Influence of physicochemical characteristic of diatom frustules on hemorrhage control

Lulu Wang^a, Kehou Pan^{a,c}, Jing Li^b, Yun Li^a, Baohua Zhu^a, Yanan Wang^b, Chao Feng^{*b}, Jichang Han^{*a,b}

^aKey Laboratory of Mariculture, Ocean University of China, Ministry of Education,

Qingdao 266003, China

^bCollege of Marine Life Science, Ocean University of China, Qingdao 266003, China

^cFunction Laboratory for Marine Fisheries Science and Food Production Processes,

Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100,

China

*Corresponding author: Chao Feng, Jichang Han Corresponding author's address: College of Marine Life Science, Ocean University of China, Qingdao 266003, China Email: <u>fengchao@ouc.edu.cn</u>, <u>hanjichang@ ouc.edu.cn</u> Tel: +86 0532 82032938

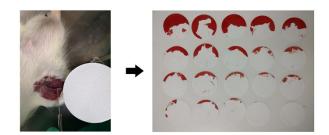


Figure S1. Images of rat femoral artery model and the filter paper of QuikClot[®] group. Hemostasis material was applied once the right femoral artery was cut open by a scalpel. Then, the pre-weighed filter paper (replaced by a new one every 15 s) was put below the vessel incision to absorb blood. The wet filter paper was weighed immediately after being replaced.

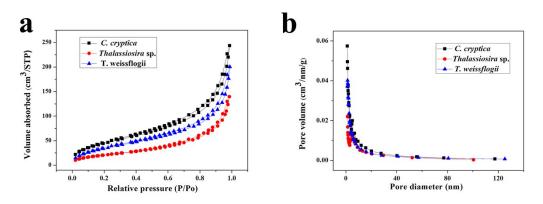
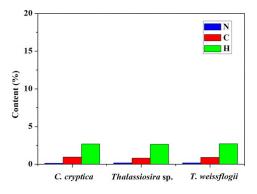



Figure S2. N₂ adsorption-desorption isotherm (a) and pore size distribution of

frustules (b).

Figure S3. Element analysis of diatom frustules after being treated by muffle furnace at 500 °C.

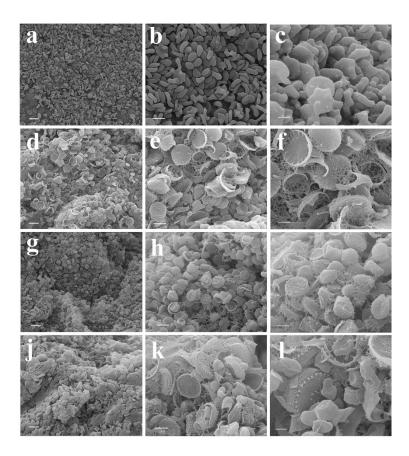


Figure S4. SEM imagines of blooding clot. a, b and c indicate the SEM image of blank control; d, e and f indicate the interface between RBCs and *C. cryptica*; g, h and i indicate that of *Thalassiosira* sp.; j, k and l indicate that of *T. weissflogii*. Scale bars in a, b, g and j are 10 µm; b, e, h and k are 5 µm; c, f, i and l are 2.5 µm.

Diatom species	Size	BET	Average pore BJH pore		Total pore	
	(µm)	$(m^2 g^{-1})$	diameter (nm)	diameter (nm)	volume (cc g ⁻¹)	
C. cryptica	8-10	134.6	8.88	1.151	0.3763	
<i>Thalassiosira</i> sp.	3-4	77.7	1.112	1.144	0.2159	
T. weissflogii	10-12	169.5	9.18	1.333	0.3094	
QuickClot [®]	4-7	17.1	2.573	3.414	0.1082	

Table S1. Physical characteristics of diatom frustules and QuikClot[®].

Table S2. Hemostasis time, re-bleeding time, and total amount of bleeding of all groups.

	No treatment	QuikClot®	C. cryptica	Thalassiosira sp.	T. weissflogii
Hemostasis time (s)	>900	210	310	150	180
Re-bleeding time (s)	ND	300	510	600	660
Total amount of	1568.07±357.11*	900.67±154.67	578.13±126.97	457.03±190.55	320±75.45
bleeding (mg)					

"*", values were determined at 900 s.