Supporting Information

A novel cell membrane-cloaked magnetic nanogripper with enhanced

stability for drug discovery

Yusi Bu, ^{a,b} Qi Hu, ^{a,b} Xiaolin Zhang, ^{a,b} Ting Li, ^{a,b} Xiaoyu Xie, * ^{a,b} and Sicen Wang * ^{a,b}

^aSchool of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061,

China

^bShaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China

Corresponding Authors

*Tel.: +86 29 82656788. E-mail: xiexiaoyu@xjtu.edu.cn (X. Xie).

*Tel.: +86 29 82656788. E-mail: wangsc@mail.xjtu.edu.cn (S. Wang).

Samples preparation for TEM:

- 1. Use 300 mesh carbon coated grids.
- 2. Prepare α_{1A} /MNGs solution and ultrasonic dispersed evenly.
- 3. Place a drop (approx. 20 $\mu L)$ of $\alpha_{1A}/MNGs$ solution on the grid.
- 4. Dry overnight in a Petri dish and view the next day in TEM.

Figure S1. Size and zeta potential results of high α_{1A} -AR expression HEK293 cell membrane-derived vesicles (a), Fe₃O₄-CHO nanoparticles (b) and α_{1A} /MNGs (c) (A); FT-IR spectra of Fe₃O₄ (a), Fe₃O₄-SiO₂ (b), Fe₃O₄-CHO (c) and α_{1A} /MNGs (d) (B); XRD patterns of Fe₃O₄ (a), Fe₃O₄-CHO (b) and α_{1A} /MNGs (c) (C) and VSM curves of α_{1A} /MNGs (a), Fe₃O₄-CHO (b) and Fe₃O₄ (c) (D).

Figure S2. Bright-field images of confocal microscopy images of MNGs cores (A) and α 1A/MNGs (B).

Figure S3. The binding model of compounds tamsulosin (A), bulleyaconitine A (B)

and benzoylhypacoitine (C) with α_{1A} AR (PDB ID: 4iye).