Supplementary information

Hyaluronic acid hydrophilic surficial rehabilitative curcumin nanocrystals for targeted breast cancer treatment with prolonged biodistribution

Peng Ji, Le Wang, Yiwei Chen, Siqi Wang, Zhenghong Wu*, Xiaole Qi*

Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China

* Corresponding authors.

Email addresses: zhenghongwu66@cpu.edu.cn (Z. H. Wu); qixiaole523@cpu.edu.cn (X. L. Qi).

Tel: +0086-15062208341; Fax: +0086-025-83179703

EXPERIMENTAL SECTION

1. Quantitative measurement of the Cur loaded in HA@Cur-NC through UV-vis method.

Accurately weigh Curcumin (Cur) 10.0 mg into a 10 mL volumetric flask, added anhydrous ethanol to the scale, and shaken well to obtain 1000 μ g mL⁻¹ Cur reserve solution. Then dilute it with anhydrous ethanol to different concentrations (7.5 μ g mL⁻¹, 5 μ g mL⁻¹, 3.75 μ g mL⁻¹, 2.5 μ g mL⁻¹, 1 μ g mL⁻¹, 0.5 μ g mL⁻¹, 0.25 μ g mL⁻¹, and 0.125 μ g mL⁻¹). The absorbance (A) of different samples at 426 nm wavelength was determined by UV-vis spectrophotometer with anhydrous ethanol as blank control. The obtain standard curve is y = 0.13391x + 0.00207, R² = 0.9981 (y: absorbance value at 426 nm; x: concentration of Cur) (Fig. S1).

2. Quantitative measurement of the Cur in vivo through a high-performance liquid chromatography (HPLC) method.

Samples were analyzed by HPLC (LC-10AT, Japan) with the following conditions: an Inertsil ODS-SP column (4.6 mm × 250 mm, 5.0 μ m, Japan); mobile phase: Acetonitrile: 1% acetic acid solution = 55:45 (ν/ν); column temperature 25 °C; detection wavelength 426 nm; flow rate 1.0 mL min⁻¹ and injection volume 20 μ L. Accurately weigh Cur 10.0 mg into a 10 mL volumetric flask, adding methanol to the mark, shake well, and obtain 1000 μ g mL⁻¹ Cur reserve solution. After that, dilute to different concentrations (10, 5, 2, 1, 0.5, 0.1, 0.05, 0.025 μ g mL⁻¹) using 70% methanol-blank plasma mixed solution, and HPLC obtained the peak area of different samples. The peak area y was plotted on the ordinate, and the concentration x was plotted on the abscissa. The obtain standard curve is y = 159768x + 953.75, $R^2 = 0.99975$ (y: peak area value at 426 nm; x: concentration of Cur, $R^2 = 0.99975$) (Fig. S2).

List of figures

Fig. S1 The quantification of Cur. The absorption spectra of inset: The standard curve for absorbance value at 426 nm. y = 0.13391x + 0.00207, $R^2 = 0.9981$

Fig. S2 The obtain standard curve is y = 159768x + 953.75, $R^2 = 0.99975$

Fig. S3 Long-term stability study of different Cur formulations. (A) Size change was measured in PBS, and change in absorbance at 560 nm was measured in both (B) PBS and (C) 10% FBS.

Fig. S4 The release behavior of HA@Cur-NC at pH 5.0 plus 0.5% Tween and different concentrations of HAase.

Fig. S5 Uptake in vitro. (A) The fluorescent microscopy images of 4T1 cells after incubating with Cur, Cur-NC, HA@Cur-NC, and HA@Cur-NC (with HA-pretreated) for different hours. Cells without any treatment were as a control group (Scale bar: 100 μm). (B, C) Analysis of FAM fluorescence value according to section A.

Fig. S6 (A) Flow cytometry analysis of the cycle of MDA-MB-231 cells induced by PBS (control), Cur, Cur-NC, and HA@Cur-NC for 24 h. (B, C) Quantitative analysis of cell cycle profiles of MDA-MB-231 cells according to section A. Data represent the mean of the percentage of cell distribution in each phase \pm SD; **P*< 0.05 *vs.* control after one-way ANOVA analysis.

Cur : F27	Sizes (nm)	PDI	Note
1:0.25	-	-	instability and precipitate rapidly
1:0.5	359.30 ± 10.71	0.71 ± 0.07	
1:1	244.47 ± 7.45	0.65 ± 0.07	
1:2	165.80 ± 3.07	0.47 ± 0.03	
1:4	101.37 ± 7.36	0.33 ± 0.03	
1:5	104.78 ± 7.64	0.34 ± 0.04	

Table S1 Size and PDI of Cur-NC at different weight ratios of Cur to F127 (w/w).Data are shown as means \pm SD (n = 3).

Table S2 Effect of molecular weight of HA to Cur-NC on Size and PDI index of HA@Cur-NC. HA : Cur-NC = 4:1 (w/w), Cur : F127 = 1 : 4 (w/w). Data are shown as means \pm SD (n = 3).

Molecular weight of HA (kDa)	Sizes (nm)	PDI	
36	396.59 ± 19.32	0.43 ± 0.04	
100	359.30 ± 10.71	0.35 ± 0.02	
570	161.85 ± 1.70	0.25 ± 0.02	
770	243.81 ± 9.30	0.29 ± 0.03	
1400	302.68 ± 13.18	0.31 ± 0.02	

Table S3 Effect of weight ratios of HA to Cur-NC on Size and PDI index of HA@Cur-NC. Molecular weight of HA = 570 kDa, Cur : F127 = 1 : 4 (w/w). Data are shown as means \pm SD (n = 3).

HA : Cur-NC (<i>w/w</i>)	Sizes (nm)	PDI
8:1	164.14 ± 5.85	0.29 ± 0.03
4:1	161.85 ± 1.70	0.25 ± 0.02
2:1	143.46 ± 7.59	0.33 ± 0.04
1:1	131.29 ± 9.22	0.32 ± 0.06
2:5	109.92 ± 13.75	0.34 ± 0.05

Table S4Physicochemical properties of Cur-NC and HA@Cur-NC. Datarepresented as means \pm SD (n = 3).

	Size (nm)	Zeta potential (mV)	PDI	Drug loading (wt%)
Cur-NC	101.4 ± 7.4	-7.1 ± 0.2	0.33	15.3 ± 0.7
HA@Cur-NC	161.9 ± 1.7	-25.0 ± 0.8	0.25	3.3 ± 0.5

Entry				
	MCF-7 cells	MDA-MB-231 cells	4T1 cells	
Cur	3.90 ± 0.99	3.62 ± 0.75 *	3.18 ± 0.30 **	
Cur-NC	3.88 ± 1.70	3.19 ± 0.46 **	2.92 ± 0.26 **	
HA@Cur-NC	2.86 ± 0.50	1.92 ± 0.21	2.00 ± 0.17	

Table S5IC₅₀ values of different Cur formulations. Data represented as mean \pm SD(n = 5).

*P < 0.05 and **P < 0.01 vs. HA@Cur-NC.

Table S6Quantification data of integrated optical density (IOD) of tumor sectionsfrom each group with TUNEL staining. Results were expressed as mean \pm SD;Student's *t*-test, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. HA@Cur-NC. Datarepresented as mean \pm SD (n = 6).

	Control (saline)	Free Cur	Cur-NC	HA@Cur-NC
IOD	0.660 ± 0.131***	1.279 ± 0.507 **	1.950 ± 1.262*	3.347 ± 1.602