

Supplementary Information

Xeno-free and feeder-free culture and differentiation of human embryonic stem cells on recombinant vitronectin-grafted hydrogels

Li-Hua Chen,^{†a} Tzu-Cheng Sung,^{†a} Henry Hsin-Chung Lee,^{†bc} Akon Higuchi,^{*adek} Huan-Chiao Su,^a Kuan-Ju Lin,^a Yu-Ru Huang,^a Qing-Dong Ling,^{fg} S. Suresh Kumar,^h Abdullah A. Alarfaj,^d Murugan A. Munusamy,^d Michiyo Nasu,^e Da-Chung Chen,ⁱ Shih-Tien Hsu,^j Yung Chang^k, Kuei-Fang Lee^l, Han-Chow Wang^m, Akihiro Umezawa^e

^aDepartment of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan

^bDepartment of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan

^cGraduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan

^dDepartment of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

^eDepartment of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan

^fGraduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan

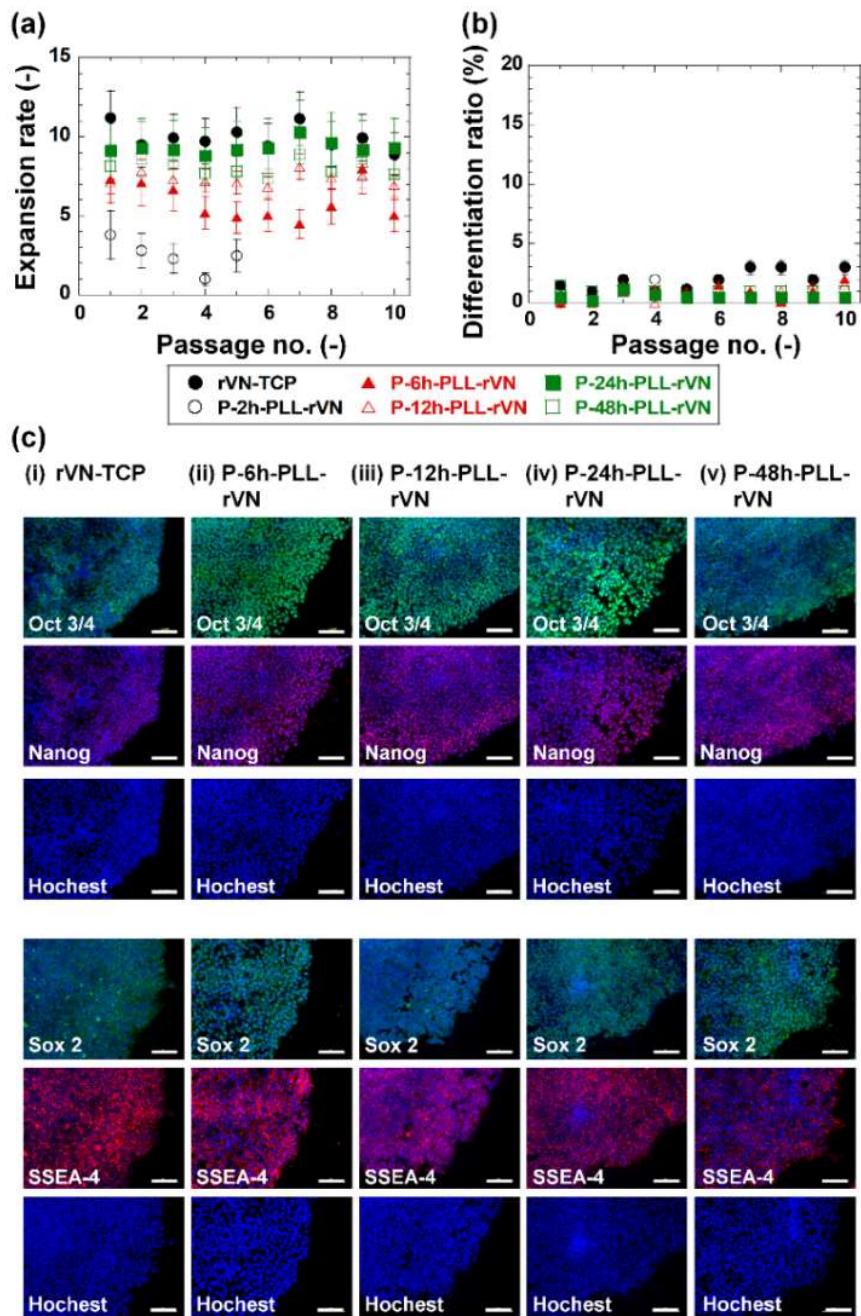
^gCathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan

^hDepartment of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 Serdang, Slangor, Malaysia

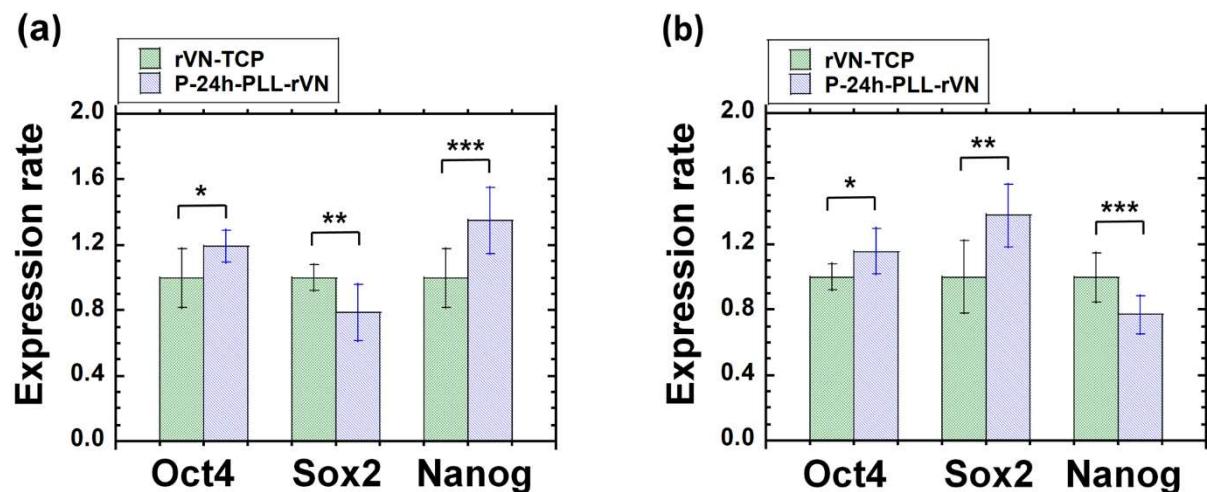
ⁱDepartment of Obstetrics and Gynecology, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan

^jDepartment of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan

^kDepartment of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200, Chung-Bei Rd., Chungli, Taoyuan, 320, Taiwan

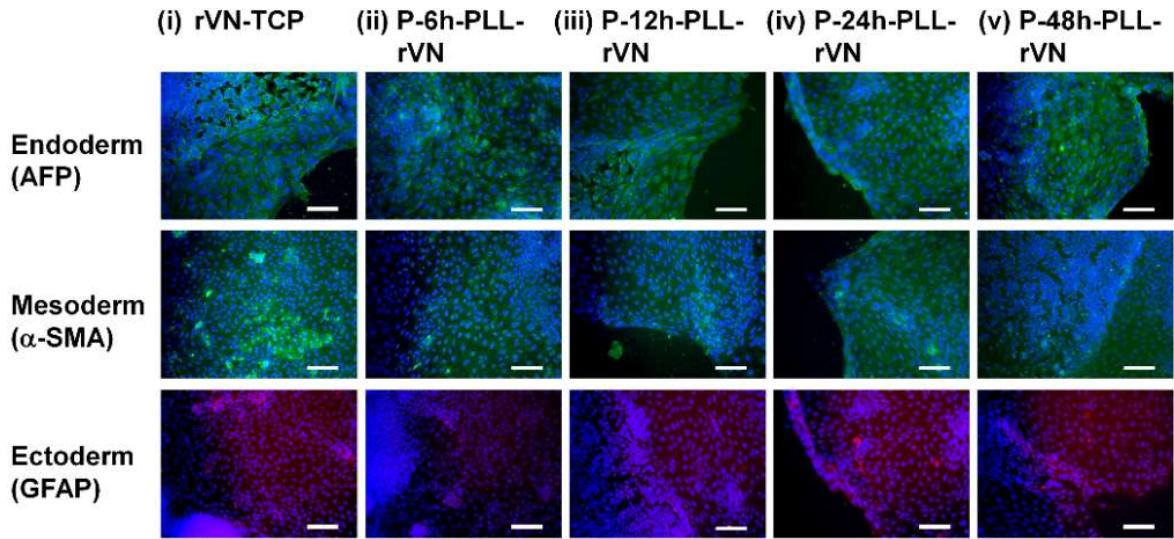

^lPrecision Medical laboratory, Lee's OB/GYN Clinic, No. 9, Ln. 31, Sec. 2, Jinshan S. Rd., Da'an Dist., Taipei 106, Taiwan

^mDepartment of Obstetrics and Gynecology, Hungchi Women & Children's Hospital, Taoyuan 320, Taiwan


* Corresponding author, E-mail: higuchi@ncu.edu.tw (A. Higuchi)

^lThese authors contributed equally to this work.

Supplementary Figures and Notes


Fig. 1S Long-term culture and characterization of HPS0077 human induced pluripotent stem cells (hiPSCs) on PVI hydrogels grafted with PLL and rVN under feeder-free and xeno-free culture conditions. (a, b) Expansion rate (a) and differentiation ratio (b) of HPS0077 hiPSCs on rVN-TCP dishes prepared with 5 μ g/mL rVN coating solution (closed circles), P-2h-PLL-rVN hydrogels (open circles), P-6h-PLL-rVN hydrogels (open squares), and P-24h-PLL-rVN hydrogels (closed squares) for 10 passages. P-Xh-PLL-rVN hydrogels were prepared with 1 mg/mL PLL solution and 10 μ g/mL rVN solution. (c) Expression of pluripotency proteins SSEA-4 (red), Sox2 (green), Nanog (red), and Oct3/4 (green) on HPS0077 hiPSCs evaluated by immunostaining with dual staining with Hoechst33342 for nuclear (blue) after culturing on (i) rVN-TCP dishes prepared with 5 μ g/mL rVN coating solution, (ii) P-6h-PLL-rVN hydrogels, (iii) P-12h-PLL-rVN hydrogels, (iv) P-24h-PLL-rVN hydrogels, and (v) P-48h-PLL-rVN hydrogels for 10 passages. P-Xh-PLL-rVN hydrogels were prepared with 1 mg/mL PLL solution and 10 μ g/mL rVN solution. Scale bar indicates 100 μ m.

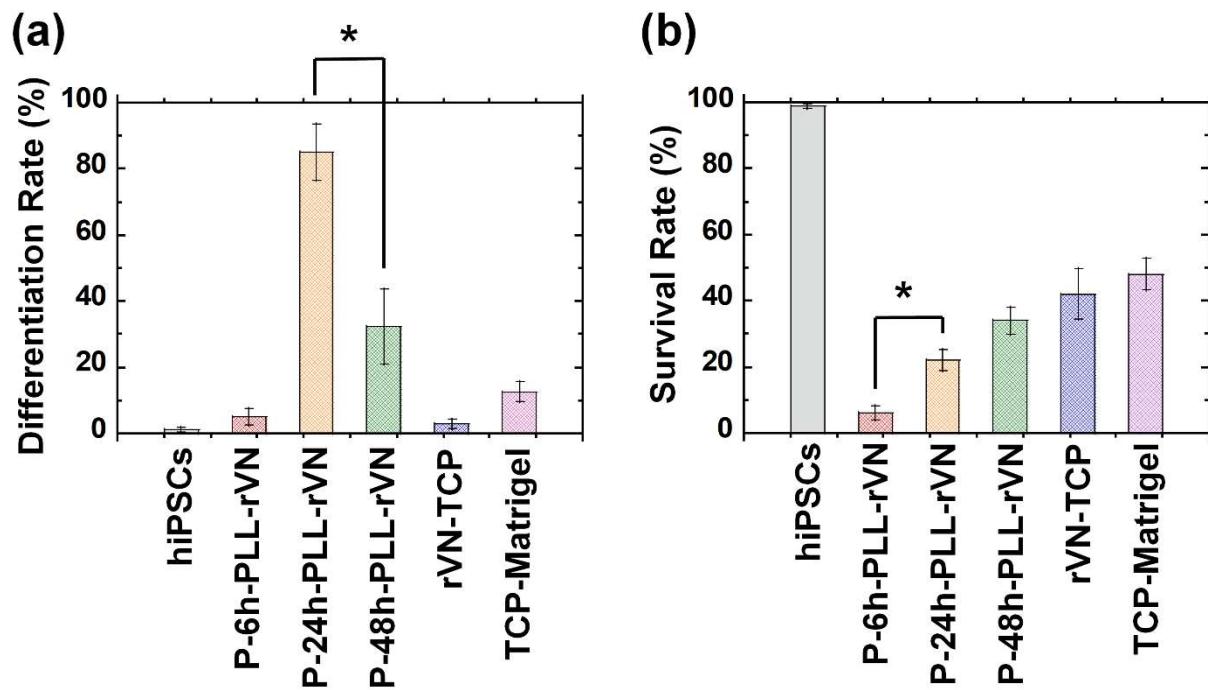

Fig. 2S Relative gene expression levels of *Oct4*, *Sox2*, and *Nanog* as analyzed by qRT-PCR in (a) hESCs and (b) hiPSCs after culturing on P-24h-PLL-rVN hydrogels or rVN-TCP dishes for 10 passages. The gene expression levels were standardized with the levels expressed of hESCs of hiPSCs after culturing on rVN-TCP dishes for 10 passages. * $p > 0.05$; ** $p > 0.05$.

Fig. 3S Karyotyping analysis of hiPSCs after culturing on P-24h-PLL-rVN for 10 passages.

Fig. 4S Characterization of the differentiation ability of HPS0077 hiPSCs in vitro and in vivo after culturing on PVI hydrogels. (b) Expression of an ectoderm protein (GFAP, red), mesoderm protein (α -SMA, green), and endoderm protein (AFP, green) in HPS0077 hiPSCs analyzed by immunostaining with dual staining with Hoechst33342 for nuclear (blue) after culturing on (i) rVN-TCP(5) dishes and (ii) P-6h-PLL-rVN, (iii) P-12h-PLL-rVN, (iv) P-24h-PLL-rVN, and (v) P-48h-PLL-rVN hydrogels for 10 passages. Scale bar indicates 100 μ m.

Fig. 5S Characterization of differentiation of HPS0077 hiPSCs into cardiomyocytes during culture on PVI hydrogels grafted with PLL and rVN under feeder-free and xeno-free culture conditions. (a) Differentiation rate of cells from HPS0077 hiPSCs cultivated on P-6h-PLL-rVN hydrogels, P-24h-PLL-rVN hydrogels, P-48h-PLL-rVN hydrogels, rVN-TCP dishes prepared with 5 μ g/mL rVN coating solution, and Matrigel-coated dishes after 12 days of induction. Differentiation rate of HPS0077 hiPSCs is also plotted. (b) Survival rate of differentiated HPS0077 hiPSCs cultivated on P-6h-PLL-rVN hydrogels, P-24h-PLL-rVN hydrogels, P-48h-PLL-rVN hydrogels, rVN-TCP dishes prepared with 5 μ g/mL rVN coating solution, and Matrigel-coated dishes after 12 days of induction. Survival rate of HPS0077 hiPSCs is also plotted. * $p < 0.05$.