Supporting Information

Facile core-shell nanoparticles with controllable antibacterial activity assembled by chemical and biological molecules

Lixia Guo, Haoping Wang, Yunxia Wang* and Liheng Feng*

School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006,

P.R. China

E-mail: wangyunxia@sxu.edu.cn (Wang, Y.X.); https://www.uhiter.edu.cn (Feng, L.H.)

Fig. S1. Synthesis procedure of conjugated polymer PFDBT-Br.

Fig. S2. a) Comparison of normalized emission spectra of monomers and polymer FPDBT-Br. The excitation wavelength is 380 nm, 452 nm, and 535nm, respectively. b) Normalized absorption and emission spectra of polymer FPDBT-Br. The excitation wavelength is 535 nm.

Fig. S3. a) Normalized absorption and emission spectra of CPNs (40 μ g/mL). The excitation wavelength is 550 nm. b) Single-particle brightness of CPNs.

Fig. S4. a) Normalized absorption and emission spectra of Hoechst 33258 (122.8 μ g/mL). The excitation wavelength is 346 nm. b) Absorption and c) emission spectra of CPNs & H and CPNs-H. [CPNs] = 20 μ g/mL, [CPNs-H] = 20 μ g/mL, [Hoechst] = 122.8 μ g/mL. The excitation wavelength is 390 nm.

Fig. S5. a) Antibacterial activity of Hoechst33258 toward Amp^r E.coli. b) Antibacterial activity of

CPNs&Hoechst toward Amp^r E.coli.

Fig. S6. CLSM images of Amp^r *E.coli* without and with treatment of CPNs-H (50 μ g/mL) in different channels.

Fig. S7. Photographs of Amp^r *E.coli* on solid LB agar plate without and with treatment of CPNs-H and CPNs&H. [CPNs] = $30 \mu g/mL$, [H33258] = 0.59 mg/mL.

Fig. S8. a) Emission spectra of CPNs-H (1 μ g/mL) treated with different concentrations of dsDNA (10 μ g/mL, 20 μ g/mL, 30 μ g/mL, 40 μ g/mL, 50 μ g/mL, 60 μ g/mL, 70 μ g/mL, 80 μ g/mL, 90 μ g/mL, 100 μ g/mL). b) Emission intensity changes of CPNs-H with different treatments. [CPNs-H] = 1 μ g/mL, [DNA] = 100 μ g/mL, [Dnase I] = 900 μ g/mL.

Fig. S9. Controlled antibacterial experiments were studied by addition of DNA and DNase I in different time scales. A is the OD_{600} of the experimental group, and A_0 is the OD_{600} of the control group. [CPNs-H] = 50 µg/mL, [DNA] = 600 µg/mL, [DNase I] = 5.59 mg/mL.

Fig. S10. (a) Fluorescence imaging of the E. coli infected mice within 3 days postinjection of CPNs-H (50 μg/mL). (b) Histological images of different organs (heart, liver, spleen, lung, and kidney) of mice treated with CPNs-H, CPNs-H/DNA, and CPNs-H/DNA+DNase I.