Supplementary information

Silica aerogel as extractive coating for in-tube solid-phase microextraction to determine polycyclic aromatic hydrocarbons in water samples

Xiangping Ji, Juanjuan Feng, Chunying Li, Sen Han, Jiaqing Feng, Wenjuan Guo, Min Sun*

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China

*Correspondence: Dr. Min Sun, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; E-mail: <u>chm_sunm@ujn.edu.cn</u> (M. Sun); Fax: +86-531-89736065

Figure S1. Construction of in-tube SPME-HPLC online system including (a) extraction process and

(b) desorption process.

*Corresponding author. Tel: +86 531 89736065.

E-mail address: <u>chm_sunm@ujn.edu.cn</u> (M. Sun).

Figure S2. FTIR pattern of silica aerogel.

Figure S3. XRD pattern of silica aerogel.

Figure S4. Nitrogen adsorption-desorption measurement of silica aerogel.

Figure S5. HPLC chromatograms of selectivity containing (a) PAHs, (b) estrogens and (c) phthalates.

Conditions: sampling volume, 30 mL; sampling rate, 1.00 mL min⁻¹; methanol content, 0 (v/v); desorption time, 2.0 min.

(a) PAHs: (1) Nap, (2) Acy, (3) Ace, (4) Flu, (5) Phe, (6) Ant, (7) FlA and (8) Pyr. Detection wavelength, 220 nm; concentration of

solution, 5 μ g L⁻¹.

(b) Estrogens: (1) bisphenol A, (2) 17 α-ethinylestradiol, (3) estrone, (4) diethylstilbestrol and (5) hexestrol, detection wavelength: 202 nm,

concentration of solution:
$$5 \ \mu g \ L^{-1}$$
.

(c) Phthalates: (1) dimethyl phthalate, (2) diethyl phthalate, (3) diallyl phthalate, (4) benzyl butyl phthalate, (5) di-n-butyl phthalate, (6) di-

n-pentyl phthalate, (7) dicyclohexyl phthalate, (8) di(2-ethylhexyl) phthalate and (9) di-*n*-octyl phthalate, detection wavelength, 210 nm;

concentration of solution, 5 μ g L⁻¹.

Analytes	Enrichment	Analytes	Enrichment	Analytes	Enrichment
	factors		factors		factors
Nap	514	Bisphenol A	637	Dimethyl phthalate	165
Acy	931	17α -Ethinylestradiol	839	Diethyl phthalate	51
Ace	1175	Estrone	620	Diallyl phthalate	688
Flu	967	Diethylstilbestrol	1041	Benzyl butyl phthalate	20
Phe	1136	Hexestrol	985	Di- <i>n</i> -butyl phthalate	41
Ant	831			Di-n-pentyl phthalate	2624
FlA	888			Dicyclohexyl phthalate	2354
Pyr	951			Di(2-ethylhexyl) phthalate	949
				Di- <i>n</i> -octyl phthalate	2245

Table S1 The enrichment factors of PAHs, estrogens and phthalates.

Figure S6. The investigation of the residual on extraction tube under different desorption time.