Supplementary Information

Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer

Kepeng Tao,^{a,#} Shuwei Liu,^{b,#} Lu Wang,^c Heping Qiu,^a Binxi Li,^b Mengsi Zhang,^b Mengyuan Guo,^d Heng Liu,^a Xue Zhang,^b Yi Liu,^b Yuchuan Hou,^{a,*} and Hao Zhang,^{b,*}

^a Department of Urology, The First Hospital of Jilin University, Changchun 130021, P. R. China.

^b State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

^c Department of Oral Pathology, Stomatology Hospital of Jilin University, Changchun 130021, P. R. China.

^d Department of Hematology, The First Hospital of Jilin University, Changchun 130021, P. R. China.

*To whom correspondence should be addressed. Y.C.H. and H.Z. proposed and supervised the project. Fax: +86 431 85193423.

Figure S1. (a) UV-vis absorption spectra of different concentrations of VCR. (b) The standard absorption curve of VCR according to the concentration.

Figure S2. UV-vis absorption spectra of Fe₃O₄ SPs and Fe₃O₄@PDA SPs.

Figure S3. The real-time temperature of Fe₃O₄ SPs (a) and Fe₃O₄@PDA SPs (c). Time constants for heat transfer of Fe₃O₄ SPs and Fe₃O₄@PDA SPs are determined to be τ 's = 388.4 s (b) and 341.3 s (d), respectively, by applying the linear time data from the cooling period versus negative natural logarithm of driving force temperature. The laser power density is 3 W/cm², and the concentration of Fe₃O₄ SPs and Fe₃O₄@PDA SPs is 200 µg/mL.

Figure S4. (a) Infrared thermal images of 200 μ g/mL Fe₃O₄@PDA-VCR-FA SPs aqueous solution under the irradiation of an 808 nm laser at different power density for 15 min. (b) Infrared thermal images of 200 μ g/mL Fe₃O₄@PDA-VCR-FA SPs aqueous solution under the irradiation of an 808 nm laser at 2 W/cm² for different time. (c) Infrared thermal images of Fe₃O₄@PDA-VCR-FA SPs aqueous solution at different concentration under the irradiation of an 808 nm laser at 2 W/cm² for 15 min.

Figure S5. Photographs of Fe₃O₄@PDA-VCR-FA SPs in normal saline, PBS, cell culture medium and cell culture medium plus 10% FBS (a) and after incubation for 2 weeks and gently shake (b). (c) The UV-vis-NIR absorption spectra of Fe₃O₄@PDA-VCR-FA SPs solution before and after heating up and cooling down for 5 cycles. The laser power density is 3 W/cm^2 , and the concentration of Fe₃O₄@PDA-VCR-FA SPs is 200 µg/mL.

Figure S6. (a) Concentration-dependent T_2 -weighted MRI under a 1.5 T magnetic field. The color bar from yellow to black in (a) represents the MRI signal from low to high. (b) r2 for Fe₃O₄@PDA-VCR-FA SPs.

Figure S7. VCR release from Fe_3O_4 @PDA-VCR-FA SPs at different pH over 48 h and NIRtriggered DOX release from Fe_3O_4 @PDA-VCR-FA SPs. The samples at different pH were irradiated with an 808 nm NIR laser (1 W/cm²) for 15 min.

Figure S8. TEM image of Fe₃O₄@PDA-VCR-FA SPs under acidic conditions.