Glycerylphytate as ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features

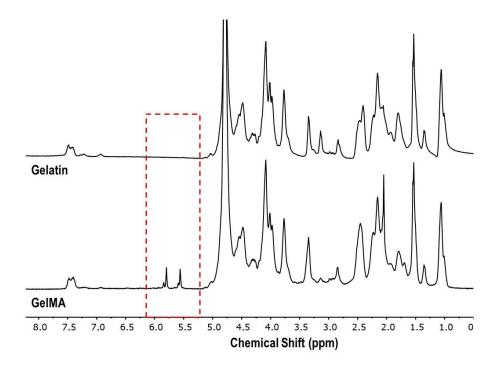
Ana Mora-Boza^{1, 2}, Małgorzata K.Włodarczyk-Biegun³, Aránzazu del Campo^{3, 4}, Blanca

Vázquez-Lasa^{1, 2,*}, Julio San Román^{1, 2}

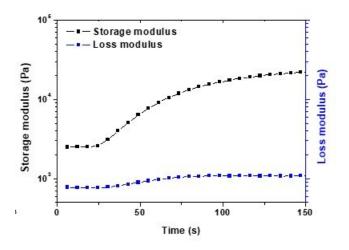
¹ Institute of Polymer Science and Technology, ICTP-CSIC. Juan de la Cierva 3, 28006

Madrid, Spain

² CIBER-BBN. Health Institute Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, 28029


Madrid, Spain

³ INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken,


Germany

⁴ Chemistry Department, Saarland University, 66123 Saarbrücken, Germany

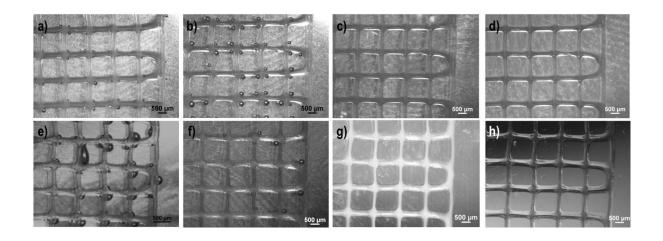

Supplementary Information

Figure S1. ¹H-RMN spectra of gelatin and GelMA recorded in D_2O at 37 °C. Degree of methacrylation was calculated taking into consideration the methacrylate signals that appeared at a chemical shift of 5.8 and 5.6 ppm, which were normalized against the aromatic signals of phenylalanine at 7.4 ppm ¹.

Figure S2. *In situ* photoinitiated crosslinking of the gel followed by rheology. The curves show the changes in the storage (black squares) and loss (blue squares) moduli of the gel during light exposure.

Figure S3. Qualitative examination under light microscopy of swelling for G_1 Phy (a-d) and TPP (e-h) printed scaffolds at different times of incubation in PBS at 37 $^{\circ}$ C (2, 4, 7 and 10 days).

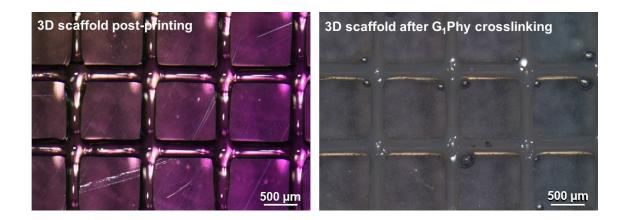


Figure S4. Light microscope images of a 3D printed scaffold after printing-

photopolymerization process, and after ionic crosslinking with G₁Phy

References

1. M. Bartnikowski, R. Wellard, M. Woodruff and T. Klein, *Polymers*, 2015, **7**, 1539.