Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2019

Size Effect of Mesoporous Organosilica Nanoparticles on Penetration and Accumulation for

Tumor

Junjie Zhang,^a Xiaofen Wang, ^b Jun Wen, ^c Xiaodan Su, ^a Lixing Weng, ^a Jintao Li, ^e Chunyan Wang, ^b Ying Tian, ^b Yunlei Zhang, ^b Jun Tao, ^a Peng Xu, ^d Lianhui Wang, ^{* a} Guangming Lu, ^b and Zhaogang Teng^{* a,b}

^a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210046 Jiangsu, P. R. China

Email: <u>iamlhwang@njupt.edu.cn</u>

- Email: <u>iamzgteng@njupt.edu.cn</u>
- ^b Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University,
- Nanjing, 210002 Jiangsu, P. R. China

^c Department of Medical Imaging, Affiliated Hospital of Nanjing University of Chinese Medicine, Nan Jing, 210002 Jiangsu, P. R. China

^{*d*} College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, P.R. China

^e College of Computer and Information, Hohai University, 210098 Jiangsu, P. R. China

Figure S1. High magnification TEM image of the 60-nm MONs. scale bar: 50 nm.

Figure S2. High magnification TEM image of the100-nm MONs.

Figure S3. The hydrodynamic size distributions in DMEM containing 10% FBS.

Figure S4. Weight change of the MON-treated mice 30 days post-injection at a dose of 5 mg kg⁻¹.

Figure S5. Serum biochemical analysis of the mice after injection with different-sized MONs at a dose of 5 mg/kg. The measures include ALT, AST, BUN, and Cre.

Figure S6. Histological images of the major organs of mice after intravenous administration of different-sized MONs at a dose of 5 mg kg⁻¹ at 30 days postinjection. All images shown are of $100 \times$ magnification.

Figure S7. Histological images of the major organs of mice after intravenous administration of different-sized MONs at a dose of 20 mg kg⁻¹ at 30 days postinjection. All images shown are of $100 \times$ magnification.

Figure S8. Excretion percentages of the MONs of different particle sizes in urine of ICR mice after tail intravenous injection. Male ICR mice were randomly separated into four groups (n = 5) and intravenously injected with MONCs (MON-Cy5.5) at doses of 5 mg kg⁻¹d. At 2, 12, 24 and 48 h, liquid urine (50 µL) was mixed with cool methanol (450 µL) to determine the fluorescence intensity (A_u, in count per mg urine) and protein concentration of urine (C_p, in mg protein per mg urine). The protein content in urine (expressed by C_p) was measured by the Bradford method using a Bradford Protein Assay Kit, which was purchased from Nanjing KeyGen Biotech Co. Ltd. (Nanjing, China). Furthermore, the sample percentages in each urine specimen (P_{s_urine} , in %) could be calculated according to the volume of urine (V_{urine}, in mL), the protein concentration in urine (C_{p_urine} , in mg protein per mL urine), the fluorescence density of each sample in urine ($A_{s_urine} = A_u/C_{p_urine}$, in count per mg protein), and the fluorescence intensity of each unit mass sample (A_{s0} , in count per µg MONs), namely P _{s urine} = C_{p_urine}×V_{urine} × A_{s_urine}/A_{s0}.

Figure S9. Fluorescent linear profiles of the U87MG MCSs at a depth of 120 μ m after incubating with

different sized MONs for 4 h.

Figure S10. Tumor penetration depth analysis. The profile lines show the fluorescence changes from

the tumor periphery to the interior as shown in Figure 4g.