Supporting Information for

An osteoconductive PLGA scaffold with bioactive β -TCP and anti-

inflammatory Mg(OH)₂ to improve *in vivo* bone regeneration

Eun Jin Go,^{1,†} Eun Young Kang,^{1,2,†} Seul Ki Lee,¹ Sookhyun Park,³ Jae Hwa Kim,³ Wooram Park,¹ Ik Hwan Kim,^{2,*} Bogyu Choi^{1,*} and Dong Keun Han^{1,*}

¹Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi 13488, Republic of Korea ²College of Life Sciences Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea ³Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, 351 Yatap-dong, Bundang-gu, Seongnam, Gyeonggi 13497, Republic of Korea

2019.12.02

Resubmitted to Biomaterials Science

*Corresponding Authors: D. K. H (dkhan@cha.ac.kr), B. Choi (bgchoi@cha.ac.kr),

and I. H. Kim (ihkim@korea.ac.kr)

[†]These authors equally contributed to this work.

Table S1. Changes of residual weight and decomposition temperature of PLGA, TCP, MH andTCP/MH nanocomposites

Sample	Residual weight (%)		Decomposition Temp. (°C)	
	Raw	2 W	Raw	2 W
PLGA	0	2.7	272.9	234.8
TCP	13.5	9.93	247.6	244.6
MH	23.6	13.5	281.3	241.5
TCP/MH	25.5	23.0	252.3	247.5

Figure S1. (A) TGA and (B) DTG curves of PLGA, TCP, MH and TCP/MH nanocomposites.