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Sample Preparation

First, all the textile sample was continuously dried in a vacuum oven at 105 °C for 3 h 
to obtain a dried sample, and then they were placed in a chamber with relative humidity 
(RH) of 100% and a constant temperature of 20 °C where the sample was subjected to 
moisture absorption from air. Samples were taken out at certain adsorption times to 
prepare samples with variant water contents. The sample was weighed using an 
analytical balance with an accuracy of 0.1 mg and the moisture regain (water content) 
of the sample was determined according to the following Equation under standard 
conditions (25 °C and RH 65%):

Moisture regain = (Wc - Wd) / Wd * 100%
Where Wc and Wd are the weight of the sample after water absorption and dry weight, 
respectively. According to the Chinese national standard GB/T 9994-20181, the 
maximum moisture regains of the sample is set to 16.3% (%, w/w). Four different 
moisture contents were prepared for each sample, including 0, 5.4, 11.2, and 16.3 (%, 
w/w), and a total of 936 independent samples with specific moisture contents were 
obtained.

Spectral Collection

The diffuse reflectance near-IR spectrum of the sample was collected under constant 
temperature and humidity conditions using a Nicolet Antaris II FT-NIR spectrometer 
equipped with an integrating sphere attachment. The built-in gold foil was used to 
capture the background spectrum. Each sample of about 0.5 m2 in size was folded into 
4-6 layers, and then placed directly on the window of the integrating sphere and pressed 
with the iron cube to make it in close contact with the surface. The parameters of the 
spectral acquisition are resolution 4 cm-1, scan number 32 and the spectral range 10,000-
4000 cm-1. Each spectral acquisition takes approximately 1 min, and three duplications 
of measurement are performed for each sample to suppress random noise, the average 
spectrum is calculated as the sample spectrum.

Data Preprocessing

Discrete wavelet transformation (‘db4’ filter), derivative2(including 1st and 2nd 
derivative) and multiple scatter correction (MSC)3 methods are successively used to 
pre-process the spectrum to respectively eliminate high-frequency noise, baseline drift, 
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and light scattering. The sample is projected into the 3-D principal component spectral 
space using principal component analysis(PCA) to visualize the spatial distribution of 
the samples. A chemical image of the sample was prepared using two-dimensional 
correlation spectral (2DCOS) analysis. Classification models are created using Soft 
Independent Modelling by Class Analogy (SIMCA) and Support Vector Machine 
(SVM), respectively. GoogLeNet models were implemented by Tensorflow and Keras 
library. Among them, the GoogLeNet classification operation was performed on the 
Python platform, and the others were programed in MATLAB R2017b. The program 
codes of spectral processing and identification were written by ourselves. The process 
was performed on a Windows PC with 16 GB of RAM and an Nvidia Geforce GTX 
1080Ti graphics card.

Chemical Image Construction

Place any sample in a precisely designed humid environment and gradually increase 
the moisture content of the sample. An infrared(IR) spectrum x is acquired each time 
the water content is changed. A series of dynamic moisture-dependent spectra acquired 
corresponding to m different water contents constitute a spectral matrix Xm*n, where n 
represents the number of wavelength points. Through the 2D-COS analysis of Xm*n, a 
synchronous map Φ and an asynchronous map Ψ are obtained, and the calculation 
formula is as follows:

 = X - �̂� �̅�

Φ = Â * ÂT

Ψ = Â * N * ÂT

Where Â is the dynamic spectrum, which is the difference between the original 

spectrum X and the reference spectrum, and the average spectrum of the original �̅� 

spectrum is usually used as the reference spectrum. N is a Hilbert-Noda matrix, and 

the calculation formula is as follows:
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Among them, i and j are the order of Â and ÂT, respectively.

Synchronous map, which is symmetric with respect to the diagonal line, presents in-
phase evolution of peak intensities with perturbation. In the asynchronous map, an 
asynchronous cross-peak can appear only if the intensities of two spectral profiles 
change out of phase with each other with the profile on both sides of the diagonal line 
being asymmetric4. They may detect the subtle difference of the moisture-induced 
behavior of the O-H group in a molecule under water perturbation, as a result, much 
new information that cannot be readily acquired from conventional static spectra could 
be obtained.

Due to the symmetry of the two-dimensional correlation spectrum, there is redundant 
information for the synchronous 2DCOS map. Considering they have the same 
dimensions, the upper triangular portion of the synchronous map and the lower 
triangular part of the asynchronous graph are combined into a fused two-dimensional 
correlation map, that is, a chemical image. It should be noted that the main diagonal 
line of the synchronous map (usually called the power spectrum) is physically 
meaningful. Therefore, it is retained in the fusion correlation map, while the data on the 
main diagonal line of the asynchronous map is abandoned. 

GoogLeNet Transfer Learning

The GoogLeNet pre-trained model has obtained excellent image feature extraction 
ability (i.e. weight) by training in a big database. In this paper, a small number of 
chemical images were used to train only the subsequent fully connected and classified 
layers with its deep convolution layer preserved. The number of filters of the fully 
connected layer(FC), as well as the category number of the classification layer, is equal 
to the number of types of the current chemical images. The weights between layers can 
be determined by an iterative process learning using a backpropagation (BP) 
algorithm5. The objective function is minimized using mean square error (MSE), which 
is regularized using the L2 norm to avoid overfitting. The formula is as follows:

Where N is the number of samples, y and ŷ respectively represents measured values 
and predicted values,  is the regularization parameter and w is a weight matrix. 𝜆

In addition, the activation function of the FC is the leaky rectified linear function 
(ReLu) function6, the batch normalization (BN)7 is used to accelerate the retraining 



S6

process. The BP algorithm combined with the Sgdm optimizer8 is employed to find the 
local minimum of the objective function. Weight initialization is achieved by variance 
scaling to prevent from gradient vanishing.

The model evaluation index is the prediction accuracy, namely:

Accuracy = NA / NT * 100%

where NA and NT are the number of correct predictions and the total number of 
validation samples, respectively. Given that external validation samples are 
independent with training samples on which the model is calibrated, the prediction 
accuracy of validation samples is an objective metric for evaluating classification 
models.

The input of the 141st Dropout layer is randomly set to zero to prevent overfitting. 
Change its random probability to 65%. The 142nd fully connected layer and the 144th 
Classification Output layer contain information for combining network extracted 
features into Probability of belonging to each class, loss value and predicted affiliation. 
Both the number of filters in the FC and the category number of the classification layer 
are set to equal to 2, that is, category of the current chemical image. And increasing the 
learning rate factor of the FC to obtain a faster learning rate. Because the Sigmoid 
activation function is more suitable for the two-class problem than the Softmax 
activation function, it is used before the Output layer9. It is worth noting that the image 
input layer limits the size of the input image to 224*224*3 pixels, so the chemical image is 
converted to the RGB (Red-Green-Blue) image with the corresponding size before the training 

process. The neural network training process requires the setting of various hyper-
parameters. Among them, InitialLearnRate specifies the initial step size in the negative 
gradient direction of the loss function, MiniBatchSize is the size of the training set 
subset used in each iteration, and MaxEpochs represents the maximum epoch number 
used for training. There are currently no general rules to tune them. In this study, these 
hyperparameters, InitialLearnRate, 1e-4, MiniBatchSize, 15, MaxEpochs, 20 were 
determined by the trial-and-error method. 

Spectral Analysis

Figure S1(A) shows the near-IR spectra of all dried cashmere and cashmere-wool 
blended textiles. There is a serious drift of the spectral baseline between samples. The 
main reasons include the light scattering effect caused by the difference in sample 
texture and the absorption caused by the color difference. The 2nd derivative 
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preprocessing is performed in Figure S1(A) to obtain Figure S1(B), which effectively 
eliminates the baseline drift and improves the apparent resolution of the spectral 
characteristic peaks. It can be seen that on the one hand, the near-IR spectra of cashmere 
textiles and cashmere and wool-blend textiles contain rich composition information. On 
the other hand, the near-IR spectra of the two textiles are very similar. The case of 
cotton textiles vs mercerized cotton textiles is also similar. The near-IR spectrum and 
the 2nd derivative spectrum of the dried samples are shown in Figure S2(A) and (B). 
The main characteristic absorption bands of these four samples are shown in Table S1.

Fig. S1 (A) Raw NIR spectra of the dried samples and (B) their 2nd derivative spectra, the blue 

color for cashmere-wool blend textiles and the red for pure cashmere textiles.
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Fig. S2 (A) Raw NIR spectra of the dried samples and (B) their 2nd derivative spectra, the pink 

color for cotton textiles and the green for mercerized cotton samples.

Table S1. Assignments of NIR spectra of dried textile samples.

Peak position / cm-1 Assignment

8410-8177 3v(CH)

6715 2v(OH) of textile

6314 υ(OH) +δ(OH) of cellulose

5980-5800 vs(CH) and vas(CH2) of textile

5612 2v(CH)

4752 2υ(OH) multimers of cellulose

4393 O-H/C-H of cellulose

4270 υ( CH2) +δ( CH2)

4015 υ(C-H)+ υ(C-C)
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PCA Analysis

PCA analysis of cashmere textiles and cashmere-wool blends as well as pure wool 
textiles, and cotton textiles and mercerized cotton textiles were performed. For 
cashmere textiles and cashmere-wool blends as well as pure wool textiles, the 
cumulative contribution of the first three principal components was 89.82% (PC1 
equals 51.31%, PC2 and PC3 account for 28.35 and 10.16%, respectively). Regarding 
cotton and mercerized cotton textiles, the cumulative contribution of the first three 
principal components is 89.82% (PC1, PC2, PC3 accounted for 60.29, 16.33 and 
12.16%, respectively), which indicates that the first three principal components can 
basically reflect the information contained in the sample data set. The scores of all the 
sample spectra on the first three principal components were plotted to obtain their 
distribution trend in the 3-D principal component spectral space, as shown in Figure 
S3. As can be seen from Figure S3(A), the distribution of cashmere textiles, cashmere-
wool blends, and pure wool textile samples is different, but there is a serious overlap 

between them. The same for cotton and 
mercerized cotton textiles.

Fig. S3 The three-dimensional score plots of PC1, PC2, and PC3 for dry textile samples. (A) the 

plot for the cashmere vs cashmere-wool blend samples, (B) the plot for the cotton vs mercerized 

cotton samples.

Comparison of Discrimination Models

SIMCA model. Among the linear classification methods commonly used in 

qualitative analysis of IR spectroscopy, SIMCA may be the best one and has many 
practical applications10. In SIMCA, the principal component spectral space (submodel) 
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of each type of sample is first established, and then the distance between the measured 
sample and the spectral components of various principal components is calculated, and 
the attribution is determined according to the distance. In the SIMCA model established 
here, the different spectral preprocessing methods are used respectively, and leave-one-
out cross-validation (LOOCV) is combined with the Q value11 vs Hotelling T2 map11 to 
determine the optimal principal component number of each class model. Several 
SIMCA models for drying cashmere and cashmere-wool blended and pure wool and 
dried cotton-mercerized cotton textiles were established one by one. The statistical 
parameters of these models are shown in Tables S2 and S3. It can be seen that compared 
with the original spectrum, after using three pretreatment methods, the prediction 
accuracy of the model is significantly improved. Among them, the 2nd derivative 
pretreatment method achieved the best results: the prediction accuracy of cashmere and 
cashmere-wool blended and pure wool textiles were 60.48 and 63.33%, respectively, 
and the prediction accuracy of cotton and mercerized cotton textiles was 68.89 and 
71.02%. Therefore, the MSC method is better than the 1st derivative but not as good as 
the 2nd derivative method. Compared with the derivative processing method, MSC has 
a stronger effect in eliminating light scattering, which not only can effectively eliminate 
the light scattering effect caused by the difference in textile texture, but also can 
eliminate the light scattering effect caused by the difference in microscopic diameter 
between cashmere and wool on which the discrimination partly depend. Eliminating 
this part of the information is detrimental to modeling. It is reasonable to interpret the 
effect that MSC is not as good as the 2nd derivative.

Table S2. The statistics of the SIMCA models respectively using the raw spectra and 
the pretreated spectra by different pretreating methods.

Number of latent variables Accuracy / %

Preprocessing

Cashmere Blenda Cashmere Blenda

Raw 4 7 46.19 36.67

MSC 7 5 50.71 56.67

1st derivative 5 6 55.71 60
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2nd derivative 5 9 60.48 63.33

a. Blend denotes the cashmere-wool blended textiles.

Table S3. The statistics of the SIMCA models respectively using the raw spectra and 
the pretreated spectra by different pretreating methods

Number of latent variables Accuracy / %
Preprocessing

Cotton MCa Cotton MCa

Raw 4 6 51.71 52.67

MSC 8 7 55.19 56.67

1st derivative 9 11 65.71 61.22

2nd derivative 4 7 68.89 71.02

a. MC denotes the Mercerized cotton textiles

SVM model. SVM is a commonly used method for discriminating two types of 

samples by IR spectral discriminant analysis. It is generally believed that SVM is 
superior to linear classification discriminating methods in its ability to solve nonlinear 
problems13. SVM uses kernel functions to map linearly indivisible raw data into 
separable higher dimensional spaces. In this study, a radial basis function (RBF) is used 
as a kernel function to generate an optimal decision function through cross-validation 
to avoid overfitting. The grid search is used to optimize both the penalty parameter and 
the kernel coefficient, and their ranges are limited to the following two lists, [0.01, 0.1, 
1, 10, 100, 1000] and [0.01,0.001, 0.0001]. Table S4 lists the statistics of the SVM 
model. The comparison shows that the model performance is similar to that of the 
SIMCA model, which indicates that the SVM can not effectively distinguish different 
types of textiles with high similarity.
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Table S4. The statistics of the SVM models

Accuracy / %Kernel

coefficien

t

Preprocessing

Penalty

coefficien

t
Cashmere

Blenda

Cotton
MCb

0.0001 2nd derivative 0.1 66.67 65.71 - -

0.001 2nd derivative 1.0 - - 70.09 72.51

a. Blend denotes the cashmere-wool blended textiles.
b. MC denotes the Mercerized cotton textiles.

Moisture-dependent Spectra

We applied an external moisture perturbation to the sample to enhance the 
distinguishable features for different types of samples. Samples with the moisture 
content of 5.4, 11.2, and 16.3 (w/w, %) were prepared on the basis of the dried ones, 
that is, a single sample produces multiple moisture-containing samples and their near-
IR spectra were collected simultaneously. A single textile sample per class was 
randomly selected, and their water-induced spectra are compared in Figure S4. It can 
be seen that the near-IR spectra of the wet samples are dominated by two broad water 
peaks compared to those of the dried sample. Among them, the 7100-6800 cm-1 band is 
attributed to ν1+ν3 (ν1 is symmetric stretching, ν3 is asymmetric stretching mode) 14, 
while the 5150-4950 cm-1 band with the largest change in absorbance is attributed to 
ν2+ν3 (ν2 is the bending vibration mode)15. According to the literature16, the latter band 
can reflect the state of hydrogen bonds in the humid textile matrix, including rich 
information on the water absorption pattern of the sample. It can be concluded that the 
introduction of water perturbation significantly increases the amount of spectral data 
and the amount of information, and magnifies the near-IR spectral difference between 
different types of textiles.
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Fig. S4 Moisture-dependent NIR spectra for a randomly selected (A) cashmere, (B) cashmere-
wool blend, (C) cotton, (D) mercerized cotton textiles.
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