Supporting Information

Thermogelling Chitosan-Based Polymers for the Treatment of Oral Mucosa Ulcers

Zheng Luo,^a Kun Xue,^b Xikui Zhang,^b Jason Y. C. Lim,^b Xiyu Lai,^a David James Young,^c Zhong-Xing Zhang,^{*,b} Yun-Long Wu^{*,a} and Xian Jun Loh^{*, b, d}

^a Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China

^b Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore. Tel: +65 6501 1800

^c College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia

^d Department of Materials Science and Engineering, National University of Singapore, Singapore 117576,

Singapore

*Corresponding Authors: zhangzx@imre.a-star.edu.sg (Z.-X. Zhang); wuyl@xmu.edu.cn (Y.-L. Wu); lohxj@imre.a-star.edu.sg (X. J. Loh)

1. ¹H NMR Spectroscopy Characterization

Figure S1. ¹H NMR spectra of the four chitosan-based conjugates, **1a** (CS-*g*-PNIPAAM with less PNIPAAM), **1b** (CS-*g*-PNIPAAM with more PNIPAAM), **2** (CS-*g*-PAM) and **3** (CS-*g*-PNIPAAM-*g*-PAM), respectively in D₂O containing DCl (0.10 M) at 25 °C (500 MHz).

2. Dynamic Rheological Characterization

2.1 Conjugate 1a (CS-g-PNIPAAM with less PNIPAAM)

Figure S2. (A) Oscillatory temperature sweep measurement of thermogel **1a** showing the variations of G' and G" as a function of temperature between 15 and 40 °C at a constant frequency of 1 Hz and strain of 1.0 %. (B) Oscillatory strain sweep measurement of thermogel **1a** showing the variations of G', G" and elasticity loss factor Tan(delta) as a function of strain amplitude between 0.2 % and 200 % under 37 °C at a constant frequency of 1 Hz. (C) Oscillatory frequency sweep measurement of thermogel **1a** showing the variations of G' and G" as a function of frequency between 0.1 Hz and 100 Hz under 37 °C at a constant strain of 1 %.

2.2 Conjugate 1b (CS-g-PNIPAAM with more PNIPAAM)

Figure S3. (A) Oscillatory strain sweep measurement of thermogel **1b** showing the variations of G', G" and elasticity loss factor Tan(delta) as a function of strain amplitude between 0.2 % and 200 % under 37 °C at a constant frequency of 1 Hz. (B) Oscillatory frequency sweep measurement of thermogel **1b** showing the variations of G' and G" as a function of frequency between 0.1 Hz and 100 Hz under 37 °C at a constant strain of 1 %.

2.3 Conjugate 2 (CS-g-PAM)

Figure S4. (A) Oscillatory temperature sweep measurement of conjugate **2** showing the variations of G' and G" as a function of temperature between 15 and 40 °C at a constant frequency of 1 Hz and strain of 1.0 %. (B) Oscillatory strain sweep measurement of conjugate **2** showing the variations of G', G" and elasticity loss factor Tan(delta) as a function of strain amplitude between 0.2 % and 200 % under 37 °C at a constant frequency of 1 Hz. (C) Oscillatory frequency sweep measurement of conjugate **2** showing the variations of G' and G" as a function of frequency between 0.1 Hz and 100 Hz under 37 °C at a constant strain of 1 %.

2.4 Conjugate 3 (CS-g-PNIPAAM-g-PAM)

Figure S5. (A) Oscillatory temperature sweep measurement of thermogel **3** showing the variations of G' and G" as a function of temperature between 15 and 40 °C at a constant frequency of 1 Hz and strain of 1.0 %. (B) Oscillatory strain sweep measurement of thermogel **3** showing the variations of G', G" and elasticity loss factor Tan(delta) as a function of strain amplitude between 0.2 % and 200 % under 37 °C at a constant frequency of 1 Hz. (C) Oscillatory frequency sweep measurement of thermogel **3** showing the variations of G' and G" as a function of frequency between 0.1 Hz and 100 Hz under 37 °C at a constant strain of 1 %.

3. Antibacterial Activity

Figure S6. Plate antibacterial maps against Escherichia coli (a) and Staphylococcus aureus (b) at different thermogel concentrations after 16 h.