Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

Fig. S1 VSM curves of GO/Fe₃O₄, GO/Fe₃O₄-SiO₂ and GO/Fe₃O₄-AuNPs

Fig. S2 (A) Nyquist diagrams recorded at (a) Fe₃O₄/GO-AuNPs@MIP sensor and after loading T₄ in the sites of polymer at different concentrations: 10^{-9} , 10^{-8} , 10^{-7} , 10^{-6} , 5×10^{-5} M (b-g) respectively, (B) The linear relationship between the ΔR_{ct} and the logarithm concentration of T₄.

Fig. S3 (A) Current response of (a) T_4 , (b) T_3 , (c) Tetrac 1, (d) AA, (e) UA at Fe₃O₄/GO -Au@MIPs electrode, concentration of each compound is 10^{-7} M; (B), (C) Currents of Fe₃O₄/GO-AuNPs@MIPs electrode to 10^{-7} M T_4 in the presence of 3×10^{-7} M T_3 and Tetrac 1 respectively.

Fig. S4 Selectivity of the MIP and NIP sensor for T_4 and interferences.

Fig. S5 Calibration curve for concentrations of T₄ with Fe₃O₄/GO-AuNPs@NIP electrode: 8×10^{-8} , 10^{-7} , 2×10^{-7} , (d) 3×10^{-7} and 5×10^{-7} M respectively), (B) DPVs in : (a) 8×10^{-8} , (b) 10^{-7} , (c) 2×10^{-7} , (d) 3×10^{-7} , and (e) 5×10^{-7} M T₄ solution (pH 1.0, scan rate 0.1 V/s).

Fig. S6 Cyclic voltammograms for 10^{-5} M T₄ in pH 1.0 obtained at Fe₃O₄/GO-AuNPs@MIP and Fe₃O₄/GO@MIP electrodes.