Supporting information

P. Sharma et. al.

Perylene diimide-based near-IR ratiometric sensor for detection of Cu²⁺ ions:

Ensemble for discrimination of CN⁻ and S²⁻ ions

Poonam Sharma^a and Prabhpreet Singh^{*a}

^aDepartment of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India.Tel: +91-84271-01534

email: prabhpreet.chem@gndu.ac.in

TABLE OF CONTENTS

1.	Experimental Section	
2.	pH titration data data of TBP-PDI	
3.	Job Plot data of TBP-PDI with Cu ²⁺ ions	
4.	Selectivity and Interference data of the TBP-PDI	
5.	Cyclic voltammetry studies of TBP-PDI with Cu ²⁺ ions	
6.	NMR titration data of TBP-PDI in the presence of Cu ²⁺ ions	
7.	FT IR spectrum of TBP-PDI and TBP-PDI ∩Cu ²⁺ complex	
8.	UV-Vis data of ensemble TBP-PDI \cap Cu ²⁺ after addition of S ²⁻ ions	

Experimental section

Materials and characterization: Chemicals and solvents were of reagent grade and used without further purification. All reactions were performed under nitrogen atmosphere. DMF, DMSO and CH₃CN solvents were of HPLC grade. Deionized water was obtained from ULTRA UV/UF Rions Lab Water System Ultra 370 series devices. Chromatographic purification was done with silica gel 60–120 mesh. TLC was performed on aluminum sheets coated with silica gel 60 F254 (Merck, Darmstadt). ¹H NMR and ¹³C NMR spectra were recorded at 400/500 MHz for ¹H; 100/125 MHz for ¹³C (JEOL 400 and Bruker Ascend 500 spectrometer) using CDCl₃ or DMSO-*d*₆ or CH₃CN-*d*₃ as solvents. The peak values were obtained as ppm (δ) and referenced to the TMS as reference in ¹H NMR and deuterated solvent in ¹³C NMR spectra. Chemical shift values are reported in ppm, coupling constant (*J*) in Hz and abbreviations used for splitting patterns are s = singlet, bs = broad singlet, t = triplet, q = quartet, m = multiplet. The absorption spectra were recorded using quartz

cells on UV-Visible Agilent spectrophotometer, (Agilent Technologies, U.S.) equipped with Peltier system as temperature controller. The fluorescence titrations were performed on Shimadzu RF-6000 spectroflurophotometer using slit width (excitation = 10 nm, emission = 10 nm) with excitation at 450 nm, unless otherwise stated. PDI **1** was synthesized according to previously reported literature procedure.

UV-Visible and Fluorescence Studies

Stock solutions for various measurements of **TBP-PDI** were prepared in CH_3CN and dilutions of these stock solutions were used for the photo physical measurements. The solutions were diluted with CH_3CN and HEPES buffer (10⁻² M, pH 7.2) before taking the readings in quartz cells. All absorption and fluorescence scans were processed in ExcelTM to produce all graphs shown.

Method for detection of metal ions:

Stock solutions (10⁻² M) of metal ions were prepared in deionized Millipore water and were diluted as required. **TBP-PDI** was added in various 10 mL volumetric flask and subsequently different concentrations of metal ions were added. The solutions were diluted with HEPES buffer-CH₃CN (4:6 v/v, pH 7.2) up to the 10 mL mark.

Detection limit: The detection limit was calculated based on the absorbance or fluorescence titrations. To determine the S/N ratio, the absorbance and emission intensity of **TBP -PDI** (10 μ M) without Cu²⁺ was measured by 3 times and the standard deviation of blank solution (without addition of analyte) measurements was determined. The detection limit was then calculated with the equation; Detection limit = 3σ bi/m. Where, σ bi is the standard deviation of blank solution (without addition of analyte) measurements; m is the slope between intensity versus sample concentration.

Sample preparation for DLS measurements

The stock solutions of **TBP-PDI** (1 mM, CH₃CN) and water were filtered through Millipore membrane filter (Acrodisc syringe filter, 0.2 μ m Supor membrane) before measurements to remove suspended impurities. Solutions (10 μ M concentration) of **TBP-PDI** and **TBP-PDI** \cap Cu²⁺ in HEPES buffer-CH₃CN (4:6 v/v, pH 7.2) were prepared. 2 mL of each of these solutions was taken in glass cuvette to record the DLS spectrum.

Electrochemical measurements

Electrochemical studies were carried out at room temperature with an electrochemical workstation (Model Metrohm AutolabPGSTAT302N). Three-electrode cell system containing a Pt working electrode, Pt wire as counter electrode and Ag/Ag⁺ (0.1 M AgNO₃ in CH₃CN) as reference electrode have been used. cyclic voltammogram (CV) was recoded at a scan rate of 50 mVs⁻¹ and differential pulse voltammetry (DPV) measurements were carried out at pulse modulation amplitude of 0.05 V, pulse width of 0.05 s and pulse period of 0.5 s in the potential range of -0.5 to 2.5 V vs Ag/Ag⁺. The CH₃CN was used as organic solvent and 0.1 M tetrabutylammonium perchlorate (TBAP) as supporting electrolyte for all the voltammetry measurements. The NOVA software was used to collect, plot and analyze the raw data of CV and DPV measurements.

Figure S1a: ¹H NMR Data of PDI 2.

Figure S2a: ¹H NMR Data of TBP-PDI.

Figure S2b: ¹³C NMR Data of TBP-PDI.

Figure S2c: HSQC Data of TBP-PDI.

Figure S2d: COSY Data of TBP-PDI.

Figure S3a: pH titration of the TBP-PDI with variation of pH of the solution.

Figure S3b. (a) Absorbance (10 μ M) and (b) fluorescence (5 μ M) spectra of **TBP-PDI** on addition of 10 vol % H₂O in CH₃CN solvent ($\lambda_{ex} = 450$ nm; slit width Ex/Em = 10/10 nm).

Figure S4: Job Plot (Absorption) of TBP-PDI with Cu²⁺ ions

Figure S5: Job Plot (Emission) of TBP-PDI with Cu²⁺ ions.

Figure S6: (a) Effect of the various metal ions on the fluorescence spectrum of the **TBP-PDI** (5 μ M) recorded in 40% HEPES buffered:CH₃CN media; (b) bar graph representation of effect of the various metal ions on the fluorescence spectrum of the **TBP-PDI** (5 μ M) recorded in 40% HEPES buffered:CH₃CN media.

Figure S7. Color (*naked eye*) images of well plate containing **TBP-PDI** (20 μ M) alone and **TBP-PDI** + different metal ions (20 equivalents). Row (IV) of the well plate showed simultaneous presence of two or three metal ions in the solution; Ligand (L) = **TBP-PDI**

Figure S8: Cyclic voltammetric studies of **TBP-PDI** with Cu^{2+} ions; Red line correspond to **TBP-PDI** and blue line correspond to **TBP-PDI** \cap Cu²⁺ complex.

Figure S9: Differential pulse voltammetric (DPV) titration of **TBP-PDI** on addition of Cu²⁺ ions;

Supporting information

Figure S10: (Above) Partial ¹H NMR spectra (aromatic region) and (below) Partial ¹H NMR spectra (aliphatic region) of **TBP-PDI** (1 mM) with Cu^{2+} recorded in $CH_3CN(d_3)$; For comparison NMR spectrum of **TBP-PDI** \cap Cu^{2+} complex has also been given; L = **TBP-PDI**.

Figure S11: IR spectrum of TBP-PDI and TBP-PDI∩Cu²⁺complex

Figure S12: (a) Effect of the various anions on the fluorescence spectrum of the **TBP-PDI** \cap Cu²⁺ (1:15) recorded in 40% HEPES buffered:CH₃CN media; (b) bar graph representation of effect of the various anions on the fluorescence spectrum of the **TBP-PDI** \cap Cu²⁺ (1:15) recorded in 40% HEPES buffered:CH₃CN media.

Figure S13: (a) Absorbance spectra and (b) absorbance profile of ensemble **TBP-PDI** \cap Cu²⁺ after addition of S²⁻ ions in 40% HEPES buffered:CH₃CN media.

Table S1: Comparison of the literature report for Cu^{2+} complex and its application as ensemble with present report.

S.No.	Papers Detail	Solvent medium	λ _{ex}	λ _{abs} / λ _{em}	LOD for Cu ²⁺ ion	Applications as ensemble
			400			11
	This	CH_3CN/H_2O	490 nm	ratiometric	4.8 μΜ	ensemble
	manuscript	(V/V, 0.4)		fluorescent		for CN ⁻ with
		CH ₂ CN		turn-on	2.5 nM	detection
				$(\Gamma_{482}/\Gamma_{680})$		nM and for
				alla alla		S^2 - with
				(A_{47}/A_{20})		detection
				(1 4/6/1 630)		limit of 2 39
						mM
1.	Bioorganic &	EtOH/HEPES,	418 nm	541 nm	Association	Ensemble for
	Medicinal	v/v = 9:1			Constant	thiols with
	Chemistry				(Ka)	detection
	Letters 23				$=2.9\times10^{2}$	limit of 0.42
	(2013) 2538-					μ M for Cys, 0.105 μ M for
	2372					Hev and 4.34
						μ M for GSH.
2.	Journal of	DMSO	504 nm	545 nm	5.25 μM	Application
	Photochemistry					in molecular
	and					logic gate
	Photobiology					
	324 (2016)					
	152–158					
3.	Dalton Trans.,	DMSO	275 nm	384 nm	3.12 μM	Ensemble for
	2012, 41,					CN ⁻ ions with
	11413-11418					limit of 5.93
						uM
4.	Dalton Trans.,	EtOH–H ₂ O (8:	293 nm	386 nm	1.5 μM	Ensemble for
	2013, 42,	2) mixture;e				CN ⁻ ions with
	4450-4455	buffered with				detection
		HEPES				limit of 0.026
5	I Fluoresc	Chloroform	500 nm	579 nm	0.5 µM	Ensemble for
	2014, 24, 909–				0.0 mili	CN ⁻ ions with
	915					detection
						limit of 8
			400	527	17.5 3.5	μM.
6.	J. Mater.	CH ₃ CN	490 nm	537 nm	17.5 μΜ	Not an
	4. 2488-2497					ensemble
7.	New J. Chem.,	CH ₃ CN	450 nm	554 nm	0.21-5.12	

	2019,43, 7393- 7402				μM	
8.	Dalton Trans., 2015, 44, 6490–6501	Fluorescence turn-on CH3CN/H2O (v/v, 7: 3)	446 nm		1.53 μM	Ensemble for S^{2-} ion with detection limit of 11.4 μ M.
9.	Sensors, 2017,17, 1980– 1993	Fluorescence turn-off, CH ₃ CN	395 nm	489 nm	9 µM	Real time analysis
10.	Journal of Luminescence 175 (2016) 122–128	THF: HEPES ¹ / ₄ 5:5, 20 mM, pH ¹ / ₄ 7.4	420 nm		55 nM	Ensemble for thiols with detection limit of 1.5µM for Cys, 1.8µM for Hcy and 2.2 µM for GSH.
11.	Sensors and Actuators B, 2013,177 213– 217	CH ₃ CN	530 nm	590 nm	10 µg/L	-
12.	J Fluoresc, 2014, 24, 1331–1336	EtOH-H ₂ O (5: 5) mixture buffered with Tris-HCl, pH=7.2	399 nm	514 nm	0.07 μΜ	Visualize the change of intracellular Cu ²⁺ in living cells
13.	J Fluoresc, 2012, 22, 1603–1608	CH ₃ CN: H ₂ O, 1:1, v/v, HEPES, 10 mM, pH=7.0	530 nm	578 nm	5.3 μM	-
14.	Inorganica Chimica Acta, 2015, 438, 37- 41	DMSO	300 nm	385 nm	0.27 μΜ	Cu ²⁺ Sensing in a drug sample
15.	RSC Adv., 2016,6, 71543- 71549	10% aq DMSO solution (HEPES buffer 7.4)	440 nm & 470 nm	-	Not mentioned	3.5 μM for CN ⁻ ion