin B (Peak 15)	$C_{32}H_{40}O_{19}$	727.2070	/	13a,d
20	16.67	Kaempferol-3-O-rutinoside (Peak 16)	C ₂₇ H ₃₀ O ₁₅	593.1511	595.1666	10b
21	16.72	6-Hydroxyapigenin 3-O-Rutinoside -6-O- glucoside (Peak 47)	$C_{33}H_{40}O_{21}$	771.1941	773.2084	10c
22	16.99	6-Hydroxykaempferol 3,6-diglucoside	C ₂₇ H ₃₀ O ₁₇	625.1389	627.1542	10d
23	17.11	Parishin (Peak 45)	$C_{32}H_{40}O_{19}$	727.2070	/	13a,d
24	17.39	6-Hydroxyapigenin 6-O-glucoside -7-O- glucuronide (Peak 17)	C ₂₇ H ₂₈ O ₁₇	/	625.1422	10a

Table S9 UHPLC-to	of /MS ⁿ data and	identification of o	compounds in NLXTD
-------------------	------------------------------	---------------------	--------------------

25	19.16	Rutin	C ₂₇ H ₃₀ O ₁₆	609.1461	611.1594	10b
26	19.83	Quercetin-7-O- glucuronide	C ₂₁ H ₂₁ O ₁₂	463.0870	465.1041	10c
27	20.77	Calycosin-7-O-β- D-glucoside (Peak 18)	$C_{22}H_{22}O_{10}$	491.1187	447.1294	9a
28	21.50	6-Hydroxykaempferol 3-β-rutinoside	C ₂₇ H ₃₀ O ₁₆	609.1461	611.1594	10a
29	21.75	Parishin A (Peak 19)	$C_{45}H_{56}O_{25}$	995.3002	/	13a
30	21.78	Disubstituted parishin	$C_{32}H_{40}O_{19}$	727.2070	/	13a
31	21.80	Tinctormin (Peak 20)	C ₂₇ H ₃₁ NO ₁₄	592.1697		10f
32	22.07	6-Hydroxykaempferol 3-β- glucoside (Peak 42)	$C_{21}H_{21}O_{12}$	463.0870	465.1041	10b
33	23.17	Safflor yellow B	C ₄₈ H ₅₂ O ₂₆	1043.2640	1045.2800	10b
34	22.37	Cyclocephaloside A (Peak 21)	C ₃₇ H ₆₀ O ₁₀	663.3949	/	9b
35	23.65	Safflor yellow A/ Kaempferol-3-O- rutinoside	C ₂₇ H ₃₀ O ₁₅	593.1511	595.1666	10b
36	24.58	Cynaroside (Peak 22)	C ₂₁ H ₂₀ O ₁₁	447.0969		10b
37	26.55	Safflor yellow C	C ₂₇ H ₂₉ NO ₁₃	574.1577		10a
38	26.57	4-Hydroxy-3-butylphthalide	$C_{12}H_{14}O_3$	205.0871	207.1024	12a
39	26.64	Senkyunolide I/H	$C_{12}H_{16}O_4$	/	247.0945	12a
40	26.80	Senkyunolide F/ 4-Hydroxy-3-butylphthalide	$C_{12}H_{14}O_3$	205.0871	207.1024	14a
41	27.82	Biochanin-A (Peak 23)	C ₁₆ H ₁₂ O ₅	283.0599	285.0750	9a
42	29.96	Ginseng saponin Ro	C ₄₈ H ₇₆ O ₁₉	1007.5458	/	11b
43	30.03	Notoginsenoside R ₃	$C_{48}H_{82}O_{19}$	1007.5458	/	11c
44	30.06	Ononin	C22H22O9	475.1246	431.1343	9a
45	32.07	Notoginsenoside R ₁ (Peak 24)	$C_{47}H_{80}O_{18}$	977.5295	/	11c
46	32.77	Ginseng saponin Rg ₁ /Rf/ F ₁₁	$C_{42}H_{72}O_{14}$	845.4889		11c
47	32.94	Notoginsenoside K/ Ginseng saponin Rd/Re	C ₄₈ H ₈₂ O ₁₈	991.5464	947.5539	11a
48	32.953	Ginseng saponin Rh ₄	C ₃₆ H ₆₀ O ₈	/	621.4340	11c
49	34.15	Malonyl ginsenosides Rg1 (Peak 25)	C ₄₅ H ₇₄ O ₁₇	885.4907	/	11a
50	36.12	Formononetin (Peak 26)	C ₁₆ H ₁₂ O ₄	267.0661	269.0810	9a
51	37.59	Methylnissolin	C ₁₇ H ₁₆ O ₅	299.0903	/	9b
52	40.97	Odoratin	C ₁₇ H ₁₄ O ₆	313.0735	337.0695	9a
53	41.40	Senkyunolide D (Peak 46)	C ₁₂ H ₁₄ O ₄	221.0805	/	12a
54	42.88	Notoginsenoside Rw ₁	C ₄₆ H ₇₈ O ₁₇	947.5198		11a
55	42.98	Notoginsenoside H	C ₄₇ H ₈₀ O ₁₉	947.5198		11a

56	44.38	Ginseng saponin F ₂ / Rg ₂ / Rg ₃	C ₄₂ H ₇₂ O ₁₃	829.4936	/	11c
57	44.58	Ginseng saponin Rh _l / F ₁	C ₃₆ H ₆₂ O ₉	683.4356	/	11c
58	44.76	Ginseng saponin Rk ₁ /Rg ₁	C ₄₂ H ₇₀ O ₁₂	/	767.4960	11c
29	45.76	Ginseng saponin Rb ₁ (Peak 27)	C ₅₄ H ₉₂ O ₂₃	1153.6025	1109.6073	11c
60	46.96	Senkyunolide F	C ₁₂ H ₁₄ O ₃	205.0871	/	12a
61	50.40	Notoginsenoside Fd/Fe	C47H80O17	961.5364	/	11c
62	50.96	Soyasaponin I (Peak 29)	C48H78O18	987.5231	/	9b
63	51.31	Senkyunolide A (Peak 44)	C ₁₂ H ₁₆ O ₂	/	193.1201	14a
64	52.48	Ligustilide (Peak 30)	C ₁₂ H ₁₄ O ₂	/	191.1068	14a
65	53.07	Sedanolide	C ₁₂ H ₁₈ O ₂	/	195.1383	12a
66	54.25	Butylphthalide (Peak 31)	C ₁₂ H ₁₄ O ₂	/	191.1068	14a
67	54.50	3-Butylidenephthalide (Peak 32)	C ₁₂ H ₁₂ O ₂	/	189.0899	12a
68	57.24	Levistilide A (Peak 33)	C ₂₄ H ₂₈ O ₄	379.1894	/	12a
69	57.59	Butylidenephthalide (Peak 34)	C ₁₂ H ₁₂ O ₂	/	189.0899	14a
70	58.02	Stearic acid (Peak 35)	C ₁₈ H ₃₆ O ₂	283.2630	/	15d
71	59.06	Linoleic acid (Peak 38)	C ₁₈ H ₃₂ O ₂	279.2307	/	14b
72	59.20	Oleic acid (Peak 39)	C ₁₈ H ₃₄ O ₂	281.2484	282.2702	15d

Elements	Used:												
C: 0-60	H: 0-10	00	N: 0-	200	0:0-200	Pt: 0-	1						
Mass	Calc. Mass	mDa	PPM	DBE	Formula	C	н	N	0	Pt	8		
137.0462	137.0463	-0.1	-0.7	5.5	C5 H5 N4 O	5	5	4	1				
	137.0450	1.2	8.8	0.5	C4 H9 O5	4	9		5				
	137.0423	3.9	28.5	1.5	H5 N6 O3		5	6	3				
			02 (1.6	221									TOP MO DO
NAOLUOXI	NTONG HUNBI	AO POS	92 (1.6	32)					12	8.95	15	1	TOF MS ES- 7.44e+00
	NTONG HUNBI	AO POS	92 (1.6:	32)					12	8.95	15	1	: TOF MS ES+ 7.44e+00
	NTONG HUNBI	AO POS	92 (1.6	32)					12	8.95	15	1	: TOF MS ES+ 7.44e+004
	NTONG HUNBI	AO POS	92 (1.6	32)					12	8.95	15	1	: TOF MS ES+ 7.44e+004

Fig. S6 The analysis of elemental composition about m/z 137.0462 (Peak 3)

Fig. S7 MS fragmentation for the m/z 137.0462 (Peak 3)

Fig. S8 The analysis of elemental composition about m/z 331.1012 (Peak 6)

Fig. S9 MS fragmentation for the m/z 331.1012 (Peak 6)

Fig. S10 The analysis of elemental composition about m/z 611.1605 (Peak 9)

Fig. S12 The analysis of elemental composition about m/z 611.1605 (Peak 13)

Fig. S14 The analysis of elemental composition about m/z 491.1195 (Peak 18)

Fig. S15 MS fragmentation for the m/z 491.1195 (Peak 18)

Tolerance Element p Monoisoto	= 5.0 mDa / prediction: Off pic Mass, Even	DBE: Electror	min = - 1 lons	1.5, m	ax = 50.0	1000) for	anch r	2000)			
Elements	lised:	with 2 re	SUILS W		nits (an results (up to	1000)101	eaciti	11455)			
C: 0-60	H: 0-10	00	O: 0-	200	Pt 0-1						
Mass	Calc. Mass	mDa	PPM	DBE	Formula	С	н	0	Pt		
977.5346	977.5321 977.5380	2.5 -3.4	2.6 -3.5	8.5 -0.5	C48 H81 O20 C41 H85 O25	48 41	81 85	20 25			
	NTONG HUNBI	AO NEG	1570 (2	27.573))				(977.5346	1: TOF MS ES- 2.28e+005
%-										,978.5457	
78	9591 145.9307	241.89	17							979.5510	

Fig. S16 The analysis of elemental composition about m/z 977.5346 (Peak 24)

Fig. S17 MS fragmentation for the m/z 977.5346 (Peak 24)

C: 0-60	Used: H: 0-100	00	0: 0-2	200	Pt 0-	1					
Mass	Calc. Mass	mDa	PPM	DBE	Formula		C	н	0	Pt	
1153.6031	1153.6006	2.5	2.2	9.5	C55 H93	025	55	93	25	-	
	1153.6065	-3.4	-2.9	0.5	C48 H97	030	48	97	30		
	NTONG HUNBIA	O NEG :	2408 (4	2.276)						1: T	OF MS ES 2.13e+00

Fig. S18 The analysis of elemental composition about m/z 1153.6031 (Peak 27)

Fig. S19 MS fragmentation for the m/z 1153.6031 (Peak 27)

Fig. S20 The analysis of elemental composition about m/z 191.1078 (Peak 30)

Fig. S21 MS fragmentation for the m/z 191.1078 (Peak 30)

Fig. S31 MS fragmentation for the m/z 625.1422 (Peak 17)

Fig. S34 MS fragmentation for the m/z 463.0870/465.1041 (Peak 42)

Fig. S39 MS fragmentation for the m/z 267.0661/269.0810 (Peak 26)

