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Fig. S1 Quantitative analysis of pore size inside composite hydrogels based on SEM images.
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Fig. S2 The degradation of 0.02 w/v% BP nanosheets and 0.02 w/v% GelMA decorated BP 
nanosheets (Gel-BP). (a) The appearance of the aqueous dispersion of BP nanosheets and Gel-BP 
after 0, 2, 4 and 6 days of storage. (b) The UV-Vis absorption spectra of the aqueous dispersion of 
BP nanosheets and Gel-BP after 0, 1, 2, 3 and 4 days of storage.
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Fig. S3 Enzymatic degradation of the nanocomposite hydrogels with different concentrations of 
BP nanosheets in response to collagenase II (1 μg/mL).
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 Fig. S4 In vitro cell viability of therapeutic nanocomposite hydrogels. (a) Fluorescence 
micrographs of hMSCs cultured on hydrogels on day 1, 3 and 5. The green represents the living 
cells, while the red represents dead cells. (b) Proliferation of hMSCs determined by CCK8 assay 
(*p < 0.05, **p < 0.01, ***p < 0.001).
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Fig. S5 (a) Infrared thermographic photographs of dried nanocomposite hydrogels irradiated 
by 808 nm NIR laser (1 W cm-2). (b) Photothermal heating curves of the nanocomposites in 
vitro as a function of time. (c) Structural stability of dried nanocomposite hydrogel before and 
after NIR laser irradiation.
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Fig. S6 Animal experimental process consists that the implantation process of therapeutic 
BP/Gel nanocomposite hydrogel in nude mice and the observation of implant in nude mice 
before tissue collecting.
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Fig. S7 HE staining results at specific time points after implantation in nude mice to evaluate 
the biocompatibility of the therapeutic BP/Gel nanocomposite hydrogel.
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Fig. S8 (a) The schematic diagram of 3D Cell encapsulation in BP/Gel nanocomposite hydrogel. (b) 
Live/dead staining assay of hMSCs cells in gelatin and BP/Gel nanocomposite hydrogel, live cells: 
green fluorescence, dead cells: red fluorescence. (c) Fluorescence quantitative analysis of cell 
viability. 
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Fig. S9 3D printable demonstration of the therapeutic BP/Gel nanocomposite hydrogel. The 
addition of BP nanosheets shows great stability improvement of the hydrogel matrix after printing.


