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Figure S1. UV−vis absorbance of the Polipo-IR NPs with various concentrations.

Figure S2. The loading amount of dyes in Polipo-IR NPs. (a) UV−vis absorbance of the 
IR 1061 in CCL2 with various concentrations, (b) The Linear fit equation of UV-vis absorbance at 
970 nm. (c) The UV-vis absorbance of extract liquor.
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Figure S3. PA intensities of Polipo-IR NPs with different laser powers.

Figure S4. Photograph of various concentrations of Polipo-IR NPs at the same laser power.
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Figure S5. Photothermal property of Polipo-IR NPs. IR images of temperature changes of 
Polipo-IR NPs aqueous solution with various (a) concentrations under the laser irradiating powers 
(1064 nm, 1.0 W/cm2) and (b) laser power with aqueous solution of 33.1 μg/mL. (c) Photothermal 
performance of Polipo-IR NPs dispersed in aqueous solution under 1064 nm laser irradiation (1 
W/cm2), the laser was turned off when the temperature became stable (33.1 μg/mL, 1 mL).

Figure S6. In vitro biocompatibility and PTT. (a) NIR thermal images of Hep-G2 cells in the 
laser group and Polipo-IR NPs + Laser group. (b) Temperature changes of in vitro cytotoxicity 
against Hep-G2 cells in two groups. 
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Figure S7. The clearance and biodistribution of the Polipo-IR NPs after intravenous 
injection. (a) The B-scan images of the Polipo-IR NPs at different time points (0, 3, 6, 12 h) after 
administration. (b) Quantitative analysis of PA signals in tumor sites. (c) The PA imaging of 
organs that demonstrated the biodistribution of the Polipo-IR NPs directly. (d) Quantitative 
analysis of PA signals in various organs.

Figure S8. The blood circulation of the Polipo-IR NPs after intravenous injection.
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Figure S9. Representative in vivo photothermal therapy photos of mice bearing subcutaneous 
Hep-G2 tumors (PBS group, Polipo-IR NPs group, laser group and Laser + Polipo-IR NPs group).

Figure S10. Representative hematoxylin and eosin (H&E) stained images of major organs (heart, 
liver, spleen, lung and kidney) which were collected from the mice sacrificed after 18 days of NPs 
injection (magnification: 200 ×)
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Calculation of photothermal conversion efficiency of Polipo-IR NPs

Following the Roper’s approach1, the total energy balance for Polipo-IR NPs can be 
calculated using equations: 

(1)

𝜂 =
ℎ𝑆(𝑇max ‒ 𝑇surr) ‒ 𝑄𝑖𝑠

𝐼(1 ‒ 10 - A1064)

(2)

                                
ℎ𝑆 =

mCwater
𝜏𝑠

(3)

𝑡 =‒ τsInθ =- τsIn (
𝑇 ‒ 𝑇surr

𝑇max ‒ 𝑇surr
)

(4)

                          
𝑄𝑑𝑖𝑠 =

𝑚𝐶H2O(𝑇max(water) ‒ 𝑇surr)
𝜏water

where h is the heat transfer coefficient, S is the surface area of the container, m is the

mass of products (m = 0.9985 g), τs is a system time constant (434.31 s), Cwater is 

specific heat capacity of solvent (Cwater =4.2 J/g •°C), I is incident laser power (1.0 

W/cm2), η is the photothermal conversion efficiency, A is the absorbance of Polipo-

IR NPs (A1064 = 1.22) , Tsurr is the ambient temperature of the surroundings. Tmax and 

Tmax(water) are the equilibrium temperature of Polipo-IR NPs solution and water, 

respectively. The Polipo-IR NPs photothermal conversion efficiency (η) for 

continuous laser of 1064 nm is calculated to be 45.25%.

Table S1: Photothermal conversion efficiency of contrasts of the nanoparticles 

(1064 nm)

Agents
Wavelength

(nm)

Photothermal 

conversion Reference
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