Supplementary Information

Novel Na₂TiSiO₅ anode material for lithium ion batteries

Di He^{a‡}, Tianhao Wu^{a‡}, Boya Wang^a, Yubo Yang^a, Shu Zhao^a, Jinshu Wang^{*a} and

Haijun Yu*ª

^aCollege of Materials Science and Engineering, Key Laboratory of Advanced

Functional Materials, Education Ministry of China, Beijing University of Technology,

Pingleyuan 100[#], Chaoyang District, 100124, China.

E-mail: hj-yu@bjut.edu.cn

E-mail: wangjsh@bjut.edu.cn

Experiments

Material synthesis: NTSO is synthesized by a hydrothermal method. In a typical process: urea, SiO₂ and TiO₂ with a molar ratio of 0.5:1:1 were dispersed in 15 ml, 10 mol/L NaOH aqueous, then stirred and sonicated for 1 h. The mixed solution was transferred to a Teflon stainless reactor and held at 160 °C for 6 h. The white product was thoroughly washed by water and dried at 80 °C. **Electrode preparation**: NTSO, acetylene carbon, polyvinylidene fluoride (PVDF, dispersed in N-methyl-2-pyrrolidone solution) are mixed as a weight percent of 7:2:1. Then the slurry is coated on Cu foil by a blade and dried at 80 °C in a vacuum oven. The electrodes are punched into 12 mm disks for battery assembling, the loading mass is about 1 mg/cm². For a typical assembly process: electrode, separator (Celgard 2500) and lithium metal (as a counter electrode, diameter: 10 mm) are encapsulated into a CR2032-type coin cell in a glovebox filled with argon. The electrolyte is made up from 1 M LiPF₆ in EC/DEC (1:1 vol.%). The working potential ranges from 0.1 to 3 V.

Characterization: X-Ray diffraction (XRD) patterns for Rietveld analysis are recorded by D8 Advance (Bruker) setting at 40 kV/40 mA with a Cu target (K α 1 radiation, λ = 0.1541 nm, 0.8 s/step), the 20 degree ranges from 10-120°. The Rietveld analysis is based on a Topas software for cell parameters simulation. Cyclic voltammetry (CV) curves is measured by Solartron Metrology. Battery test is performed on Neware battery test equipment. N₂ isotherm adsorption-desorption measurement is performed by an ASAP 2020 at 77 K.

Density functional theory (DFT) method^{1,2} are implemented in the Vienna ab initio package (VASP) with pseudopotentials established by the projector-augmented wave (PAW)³ method and the Perdew–Burke–Ernzerh (PBE).⁴ For total energy calculations, we used a cutoff energy of 450 eV to ensure good convergence. The Brillouin zone was adopted with a 2×3×3 Γ-centered k-mesh for 1a×1b×2c supercell (Containing four Na₂TiSiO₅ molecular units). All structures were relaxed until the energy and force was less than 10–5 eV and 0.01 eV/Å, respectively. In the GGA +U schemes, U eff (U-J) is fixed to 2.5 eV for Ti-3d state. ^{5,6} The formation energy of insertion lithium atom is given by

$$\Delta E = \frac{E(Na_2Li_xTiSiO_5) - E(Na_2TiSiO_5) - xE(Li)}{x}$$
(S1)

Where E is the total energy. The E(Li) was obtained by optimization of Li Metal (Imm). **Reference**

- 1 P. Hohenberg and W. Kohn, *Phys. Rev. B*, 1964, **136**, B864.
- 2 W. Kohn and L. J. Sham, *Phys. Rev. A*, 1965, **140**, A1133.
- 3 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953.
- J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 5 Z. Hu and H. J.Metiu, *Phys. Chem. C*, 2011, **115**, 5841.
- 6 S. Lutfalla, V. Shapovalov and A. T. Bell, J. Chem. Theory Comput., 2011, 7, 2218.

	Na ₂ TiSiO ₅ (P4/nmm space group), $a = b = 6.504(2)$ Å, $c = 5.068(1)$ Å, $V = 214.4(1)$ Å ³						
Atoms	Site	х	У	Z	Occupancy	В	
Ti	2c	0.5	0	0.926(3)	1	0.3379	
Na	4e	0.25	0.25	0.5	1	0.5796	
Si	2a	0	0	0	1	0.2521	
0	8i	0	0.127(2)	0.273(4)	1	0.6646	
0	2c	0.5	0	-0.576(9)	1	0.504	

Table S1. Refined structure of Na_2TiSiO_5 obtained from XRD data

Fig. S1 TEM image of an amorphous region in NTSO.

Fig. S2 (a) N_2 isothermal adsorption-desorption curves and (b) pore size distribution plot. (P_V : pore volume, P_S : pore size.)

Fig. S3 first cycle of CV curves at a scan rate of 0.1 mV/s.

Fig. S4 the initial charge/discharge curve of NTSO at a current density of 100 mA/g.

Fig. S5 the charge/discharge curves of NTSO at different current densities. The second cycle is used for the curve at 50 mA/g,

Fig. S6 the selected curves after different cycles at a current density of 500 mA/g, the interval time for date collection is bit of long and leads to the obvious incontinuity in the curves.

Fig. S7 first three cycles for battery activation under 20 mA/g and then tested at 500 mA/g for 100 cycles.