Supporting Informations

Red phosphorus Decorating Graphene oxide Nanosheets: Label-Free DNA Detection

Tapas Kumar Mandal, Yong Rock Lee and Nargish Parvin

Figure S1.TEM images of a) N-rGO only. (b-c) f-RP@N-rGO, (After red phosphorous (RP)is embedded on N-rGO NSs in different scales). The respective schematic diagrams are shown at the top.

Figure S2. The corresponding EDS profile for phosphorus element in the area marked with red rectangles in (a) the GO sheets and (b) the f-RP@N-rGO NSs.

Figure S3. Fluorescence images of f-RP@N-rGO NSs under white light and different band pass filters.

Figure S4. (a) XPS Survey spectrum with all elements peak. High-resolution XPS spectra of (b) C 1s,and (c) N 1s for f-RP@N-rGO NSs. (d) Fourier-transform infrared spectrum of f-RP@N-rGO NSs. (e) Ultraviolet(UV) visible spectrum of f-RP@N-rGO NSs.

Figure S5. Effect of ionic strength on the fluorescence intensity of f-RP@N-rGO NSs (0.01 mg mL⁻¹) (ionic strengths were controlled by various concentrations of NaCl). The fluorescence spectra were obtained under the constant excitation and emission wavelengths at 420 nm and 458 nm respectively.

Figure S6. Effect of pH on the emission of f-RP@N-rGO NSs (0.01 mg mL⁻¹).

Equation y = a + b*x					
Adj. R-Square	0.9922				
	Value	Standard Error			
LINEARITYGRAPH Intercept	10.77037	4.23075			
LINEARITYGRAPH Slope	0.58256	0.01632			

Figure S7. Linearity curve of target DNA detection concentrations with presence of f-RP@N-rGO NSs and ssDNA. The excitation wavelength is 420 nm, and the monitored emission wavelength is458 nm. The detection limit of T (Ebola Virus DNA in this study) using f-RP@N-rGO NSs sensor is determined from the following equation: $DL = K \times SD/S$, where K = 3, SD is the standard deviation of the blank solution, and S is the slope of the calibration curve. $DL = K \times SD/S=3 \times 0.1077/0.582pM = 0.555 \times 10^{-12}M$ (therefore, finally limit of detection=0.555 pM).¹

 Table S1. DNA Sequences Used for the fluorescence assay.

lame	Sequence 5 to 3	
SDNA	GCATTAGCTTCCGTTCTCTC	
dZai Ebola virus DNA-Target DNA (T)	GAGACAACGGAAGCTAATGC	
gle base mismatch DNA at the central location (SM1)	GAGACAACGG G AGCTAATGC	
gle base mismatch DNA at near 5' location (SM2)	G T GACAACGGAAGCTAATGC	
gle base mismatch DNA at near 3' location (SM3)	GAGACAACGGAAGCTAAT C C	
uble base mismatch DNA at central locations (DM1)	GAGACAA A GG G AGCTAATGC	
uble base mismatch DNA at near to both ends location (DM2)	G T GACAACGGAAGCTA C TGC	
ndom DNA (R)	AAGATACCGGTAGCCAATCC	

* The mutation base is indicated by underline and **bold**

Table S2. Comparison of fluorescent DNA sensors using different 2D nanomaterial.

Туре	Sensitivity	Detection time	Probe synthesis	Multiplexed	Reference
				detection	
GO-based DNA detection (premixing)	10 nM	Slow (0.5 h)	Convenient (single labeling)	Not reported	2
Graphdiyne-based DNA detection	84 pM	10 min	Convenient (single labeling)	Not reported	3
AuNP-based DNA detection	nM	Fast (minutes)	Difficult (dual labeling)	Yes	4
SWNT-based DNA detection	4 nM	Slow (several hours)	Convenient (single labeling)	Not reported	5
GO-based DNA detection (postmixing)	100 pM	Fast (1 min)	Convenient (single labeling)	Yes	6
TaS 2 -based DNA detection	50 pM	Fast (≈5 min)	Convenient (single labeling)	Yes	7
f-PR@N-rGO	0.5 pM	instant	Very convenient (No need labeling)	yes	This work

Reference:

- 1. S. Zhang, Q. Niu, L. Lan, T. Li, Sensors and Actuators B, 2017, 240, 793–800
- 2. C. H. Lu , H. H. Yang , C. L. Zhu , X. Chen , G. N. Chen, *Angew. Chem. Int. Ed.* 2009, **48** , 4785
- 3. C. X. Wang, P. Yu, S. Y. Guo, L. Q. Mao, H. B. Liu, Y. L. Li, Chem. Commun. 2016, 52, 5629.
- 4. B. Dubertret, M. Calame, A. J. Libchaber, *Nat. Biotechnol.* 2001, **19**, 365.
- R. H. Yang , J. Y. Jin , Y. Chen , N. Shao , H. Z. Kang , Z. Xiao , Z. W. Tang , Y. R. Wu , Z. Zhu , W. H. Tan , *J. Am. Chem. Soc.* 2008, **130** , 8351
- S. J. He, B. Song, D. Li, C. F. Zhu, W. P. Qi, Y. Q. Wen, L. H. Wang, S. P. Song, H. P. Fang, C. H. Fan, *Adv. Funct. Mater.* 2010, 20, 453.
- Y. Zhang, B, Zheng , C. Zhu , X. Zhang , C. Tan, H. Li , B. Chen, J. Yang, J. Chen, Y. Huang , L. Wang , H. Zhang, *Adv. Mater.* 2015, **27**, 935–939. DOI: 10.1002/adma.201404568.