Supplementary Information

Expeditious method for ultra-level chemosensing of Uranyl Ions

Vishaka V Halali and R Geetha Balakrishna *

Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India Corresponding Author*: br.geetha@jainuniversity.ac.in

SL No.	Table of Contents	Page No.
1	Materials	3
2	Instrumentation	2
Δ	Instrumentation	3
3	Synthesis of Probe (P1)	3
4	Mass spectra of P1 (Fig. S1)	4
5	NMR spectra of Probe P1 (Fig. S2)	5
6	Mass spectra of Probe P1 + UO_2^{2+} complex (Fig. S3)	6
7	¹³ C NMR spectrum of P1 + UO ₂ ²⁺ + AcO ⁻ (Fig. S4)	7
8	Recyclability graph (Fig. S5)	8
9	IR Spectra of Probe P1 and Probe P1 + UO_2^{2+} complex	9
	(Fig. S6)	
10	Measurement of Optical properties of P1	10
11	Source of UO_2^{2+} in groundwater real samples	10

1. Materials

Rhodamine 6G, Hydrazine hydrate, Ethanol, 2-hydroxy-1-naphthaldehyde of analytical lab grade (Sigma-Aldrich) was used for the synthesis of the probe (**P1**). Chloride and nitrate salts of all cations were procured from Sigma-Aldrich and used without any more purification.

2. Instrumentation

All reactions were magnetically stirred and thin-layer chromatography (TLC) by Merck TLC Silica gel 60 F_{254} coated plates were used to monitor the reaction. A Bruker 11767542 ATR-IR spectrophotometer was utilized to carry out the IR analysis of the samples. NMR spectroscopic measurements in CDCl₃ were recorded with an Agilent spectrometer 400. The ¹H NMR and ¹³C NMR chemical shift values are represented in ppm (δ) correlative to CDCl₃. Waters SynaptG2 LC-MS spectrometer was used to record the Mass spectra. Absorbance (UV-Vis) spectroscopic study was carried out with a Shimadzu UV-1800 spectrophotometer using quartz cuvette. AAS measurements were carried out using Agilent 55B AA spectrometer. ICP-OES measurements were measured with Systronics digital pH meter 802.

3. Synthesis of Schiff base (P1)

Chemosensor (**P1**) was synthesized by a simple Schiff base condensation reaction. In the typical experiment, the first step synthesis of Rhodamine 6G Hydrazide was prepared as per the early reported literature[61]. In the second step, 2-hydroxy-1-naphthaldehyde (2.0 mM) was added to the stirring Rhodamine 6G Hydrazide (2.1 mM) in ethanol (25 mL) and the reaction was refluxed for 24 h at 70 °C. The obtained product was filtered and the filtrate was washed many times with absolute ethanol to remove any unreacted material. The purity of the product was checked by spotting a product on chromatographed silica plate [60 F_{254}] with an eluent hexane/ethyl acetate (8:2, v/v) to get a light yellow solid (**P1**). The final product was characterized using ¹H NMR, ¹³C NMR, LC-MS, and ATR-IR.

4.

Fig. S1 Mass spectrum of P1

Fig. S2 (a) ¹H NMR spectrum of P1 and (b) ¹³C NMR spectrum of P1

5

Fig. S3 Mass spectra of Probe P1 + UO₂²⁺ complex

6.

Fig. S4 ¹³C NMR spectrum of P1 + UO₂²⁺ + AcO⁻

Fig. S5 Recyclability spectrum of P1 with AcO⁻ ions

10. Measurement of Optical Properties of P1

The solution of probe **P1** (1.0 x 10⁻⁴ M) and different metal ion stock solution (1.0 x 10⁻² M) were **prepared in MeCN at pH 6**. The UV-vis spectrum of the solution (50 μ M) was recorded using a quartz optical cuvette at ambient temperature. For the titration experiments, the concentration of **P1** was kept constant while the concentration of metal ions was varied between 0 to 100 μ M. The binding constant for the complex **P1** + UO₂²⁺ was calculated using the Benesi-Hildebrand plot [62] in which the graph was plotted between A₀/A-A₀ and 1/UO₂²⁺ and the slope of the plot was calculated. Also, the detection limit was estimated by measuring the standard deviation of blank [61].

11. Source of UO₂²⁺ in groundwater real samples

Groundwater samples were collected from Magadi Lake, Chickmagalur district and collected from Chickballapur Lake, Kolar district, Karnataka, India.