Supporting Information

A novel ratiometric fluorescent probe for highly sensitive and selective detection of peroxynitrite and its application for tracing endogenous peroxynitrite in live cells

Zilu Li,^a Chen Yu,^a Yanan Chen,^a Caiyun Liu,^{a*} Pan Jia,^a Hanchuang Zhu,^a Xue Zhang,^a Wenlong Sheng,^{b*} and Baocun Zhu ^{a*}

^a School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, P. R. China.

^b Qilu University of Technology (Shandong Academy of Sciences), Biology Institute of Shandong Academy of Sciences, 19 Keyuan Road, Lixia District, Jinan, 250014, Shandong Province, P. R. China.

E-mail address: lcyzbc@163.com (B. Zhu), liucaiyun1982072@163.com (C. Liu), and 15618694162@163.com (W. Sheng)

Table of Contents

- 1. Materials and instruments
- 2. Determination of the detection limit
- 3. Cytotoxicity assays
- 4. Imaging studies of live cells
- 5. Preparation of reactive oxygen species (ROS) and reactive nitrogen species (RNS)
- 6. Additional table of comparison between reported ONOO⁻ probes and probe **CPD- ratio**
- 7. The HRMS data for probe **CPD-ratio** and its reaction products with ONOO⁻

1. Materials and instruments

Except for special labels, chemical reagents were obtained from commercial vendor and employed without further purification. High resolution mass spectra (HRMS) were obtained by LC-MS2010A instrument. ¹H and ¹³C NMR data were obtained by Bruker AV-400 NMR spectrometer. Absorption spectra were obtained by UV-3101PC spectrophotometer. Fluorescence spectra were obtained by Horiba FluoroMax-4 spectrophotometer. Fluorescence imaging of ONOO⁻ in live RAW 264.7 macrophage cells and zebrafish were carried out on an Olympus FV1000-IX81 confocal fluorescence microscope.

2. Determination of the detection limit

The detection limit was calculated based on the fluorescence titration. The fluorescence spectra of free probe **CPD-ratio** were measured by five times and its standard deviation was obtained. To gain the slope, the fluorescence intensity ratios (at 500 nm / 565 nm) were plotted as the increasing concentrations of ONOO⁻, so the detection limit was calculated with the following equation (1):

Detection limit =
$$3\sigma/k$$
 (1)

Where σ is the standard deviation of blank measurement, k is the slope between the fluorescence intensities ratios versus the concentrations of ONOO⁻.

3. Cytotoxicity assays

The cell viability of RAW 264.7 macrophage cells, treated with probe **CPD-ratio**, was assessed by a cell counting kit-8 (CCK-8; Dojindo Molecular Technologies, Tokyo, Japan). Briefly, RAW 264.7 macrophage cells, seeded at a density of 1×10^6

cells·mL⁻¹ on a 96-well plate, were maintained at 37 °C in a 5% CO_2 / 95% air incubator for 12 h. Then the live RAW 264.7 macrophage cells were incubated with various concentrations (0, 2, 5, 10, 20, and 30 μ M) of probe **CPD-ratio** suspended in culture medium for 12 h. Subsequently, CCK-8 solution was added into each well for 2 h, and absorbance at 450 nm was measured.

4. Imaging studies of live cells

The RAW 264.7 macrophage cells were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum and 1% penicillin-streptomycin and incubated under an atmosphere containing 5% CO₂ at 37 °C humidified air for 24 h. Before imaging by confocal fluorescence microscope, probe **CPD-ratio** (10 μM) was used as a bioimaging reagent to incubate RAW 264.7 macrophage cells for 30 min, then removed culture medium and washed with phosphate-buffered saline for three times. And cells incubated with probe **CPD-ratio** (10 μM) for another 30 min after preincubation with 4-amino-tempo (200 μM). After that, these probe-loaded cells were further incubated upon addition of ONOO⁻ (20 μM) for 30 min. On the other hand, the cells pretreated with PMA (1.0 μg mL⁻¹) or LPS (1.0 μg mL⁻¹) for 1 h, then were incubated with probe **CPD-ratio** (10 μM) in culture media for another 30 min, and washed with culture water. Then the fluorescence imaging of cells was carried out by confocal fluorescence microscope.

5. Preparation of reactive oxygen species (ROS) and reactive nitrogen species (RNS)

Hydrogen peroxide (H₂O₂), sodium hypochlorite (NaOCl), and *tert*-butylhydroperoxide (TBHP) were diluted from the commercially available solution to

0.1 M in ultrapure water. Hydroxyl radical (${}^{\circ}$ OH) and *tert*-butoxy radical (${}^{\circ}$ O'Bu) were generated by Fenton reactions. Superoxide (${}^{\circ}$ O₂) was prepared from KO₂ in DMSO. Singlet oxygen (1 O₂) was generated from HOCl and H₂O₂. Nitric oxide (NO) was generated from potassium nitroprusside dihydrate. The concentration of H₂O₂ was determined from the absorption at 240 nm (ε = 43.6 M⁻¹ cm⁻¹). The concentration of OCl⁻ was determined from the absorbance at 292 nm (ε = 350 M⁻¹ cm⁻¹). ONOO⁻ was prepared according to the reported method and the concentration was determined based on the absorbance at 302 nm (1670 M⁻¹ cm⁻¹).

6. Additional table of comparison between reported ONOO probes and probe CPD-ratio

Probe	λ_{em}	Time	Detection limit	Imaging	References
COOH O N H O N H O	558 nm	30 min	43 nM	Living cells	Anal. Chem. 89 (2017) 7693-7700
N-NH O	578 nm	20 min	53 nM	Living cells	Anal. Chem. 89 (2017) 5519-5525
H COOH	496 nm	5 s	16 nM	Living cells	ACS Sens. 2 (2017) 501-505
NH-O-CI O-B O-B	405/481 nm	1 min	21.4 nM	Living cells	Chem. Commun. 54 (2018) 9953-9956

7. The HRMS data for CPD-ratio and its reaction products with ONOO-

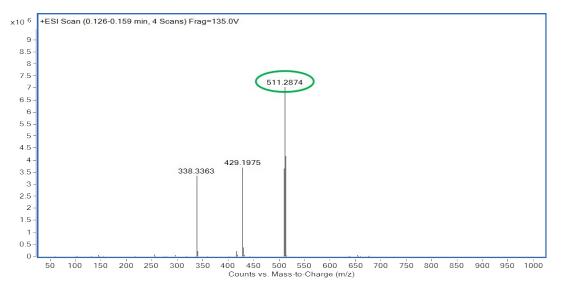


Figure S1. HRMS data of probe CPD-ratio.

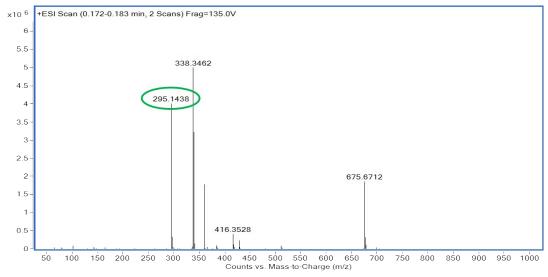


Figure S2. HRMS data of the reaction products of probe CPD-ratio and ONOO-.