Electronic Supplementary Material (ESI)

A Nanobiosensor for the Simple Detection of Small Molecules Using Non-crosslinking Aggregation of Gold Nanoparticles with Gquadruplexes

Surachada Chuaychob,^{a,b} Chongdee Thammakhet-Buranachai,^{c,d} Proespichaya Kanatharana,^{c,d} Panote Thavarungkul,^{d,e} Chittanon Buranachai,^{d,e} Masahiro Fujita,*^b and Mizuo Maeda*^{a,b}

^aDepartment of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8561, Japan.

^bBioengineering Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.

^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.

^dCenter of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.

^eDepartment of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.

*Corresponding Authors

Name	Sequence (from 5' to 3')
21CTA (Chair-type)	HS-(CH ₂) ₆ -GGGCTAGGGCTAGGGCTAGGG
22AG (Basket-type)	HS- (CH ₂) $_6$ -AGGGTTAGGGTTAGGGTTAGGG
35B1 (Kras) (Propeller-type)	HS- (CH ₂) $_6$ -AGGGCGGTGTGGGAAGAGGGAAGAGGGGGGGGGGGGGGG

Table S1DNA sequences of G4 used in this study.

Scheme S1 Hydrolysis of cisplatin dichloro-form (inactive species) to diaqua-form (active species)¹

Fig. S1 TEM images of 15 nm (A) and 40 nm AuNPs (B). The mean radii and standard deviations for the smaller and larger AuNPs were estimated at 7.47 ± 0.37 nm and 19.0 ± 1.6 nm, respectively, from the TEM observations.

Fig. S2 (A) Zeta potential data of 1.0 OD G4-AuNPs in 10 mM PB (pH 5.0) containing 1.5 mM EDTA and 0.1 M NaNO₃ after overnight incubation with (line-filled bar) and without (dash-filled bar) 150 μ M of cisplatin. (B) UV-vis spectra of 35-nt G4-AuNPs in 10 mM PB (pH 5.0) containing 1.5 mM EDTA at 1.0 M NaNO₃, under different cisplatin concentrations from 0 to 50 μ M. Data were gathered 10 min after adding cisplatin. No peak shift was observed at any cisplatin concentration. (C) The corresponding 35-nt G4-AuNPs solutions at the various cisplatin concentrations. The particles remained dispersed.

Fig. S3 Representation of the platinum-based alkylating agents: (left) cisplatin (11 atoms with two leaving chloride (Cl⁻) atoms), (middle) carboplatin (17 atoms with a leaving cyclobutane-1,1-dicarboxylate ($C_6H_6O_4^{2-}$) group) and (right) oxaliplatin (29 atoms with a leaving oxalate ($C_2O_4^{2-}$) group).

Fig. S4 (A) Cisplatin detection using 1.0 OD 35-nt G4-AuNPs in 10 mM PB containing 1.5 mM EDTA (pH 5.0) at 1.5 M NaNO₃. Data were gathered 10 min after the addition of cisplatin. The regression line (y = 0.040x - 0.30) in the dynamic range and LOD (y = 0.22) are shown.² The intersection point of the lines yielded x = 12.9. (B) The corresponding images of 35-nt G4-AuNPs solutions.

References

- Legendre, F.; Bas, V.; Kozelka, J.; Chottard, J. C. A Complete kinetic study of GG versus AG platination suggests that the doubly aquated derivatives of cisplatin are the actual DNA binding. *Chem. Eur. J.*, 2000, 6, 2002–2010.
- (2) Thomsen, V.; Schatzlein, D.; Mercuro, D. Limits of detection in spectroscopy. *Spectroscopy*, 2003, **18**, 112–114.