1 Supplementary Information

2 A highly selective colorimetric fluorescence probe for

3 Cu²⁺ in aqueous media: the synthesis, DFT

4 investigation and its application in living cells

- 5 Dandan Li^a, Lihua Gong^b, Zhenyang Qiao^a, Congcong Zhu^a, Qiaojuan, Jia^b, Huajie
- 6 Kong^b⊠, Shuyan Jiao^c⊠
- 7 a School of Building Environment Engineering, Zhengzhou University of
- 8 Light Industry, Zhengzhou 450002, P. R. China
- 9 b School of Material and Chemical Engineering, Zhengzhou University of
- 10 Light Industry, Zhengzhou 450002, P. R. China
- 11 c School of Material and Chemical Engineering, Zhongyuan University of
- 12 Technology, Zhengzhou 450002, P. R. China
- 13
- 14 Supplementary captions
- 15 Fig. S1. ¹H NMR spectrum of probe POPH in CDCl₃.
- ¹⁶ Fig. S2. ¹³C NMR spectrum of probe POPH in CDCl₃.
- 17 Fig. S3. LC-MS spectrum of probe POPH.
- 18 Fig. S4. IR spectrum of probe POPH in KBr disk.
- 19 Fig. S5. IR spectrum of probe POPH and Cu^{2+} complex in KBr disk.
- 20 Fig. S6. Determination of LOD for probe POPH.
- 21 Fig. S7. Fluorescent quantum yield of probe POPH and POPH-Cu²⁺.
- 22 Fig. S8. FESEM and HRTEM images of probe POPH.

Corresponding author. E-mail: hjkong@zzuli.edu.cn; jiaoshuyanzi@126.com.

- ¹ Fig. S9. FESEM and HRTEM images of probe POPH and Cu²⁺ complex.
- ² Fig. S10. Cytotoxicity assay of POPH.
- 3 Table S1. Comparation of LOD in this work with other works previously

Fig. S3 LC-MS spectrum of probe POPH

4 Fig. S5 IR spectrum of probe **POPH** and Cu²⁺ complex in KBr disk

1

Fig. S6 Fluorescence changes of POPH at 468 nm as a function of aqueous Cu^{2+} ion concentration. Sd = 1.062×10^{-6} (from experimental

5

1 Fig. S7 Fluorescent quantum yield of probe **POPH** and probe **POPH**-

 Cu^{2+} under 336 nm excitation

Fig. S8 FESEM and HRTEM images of probe POPH

2 Fig. S9 FESEM and HRTEM images of probe **POPH** and Cu²⁺ complex

Fig. S10 Cytotoxicity assay of POPH after 4 h incubation

Compound	Sensing method	LOD (M)	Ref.
	Turn - off	3.9 × 10 ⁻⁸	1
	Turn - off	6.19 × 10 ⁻⁸	2
HN Ar NH Ar ¹	Turn - off	1.13 × 10 ⁻⁸	3
O N N O N N O O O O O O O O O O O O O O	Turn - off	3.8 × 10 ⁻⁸	This work

2 Table S1 Comparation of LOD in this work with other works previously

3 **Reference**

- 4 1 C. R. Li, Z. Y. Yang and S. L. Li, J. Lumin., 2018, 198, 327-336.
- 5 2 R. Debashis, C. Arijit and G. Rina, RSC Adv., 2017, 7, 40563-40570.
- 6 3 S. Mukherjee, S. Hazra, S. Chowdhury, S. Sarkar, K. Chattopadhyay, and A. Pramanik, J.
- 7 Photochem. Photobiol. A: Chem., 2018, 364, 635-644.