Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2020

Performance of a template enhanced hybridization processes in biological media for detection of a breast cancer biomarker

Reyhaneh Tavakoli-Koopaei¹, Fatemeh Javadi-Zarnaghi^{1,*}, Maedeh Aghahosseini¹, Manoochehr Tavassoli¹, Mohammad Javad Rasaee².

1. Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

2. Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

*Corresponding author: fa.javadi@sci.ui.ac.ir

page
pplementary Table SI: The raw data of the target titration experiments for validation of LOB and LOD2
pplementary Table SII: The sequence strands and the programs at DINAmelt webserver
pplementary Note SI: Thermodynamic quantitation of the original TeHyP design for PW17
pplementary Fig SI: Schematic representation of the DNA sequences (unimolecular complex)4
pplementary Fig SII: The workflow for the unimolecular reactions, comparison of the SNR _{hemin} and Schematic awing for the photography chamber4
pplementary Fig SIII: Continues x-axis representation of the same plot of Fig3B
pplementary Fig SIV: The protocol of control reactions in presence of biological samples and tube's photo5
pplementary Fig SV: The protocol of TeHyP performance in presence of biological samples and tube's oto
pplementary Fig SVI: Photos of the performance of the TeHyP in presence of 45% serum for the target and its utants

	hemin	IS3+IS9+hemin	IS3	+IS9+hemin	+ target	
Target	0	0	50	100	250	500
concentration						
A460 nm	0.35	1.22	2.13	2.978	3.01	3.19
repeat 1						
A460 nm	0.38	0.91	1.67	1.6	1.67	2.27
repeat 2						
A460 nm	0.36	1.82	1.87	2.113	2.78	3.75
repeat 3						
average	0.363333	1.316667	1.89	2.230333	2.483333	3.07
SD	0.015275	0.462637	0.230651	0.696453	0.719321	0.747262

Supplementary table SI. The raw data of the target titration experiments for validation of LOB and LOD.

 $LOB = mean_{no target} + 1.645 \times SD_{no target}$

 $LOB = 1.31 + 1.645 \times 0.46 = 2.07$

 $LOD = LOB + 1.645 \times SD_{low concentration targets}$

 $LOD = 2.07 + 1.645 \times 0.23 = 2.45$

The analysis showed that the signal intensity of the limit of detection must be above 2.45 a.u. which was on average resulted from 250 nM target. Thus 250 nM target was taken as the LOD of the system.

Supplementary Table SII. The sequence strands and the programs at DINAmelt webserver that have been used for calculation of binding energies and Tms of each stem and the trimolecular complex. TSM: Two-state melting (hybridization) for 2.5 μ M DNA at 37 °C with 100 mM NaCl, TSF: Two-state folding for linear DNA at 37 °C with 100 mM NaCl.

	Stem	Input sequence	Program from DINAmelt webserver	ΔG, Kcal/mol	Tm, ℃
	I	Strand 1: TTGATC	TSM	-2.6	-6.9
<u> </u>		Strand 2: GATCAA			
L a	П	Strand 1: CTTTCTAATCTGAAGC	TSM	-12.3	46.3
e e		Strand2: GCTTCAGATTAGAAAG			
Ĕ	111	Strand 1: TTGGTGGACTCTAGAT	TSM	-13.7	50.6
aya		Strand 2: ATCTAGAGTCCACCAA			
lak	Trimolecular	CTTTCTAATCTGAAGCTTTTGGGTAGGGCGGGTTTGATCTTTTGA	TSF	-19.5	59.8
~	complex	TCAATGGGTTTTTTGGTGGACTCTAGATTTTTTATCTAGAGTCCAC			
		CAAGCTTCAGATTAGAAAG			
	1	Strand 1: TTGATC	TSM	-2.6	-6.9
		Strand 2: GATCAA			
4	II	Strand 1: ACCACAGGAGTC	TSM	-11.2	45.6
Po		Strand2: GACTCCTGTGGT			
Le	Ш	Strand 1: TGAGCATTTGA	TSM	-8.9	37.5
his		Strand 2: TCAAATGCTCA			
-	Trimolecular	ACCACAGGAGTCTTTTGGGTAGGGCGGGTTTGATCTTTTGATCA	TSF	-13.4	57.7
	complex	ATGGGTTTTTGAGCATTTGATTTTTCAAATGCTCAGACTCCTGTG			
		GT			

Supplementary Note SI. In the report by Nakayama et al., the TeHyP assay was designed to be performed in trimolecular format. Intermolecular split-G quadruplex was engineered to be formed only in the presence of target nucleic acids. Two DNA strands, one containing three times three guanines in a row (long strand; probe B5) and one containing one time three consecutive guanines (short strand; probe A4) were designed to be minimally paired in the absence of the target. In the presence of the target nucleic acid, the two probes were recruited on the target via extended binding arms and thus were brought to efficient vicinity for formation of an active G-quadruplex.

In the proposed TeHyP assay of Nakayama et. al. each probe contained a short binding arm with 6 nucleotides (nt) length that were complementary to the binding arm of the other probe (forming stem I in Fig 2A). The ΔG of the hybridization of the two strands via stem I was only -2.6 Kcal/mol that led to the calculated Tm value below 0 °C. Thus the length and sequence of the stem I did not support adequate biding energy to efficiently combine the two strands. Each probe had an extended arm to support partial binding to the target via stem II and stem III in Fig 2B and 2C. Stem II provided binding to the 16 nt of the 3' end of the target while stem III was complementary to the rest i.e. 16 nt of the 5' end. Combination of the two probes provided full hybridization chance for the target. The binding energy for the hybridization of stem II and III were -12.3 Kcal/mol and -13.7 Kcal/mol that provided a calculated Tm of 46.3 °C and 50.6 °C for each stem respectively, attained by two-state hybridization protocol at DINAmelt . In fact, the binding of the target to both strands would release a higher free energy cumulatively and thus the overall melting point for the target bound to both half sites would be above the Tm of each binding arm, separately. In another words, the real Tm of the stem II and stem III would be above the calculated values since stem II and III are somewhat resembling a single 32 nt long double stranded DNA with a loop placed just in the middle. To the best knowledge of the authors of this report, there is no algorithm available for direct analysis of such circumstances (analysis of the binding energies and Tm values of trimolecular complex species). Additionally, available methods most likely calculate based on duplex formation and thermodynamics of formation of G-guartets and its competition with the double strand formation are not considered in any algorithm. Thus, with the available methods the most realistic model of the binding energy of the trimolecular complex (containing the two probes and the target DNA) was analyzed here by the two-state folding protocol at DINAmelt webserver, assuming placement of T5 loops between the separate strands, i.e. assuming the trimolecular complex to be unimolecular species (see supplementary Table SII and supplementary Fig SI for detailed DNA sequences and programs that have been used in this study for analysis of thermodynamic values). The Tm of the trimolecular complex was thus hypothesized as ca. 59.8 °C with the binding energy of ca. -19.5 Kcal/mol(Fig 2D).

Supplementary Fig SI. A schematic representation of the DNA sequences that have been analyzed as a unimolecular complex in two state folding (TSF) program of DINAmelt as a replacement for the trimolecular complex. A) for Nakayama et. al. B) for the mir-105 TeHyP.

Supplementary Figure SII. The workflow for the unimolecular reactions. B) A comparison of the *SNR*_{hemin} for unimolecular format assays by TMB and DAB applying the G12 after 5 min C) Schematic drawing for the photography chamber used in this study.

Supplementary Fig SIII. Continues x-axis representation of the same data of Fig 3B.

Supplementary Fig SIV. A) The protocol of control reactions in presence of biological samples. The final concentrations were 50 mM Tris-HCl pH 7.9, 150 mM NH₄Cl 0.5 μ M hemin, 1 mM DAB and 1.75% H₂O₂. B) The photos of the tubes containing reactions of A.

	۸	١
1	А	.)
		'

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_					2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	.9	(1M)		0.5	μl
IV V $1V$ V 6 30% 45% 1 3μ 4.5μ 0.5μ 30% 30% 0.5μ 30% 30% 0.5μ 30% 30% 0.5μ 30% 30%	M)				0.6	μl
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$^{\circ}$ C I V V 4 30% 45% I 3 μ I 4.5 μ I I 3 μ I 5 μ I I 5 μ I 5 μ I Minutes 0.5 μ I 0.5 μ I Blood						
$^{\circ}$ C U V I V V 6 30% 45% I 3 μ I 4.5 μ I I 3 μ I 5 μ I minutes 0.5 μ I 0.5 μ I Blood						
$ \begin{array}{ c c c c c c c c } \hline I & V & V \\ \hline 6 & 30\% & 45\% \\ \hline 1 & 3 \mu & 4.5 \mu \\ \hline 1 $	5 minutes a	nutes a	a	t 95°C	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 11 11	11 11	- 111		IV	V
3 µl 4.5 µl serum Serum 0.5 µl Blood	0% 10% 20%	10% 20%	20%		30%	45%
3 μ 4.5 μ 0.5 μ Blood	0μ 1μ 2μ	1μl 2μl	2 μΙ	3	3 µl	4.5 μl
3 μl 4.5 μl ninutes Serum 0.5 μl Blood	0 μl 1 μl 2 μl	1μl 2μl	2 µl	_	3 μl	4.5 μl
3 μl 4.5 μl 3 μl 4.5 μl 3 μl 4.5 μl ninutes Serum 0.5 μl Serum 0.5 μl Blood	0μΙ 1μΙ 2μΙ	1μl 2μl	2 µl		3 μΙ	4.5 µl
Ι 3 μΙ 4.5 μΙ minutes inutes 0.5 μΙ 0.5 μΙ 0.5 μΙ	0μΙ 1μΙ 2μ	1μl 2μ	2μ	I	3 µl	4.5 μl
hutes 0.5 µl 0.5 µl 0.5 µl 0.5 µl Blood	0μΙ 1μΙ 2μΙ	1μl 2μl	2 µl		3 μΙ	4.5 μl
inutes 0.5 μl ninutes 0.5 μl 0.5 μl Blood	n at 25°C for 15 r	5°C for 15 r	r 15 r	ni	inutes	
0.5 μl ninutes 0.5 μl 0.5 μl Blood	n on ice for 15 m	ce for 15 m	15 m	in	utes	
inutes 0.5 μl 0.5 μl Blood	Hemin (10μM) 0.5 μl					
0.5 μl 0.5 μl Blood	n at 25°C for 30 minu	5°C for 30 minu	r 30 minu	nu	tes	
0.5 µl Blood	M)				0.5	μl
	5)				0.5	μl
	101	<u> </u>		-		

B)

Supplementary Fig SV. A) The protocol of TeHyP performance in presence of biological samples. The final concentrations were 50 mM Tris-HCl pH 7.9 150 mM NH₄Cl, 5 μ M IS3, 2.5 μ M IS9, 0.25 μ M target, 0.5 μ M hemin, 1 mM DAB and 1.75% H₂O₂ and 0, 10, 20, 30 and 45% of biological samples. The biological samples and water had been added according to the red table for the reactions of I-V. B) the photos of the tubes containing reactions of A.

Serum45 % Hemin IS3/IS9 Match Mismatch Mismatch 1mismatch Imismatch Imismatch Imismatch Imismatch 3 mismatch Imismatch Imismatch Imismatch Imismatch	Serum45 % Hemin IS3/IS9 Match Mismatch Mismatch 1mismatch Imismatch Imismatch Imismatch Imismatch 3 mismatch Imismatch Imismatch Imismatch Imismatch Match Imismatch Imismatch Imismatch Imismatch Imismatch Imismatch Imismatch Imismatch Imismatch									B)			
1mismatch Average of PA 3 mismatch Average of PA	1mismatch Average of PA 3 mismatch Average of PA Hemin control 0.48 IS3/IS9 0.9 Match 3.02	Serum45	% Hemin	IS3/IS9	Match	Mismatch repeat(1)	Mismatch repeat(2)	Mismatch repeat(3)]				
3 mismatch	3 mismatch Average of PA Hemin control 0.48 IS3/IS9 0.9 Match 3.02	1mismatc	h J			I	J	J					
3 mismatch Hemin control 0.48	3 mismatch Hemin control 0.48 IS3/IS9 0.9 Match 3.02		-		. =		T	· =	1			Average of PA	
	Match 3.02	3 mismato	h					. 1			Hemin control	0.48	\vdash
1 Mismatch 3.09		5 mismate	h								3 Mismatch	3.92	t
5 mismatch 3.09 3 Mismatch 3.92	5 mismatch 3.92		4.		-						5 Mismatch	1.99	ſ

Supplementary Fig SVI. A) Representative photos of the performance of the TeHyP in presence of 45% serum for the target and its mutants. B) The average peroxidase mimic activity and standard deviation of the peroxidase mimic activities of the TeHyP assay for the target and its mutants.