Supporting Information

N-Oxide Polymer-Cupric Ion Nanogels Potentiate Disulfiram for Cancer Therapy

Yin Zhong^a[‡], Rui Sun^a[‡], Yu Geng^a, Quan Zhou,^a Ying Piao,^a Tao Xie,^a Ruhong Zhou^b and Youqing Shen^{*a}

[‡] These authors contributed equally to this work.

Figure S1 Synthesis of the labeled ^{Cy5.5}OPDMA and the GPC trace of PDMA in DMF. Figure S2 The ¹H NMR spectra of the PDMA and OPDMA.

Figure S3 Size and distribution of OPDMA/Cu²⁺ in PBS with and without 10 % FBS. Figure S4 CuET measurement in tumors.

Figure S5 Representative histological features of major organ and tumor.

Figure S1 (a) Synthesis of the labeled ^{Cy5.5}OPDMA. (b) The GPC trace of PDMA in DMF.

Figure S2 The ¹H NMR spectra of the PDMA and OPDMA.

Figure S3 Size and distribution of OPDMA/Cu in PBS with and without 10 % FBS.

Figure S4 CuET in the tumors treated with CuCl₂ or OPDEA/Cu nanogels.

Figure S5 Representative histological features of major organs and tumors. Tissue paraffin sections were 5 μ m thick. The sections were stained with hematoxylin-eosin and examined by light microscopy (200× magnification for all images).