Electronic Supplementary Information

Highly sensitive and selective fluorescent probe based on Pdcatalyzed reaction for detection of Pd²⁺

Man Du^a, Yue Zhang^{ab}, Yifeng Yu^{ab}, Hua Zhao^a, Yue Guo^a, Yunxu Yang^{c*}

^aSchool of Chemical and Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China;

^bHebei Pharmaceutical Chemical Engineering Technology Research Center, Hebei University of Science & Technology, Shijiazhuang, 050018, China;

^cDepartment of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China

Corresponding Author: Yunxu Yang E-mail addresses: yxyang@ustb.edu.cn (Yunxu Yang)

Contents:

Fable S1 Part of the reported fluorescence probes for Pd ²⁺ in recent 3 years. 3							
Fig. S1 UV-vis spectra of ACBT in the absence and presence of Pd ²⁺ .5							
Fig. S2 Fluorescence intensity changes of probe ACBT upon addition of	Pd^{2+}, Pd^{4+}						
and Pd ⁰ .	5						
Fig. S3 Effect of pH on the Fluorescence intensity of ACBT.	6						
Fig. S4 ¹ H NMR spectrum of compound 1 in DMSO- d_6 .	6						
Fig. S5 ¹³ C NMR spectrum of compound 1 in D	MSO-d ₆ 。						
7							
Fig. S6 DEPT-135 spectrum of compound 1 in D	MSO-d ₆ 。						
7							
Fig. S7 HRMS spectrum of compound 1 in CH ₃ CN.	8						
Fig. S8 ¹ H NMR spectrum of compound NBT in $CDCl_3$ -d ₁ .	8						
Fig. S9 ¹³ C NMR spectrum of compound NBT in $CDCl_3$ -d ₁ .	9						
Fig. S10 HRMS spectrum of compound NBT in CH ₃ CN.	9						
Fig. S11 ¹ H NMR spectrum of compound ABT in I	DMSO-d ₆ .						
10							
Fig. S12 ¹³ C NMR spectrum of compound ABT in DMSO- d_6 .	10						
Fig. S13 HRMS spectrum of compound ACBT in CH ₃ CN.	11						
Fig. S14 ¹ H NMR spectrum of compound ACBT in $CDCl_3-d_1$. 11							
Fig. S15 13 C NMR spectrum of compound ACBT in CDCl ₃ -d ₁ . 12							
Fig. S16 HRMS spectrum of compound ACBT in CH ₃ CN.	12						
Detection limit							
Fig. S17 The linear relationship between the fluorescence intensity	and Pd ²⁺						
concentration.	13						
Kinetic studies							
Fig. S18 Pseudo-first-order kinetic plot.	14						
Fig. S19 ESI-MS spectrum of ACBT upon addition of Pd ²⁺ .	15						
Fig. S20 The comparison of solid phase of ACBT and ABT compounds.	16						
References	17						

Structures of sensors	Solvent	E _x /E _m (nm)	Detection Limit	Response time	Ref.
	PBS (10 mM, pH=7.4, containing 1% DMSO)	480/513	7.4 nM	<6 min	1
	DMSO/PBS (pH 7.40, 8/2, v/v)	600/689	0.52 μΜ	30 min	2
	DMF:H ₂ O (95:5, v/v) solution (pH 5.5)	500/518	0.29 μΜ	_	3
	CH ₃ CN-water (4:1, v/v, 10 mM HEPES buffer, pH 7.4)	555/575	11.9 μΜ	_	4
	CH ₃ CN/PBS (1:99, v/v, 10 mM, pH 7.4)	465/531	50.8 nM	<120 min	5
	PBS, 10 mM, pH 7.4, containing 1% EtOH	337/405	29 nM	<60 min	6
NH ₂ S NH ₂ S	pure water	382/540	22 nM	<30 min	7
HO	PBS buffer (pH 7.4, 10 mM)	610/668	10.8 nM	_	8
	EtOH/H ₂ O (1:1, v/v, PBS 20 mM, pH=7.4	560/630	0.705 μΜ	<30 min	9

Table S1. Part of the reported fluorescence probe for Pd²⁺ in recent 3 years.

S N N N N N N N N N N N N N N N N N N N	DMSO-PBS (3:1 in v/v, pH=7.4) (10 µM)	580/717	48 nM	3 min	10
N C C C C C C C C C C C C C C C C C C C	EtOH/H ₂ O=40: 60, v/v	436/500	41.5 nM	30 s	11
CF_3 CF_3 CF_3 CF_3	CH ₃ CN-PBS (v/v=1/3, pH=7.4, 10 mM)	365/509 365/524	33 nM 14 nM	2-3 min	12
	10 mM HEPES, pH 7.4	380/543 437/642	285 nM 14.6 nM	10 min	13
HOLOO	DMF-HEPES buffer (10 mM, 95:5, v/v, pH 7.0)	320/465	0.29 μΜ	30 s	14
	Methanol /Water (1:1)	330/590	170 nM	<30 min	15
	CH ₃ CN/PBS buffer (8:2 v/v, pH 7.4)	369/452	2.6 nM	<2 min	This work

"—" Not mentioned

Fig. S1. UV-vis spectra of **ACBT** in the absence and presence of Pd^{2+} . [**ACBT** is 10 μ M], [Pd²⁺ is 20 μ M], [NaBH₄ is 20 μ M] in a mixture of CH₃CN/PBS buffer (8:2 v/v, pH 7.4).

Fig. S2. Fluorescence intensity changes of probe **ACBT** (10 μ M) at 452 nm upon addition of Pd²⁺, Pd⁴⁺ and Pd⁰ (20 μ M) in the absence and presence of NaBH₄ (20 μ M) in CH₃CN-PBS buffer (10 mM, pH 7.4, 8:2, v/v) at 25 °C. All data were collected 5 min after mixing. λ_{ex} =369 nm.

Fig. S3. Effect of pH on the Fluorescence intensity of ACBT in the absence and presence of Pd²⁺. [ACBT is 10 μM], [Pd²⁺ is 20 μM], [NaBH₄ is 20 μM] in a mixture of CH₃CN/PBS buffer (8:2 v/v, pH 7.4, 25 °C), λ_{ex}=369 nm, λ_{em}=452 nm.

Fig. S4. ¹H NMR spectrum of compound 1 in DMSO-d₆.

Fig. S6. DEPT-135 spectrum of compound 1 in DMSO-d₆.

Fig. S8. ¹H NMR spectrum of compound NBT in CDCl₃-d₁.

Fig. S10. HRMS spectrum of compound NBT in CH₃CN.

Fig. S12. ¹³C NMR spectrum of compound ABT in DMSO-d₆.

Fig. S13. HRMS spectrum of probe compound ABT in CH₃CN.

Fig. S14. ¹H NMR spectrum of compound ACBT in CDCl₃-d₁.

Fig. S16. HRMS spectrum of probe compound ACBT in CH₃CN.

Detection limit

The detection limit for Pd^{2+} ions was calculated by the fluorescence titration experiments according to the reported method. A good linear relationship between the fluorescence intensity and Pd^{2+} concentration (0.5 µM-10 µM) could be obtained (R²=0.99944). The value obtained for the Pd^{2+} was found to be 2.6 nM by the equation of $L_{OD}=3\delta/m$ (δ was the standard deviation of the blank solution and *m* is the absolute value of the slope between intensity versus Pd^{2+} concentration). δ =0.4880, *m*=557.6864.

Fig. S17. The linear relationship between the fluorescence intensity and Pd²⁺ concentration (0.5-10 μM). All measurements were taken in a mixture of CH₃CN/PBS buffer (8:2 v/v, pH 7.4) at 25 °C. Excitation and emission were at 369 nm/452 nm respectively.

Kinetic studies:

The reaction of **ACBT** (10 μ M) with Pd²⁺ in CH₃CN/PBS buffer (8:2 v/v, pH 7.4) was monitored using the fluorescence intensity at 452 nm. The reaction was carried out at 25 °C. The *pseudo*-first-order rate constant for the reaction was determined by fitting the fluorescence intensities of the samples to the *pseudo*-first-order equation:

 $\operatorname{Ln}\left[\left(\mathrm{F_{t}}-\mathrm{F_{min}}\right)/\mathrm{F_{min}}\right]=-k't$

Where F_t and F_{min} are the fluorescence intensities at 452 nm at time t and the maximum value obtained after the reaction was complete. k' is the *pseudo*-first-order rate constant. The *pseudo*-first-order plots for the reaction of **ACBT** with 100 equiv. of Pd²⁺ is shown in Fig. S18, the *pseudo*-first-order rate constant k' =1/t₁=0.01284 min⁻¹.

Fig. S18. *Pseudo*-first-order kinetic plot of the reaction of **ACBT** (10 μ M) with Pd²⁺ (100 equiv.) and NaBH₄ (100 equiv.) in a mixture of CH₃CN/PBS buffer (8:2 v/v, pH 7.4) at 25 °C. *k* =0.01284 min⁻¹.

Fig. S19. ESI-MS spectrum (positive ion mode) of **ACBT** upon addition of Pd²⁺ in CH₃CN. (a) only **ACBT**, (b) the isolated aggregates of compound after **ACBT** reacted with Pd²⁺ for 5 min.

Fig. S20. The comparison of solid phase of **ACBT** and **ABT**. Left: The solid of synthesized **ACBT**; Right: The solid of synthesized **ABT**. The centrifuge tubes were excited at 365 nm using a hand-held UV lamp.

References

- J. L. Zhou, S. Xu, Z. L. Yu, X. F. Ye, X. C. Dong, W. L. Zhao, *Dyes Pigments*, 2019, **170**, 107656-107662.
- Y. Wang, X. F. Hou, C. H. Liu, M. M. Lei, Q. H. Zhou, S. S. Hu, Z. H. Xu, Inorg. Chem. Commun., 2019, 101, 135-141.
- 3. Y. N. Li, L. Yang, M. Q. Du, G. J. Chang, Analyst, 2019, 144, 1260-1264
- S. Mondal, S. K. Manna, S. Pathak, A. Masumc, S. Mukhopadhyaya. New J Chem., 2019, 43, 3513-3519
- M. Chen, X. H. Wang, N. N. Wang, X. Ji, J. L. He, J. Zhang, W. L. Zhao, *Anal. Methods*, 2019, Ahead of Print.
- J. Huang, Y. Ding, H. Y. Fu, B. Chen, Y. F. Han, New J Chem., 2018, 42, 15587-15592.
- C. L. Che, X. Z. Chen, H. M. Wang, J. Q. Li, Y. M. Xiao, B. Fu, Z. H. Qin, New J Chem., 2018, 42, 12773-12778.
- J. Wen, Y. H. Lv, P. Y. Xia, F. Y. Liu, Y. Q. Xu, H. J. Li, S. S. Chen, S. G. Sun, Bioorg & Med Chem., 2018, 26, 931-937.
- X. X. Teng, M. Y. Tian, J. W. Zhang, L. J. Tang, J. N. Xin. *Tetrahedron Lett.*, 2018, **59**, 2804-2808.
- X. K. Jie, M. Liu, A. D. Peng, J. J. Huang, Y. L. Zhang, X. F. Wang, Z. Y. Tian. *Talanta*, 2018, **183**, 164-171.
- X. Z. Chen, H. M. Wang, X. D. Ma, M. Wang, Y. Y. Zhang, G. Gao, J. J. Liu, S. C. Hou, *Dyes Pigments*, 2018, 148, 286-291.
- Y. B. Ding, S. Zhao, Q. Q. Wang, X. Yu, W. H. Zhang, Sensor Actuator B Chem., 2018, 256, 1107-1113.
- T. T. Chen, T. W. Wei, Z.J. Zhang, Y. H. Chen, J. Qiang, F. Wang, X. Q. Chen, Dyes Pigments, 2017, 140, 392-398.
- L. Yang, C. Wang, G. J. Chang, X. Y. Ren, Sensor Actuator B Chem., 2017, 240, 212-219.
- W. F. Luo, M. M. Lei, Y. Wang, H. L. Gao, Y. Wang, Q. H. Zhou, Z. H. Xu, F. L. Yang, *Anal. Methods*, 2019, **11**, 1080-1086.