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Table S1. Part of the reported fluorescence probe for Pd2+ in recent 3 years.

Structures of sensors Solvent
Ex/Em

(nm)
Detection

Limit
Response 

time
Ref.

N
B
N

O

F F

O

PBS (10 mM, 
pH=7.4, 

containing 1% 
DMSO)

480/513 7.4 nM <6 min 1

N

NO
DMSO/PBS 

(pH 7.40, 8/2, 
v/v)

600/689 0.52 μM 30 min 2

N

N

N
B
N

N

N

F

F

DMF:H2O 
(95:5, v/v) 

solution (pH 
5.5)

500/518 0.29 μM — 3

O

N N

N

N
N

O

NN

O

CH3CN-water 
(4:1, v/v, 10 
mM HEPES 

buffer, pH 7.4)

555/575 11.9 µM — 4

N
B
N

O

F F

O

CH3CN/PBS 
(1:99, v/v, 10 
mM, pH 7.4)

465/531 50.8 nM <120 min 5

N

O

OO

R

PBS, 10 mM, 
pH 7.4, 

containing 1% 
EtOH

337/405 29 nM <60 min 6

NH2

N

N
O

S

pure water 382/540 22 nM <30 min 7

O

O

OHO

O

PBS buffer (pH 
7.4, 10 mM)

610/668 10.8 nM — 8

O O

O

O

NC

NC

NC
EtOH/H2O (1:1, 

v/v, PBS 20 
mM, pH=7.4

560/630 0.705 μM <30 min 9
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N
S

O
CN

CN

O

DMSO-PBS 
(3:1 in v/v, 

pH=7.4) (10 
μM)

580/717 48 nM 3 min 10

O ON

N
O

S

EtOH/H2O=40:
60, v/v

436/500 41.5 nM 30 s 11

O

CF3

O O O

O

O

CF3

O O

CH3CN-PBS 
(v/v=1/3, 

pH=7.4, 10 
mM)

365/509
365/524

33 nM
14 nM

2-3 min 12

N

S
O O

N

S
O

O

O

10 mM HEPES, 
pH 7.4

380/543
437/642

285 nM
14.6 nM

10 min 13

OHO O

N

S

DMF-HEPES 
buffer (10 mM, 
95:5, v/v, pH 

7.0)

320/465 0.29 μM 30 s 14

O

N

O

NN

NH

H
NO

Methanol 
/Water (1:1)

330/590 170 nM <30 min 15

N

S

HN

O
O

CH3CN/PBS 
buffer (8:2 v/v, 

pH 7.4)
369/452 2.6 nM <2 min

This 
work

"—" Not mentioned
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Fig. S1. UV-vis spectra of ACBT in the absence and presence of Pd2+. [ACBT is 10 
μM], [Pd2+ is 20 μM], [NaBH4 is 20 μM] in a mixture of CH3CN/PBS buffer (8:2 v/v, 

pH 7.4).

Fig. S2. Fluorescence intensity changes of probe ACBT (10 µM) at 452 nm upon 
addition of Pd2+, Pd4+ and Pd0 (20 μM) in the absence and presence of NaBH4 (20 μM) 

in CH3CN-PBS buffer (10 mM, pH 7.4, 8:2, v/v) at 25 °C. All data were collected 5 
min after mixing. λex=369 nm.
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Fig. S3. Effect of pH on the Fluorescence intensity of ACBT in the absence and 
presence of Pd2+. [ACBT is 10 μM], [Pd2+ is 20 μM], [NaBH4 is 20 μM] in a mixture 

of CH3CN/PBS buffer (8:2 v/v, pH 7.4, 25 °C), λex=369 nm, λem=452 nm.

Fig. S4. 1H NMR spectrum of compound 1 in DMSO-d6.
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Fig. S5. 13C NMR spectrum of compound 1 in DMSO-d6.

Fig. S6. DEPT-135 spectrum of compound 1 in DMSO-d6.
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Fig. S7. HRMS spectrum of compound 1 in CH3CN.

Fig. S8. 1H NMR spectrum of compound NBT in CDCl3-d1.
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Fig. S9. 13C NMR spectrum of compound NBT in CDCl3-d1.

Fig. S10. HRMS spectrum of compound NBT in CH3CN.
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Fig. S11. 1H NMR spectrum of compound ABT in DMSO-d6.
 

Fig. S12. 13C NMR spectrum of compound ABT in DMSO-d6.

11



Fig. S13. HRMS spectrum of probe compound ABT in CH3CN.

Fig. S14. 1H NMR spectrum of compound ACBT in CDCl3-d1.
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Fig. S15. 13C NMR spectrum of compound ACBT in CDCl3-d1.

Fig. S16. HRMS spectrum of probe compound ACBT in CH3CN.
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Detection limit

The detection limit for Pd2+ ions was calculated by the fluorescence titration 

experiments according to the reported method. A good linear relationship between the 

fluorescence intensity and Pd2+ concentration (0.5 μM-10 μM) could be obtained 

(R2=0.99944). The value obtained for the Pd2+ was found to be 2.6 nM by the 

equation of LOD=3δ/m (δ was the standard deviation of the blank solution and m is the 

absolute value of the slope between intensity versus Pd2+ concentration). δ=0.4880, 

m=557.6864.

Fig. S17. The linear relationship between the fluorescence intensity and Pd2+ 

concentration (0.5-10 μM). All measurements were taken in a mixture of CH3CN/PBS 
buffer (8:2 v/v, pH 7.4) at 25 oC. Excitation and emission were at 369 nm/452 nm 

respectively.
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Kinetic studies:

The reaction of ACBT (10 μM) with Pd2+ in CH3CN/PBS buffer (8:2 v/v, pH 7.4) 

was monitored using the fluorescence intensity at 452 nm. The reaction was carried 

out at 25 oC. The pseudo-first-order rate constant for the reaction was determined by 

fitting the fluorescence intensities of the samples to the pseudo-first-order equation:

Ln [(Ft - Fmin) / Fmin] = - k’t

Where Ft and Fmin are the fluorescence intensities at 452 nm at time t and the 

maximum value obtained after the reaction was complete. k’ is the pseudo-first-

order rate constant. The pseudo-first-order plots for the reaction of ACBT with 

100 equiv. of Pd2+ is shown in Fig. S18, the pseudo-first-order rate constant k’ 

=1/t1=0.01284 min-1.

Fig. S18. Pseudo-first-order kinetic plot of the reaction of ACBT (10 μM) with 
Pd2+ (100 equiv.) and NaBH4 (100 equiv.) in a mixture of CH3CN/PBS buffer (8:2 

v/v, pH 7.4) at 25 oC. k =0.01284 min-1.
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Fig. S19. ESI-MS spectrum (positive ion mode) of ACBT upon addition of Pd2+ in 
CH3CN. (a) only ACBT, (b) the isolated aggregates of compound after ACBT reacted 

with Pd2+ for 5 min.
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Fig. S20. The comparison of solid phase of ACBT and ABT. Left: The solid of 
synthesized ACBT; Right: The solid of synthesized ABT. The centrifuge tubes were 

excited at 365 nm using a hand-held UV lamp.
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