Supporting Information

for

A multifunctional catenated host for efficient binding of Eu^{3+} and Gd^{3+}

Mandira Nandi^a, Somnath Bej^a, Tamal Kanti Ghosh^a and Pradyut Ghosh*^a

^aSchool of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India. E-mail: icpg@iacs.res.in

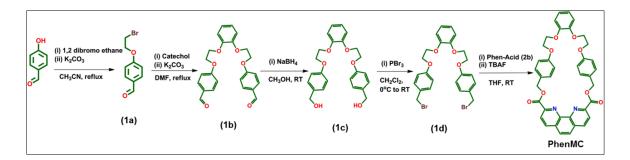
TABLE OF CONTENTS

1. Materials and Methods	2S
2. X-Ray crystallographic refinement details:	3S
3. Synthetic Scheme	4S-5S
(i) Scheme S1	
(ii) Scheme S2	
(iii) Scheme S3	
(iv) Scheme S4	
4. Inner transition metal ion (Eu ³⁺ and Gd ³⁺) complexation with [2]catenane	(Figure S1)5S
5. General Procedure	6S-9S
6. Characterization of compound 1c (Figure S1a-Figure S2)	10S-11S
7. Characterization of compound 1d (Figure S3-Figure S4)	11S-12S
8. Characterization of PhenMC (Figure S5-Figure S7)	12S-13S
9. Characterization of Axle (Figure S8-Figure S10)	14S-15S
10. Crystallographic details of the Axle (Figure S11, Table 1S)	15S-16S
11. ESI-MS of [2]Pseudorotaxane (Figure S12) and metallated	

[2]catenane (Figure S13)	16S-17S
12. Characterization of [2]catenane (Figure S14-Figure S21)	17S-21S
13. Crystallographic details of the Na-Catenate (Figure S22, Table 2S)	21S-22S
14. UV-Vis 1:1 titration profile, Molar ratio plot and Non-linear 1:1 curve	
fitting plot for the formation of CATN-Eu ³⁺ complex (Figure S23-Figure S2	25)22S-23S
15. Molar ratio plot and Non-linear 1:1 curve fitting plot for the formation of	
CATN-Gd ³⁺ complex from UV-Vis titration experiment (Figure S26-Figure S	S27)24S
16. Molar ratio plot and Non-linear 1:1 curve fitting plot for the formation of	
CATN-Eu ³⁺ complex from 1:1 PL titration experiment (Figure S28- Figure	S29)25S
17. Characterization of CATN-Eu ³⁺ and CATN-Gd ³⁺ complex	
(Figure S30-Figure S35)	26S-28S
18. Characterization of CATN-Y ³⁺ complex (Figure S36-Figure S41)	29S-32S
19. Characterization of Na-catenate (Figure S42-Figure S44)	33S-34S
20. Comparative ¹ H NMR analysis between (i) Y-catenate and (ii) [2]catenane in	ı CD ₃ CN
(400 MHz) at 298 K (Figure S45)	34S
21. References	35S

Materials and methods

All the reagents and deuterated solvents were purchased from Sigma- Aldrich and used as received. Solvents like THF, acetone, CH₂Cl₂, CHCl₃, and CH₃CN were distilled *via* usual procedure prior to use. Reactions were carried out under argon atmosphere and work up procedure was done at ambient conditions. In each case, column chromatography was performed by using 60-120 mesh silica gel which was purchased from Merck private limited. ¹H, ¹³C, COSY and ROESY NMR spectroscopy experiments were carried out on a FT-NMR Bruker DPX 300/400/500 MHz NMR spectrometer and the residual protons of each

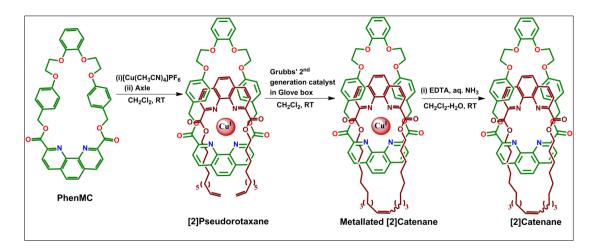

deuterated solvents were granted as the internal standards where the coupling constants were calculated in hertz (Hz) and chemical shifts in ppm. Electrospray ionization mass spectrometry (ESI-MS) analysis was performed with a Waters QtoF Model YA 263 spectrometer in positive ion ESI mode. The absorption studies and emission studies were recorded in a Perkin-Elmer Lambda 900 UV/Vis/NIR spectrometer (NIR = near-infrared) (with a quartz cuvette of path length 1cm) and PerkinElmer LS-55 spectrofluorimeter respectively. Fourier transform infrared (FT-IR) spectra were recorded on a SHIMADZU FTIR-8400S IR spectrophotometer with KBr pellets. Crystals were solved by using a Bruker SMART APEX diffractometer, equipped with a CCD area detector at 150 K. Compounds 1a, 1b, 2a, 2b² and alkene iodide were prepared by using the known procedure reported in literature. All the characterization data of the known compounds properly matched with the reported characterization details.

X-Ray crystallographic refinement details:

Crystal data of **Axle** and **Na-Catenate** were obtained by using Mo- K α (λ =0.7107 Å) radiation on a Bruker SMART APEX diffractometer, equipped with a CCD area detector. Data integration and reduction were processed by SAINT⁴ software provided with the SMART APEX II software package. The structure was solved using SHELXTL⁵ and was refined on F2 by the full- matrix least-squares technique using the SHELXL-2014⁶ program package. Empirical absorption correction to the collected reflections has been done by applying SADABS⁷. PLATON-97⁸ and MERCURY 3.6⁹ were used to generate graphics. Some disordered solvent molecules were removed by the PLATON/SQUEEZE program. In the crystal structures all non-hydrogen atoms were refined with anisotropic displacement coefficients and all hydrogen atoms were geometrically fixed at idealized positions. The CCDC no. of the crystal structures (1871206 and 1871207) contains the supplementary crystallographic data for this paper.

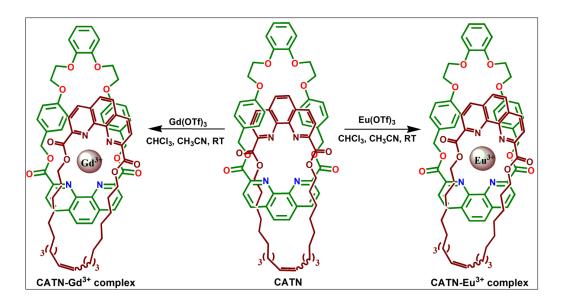
Synthetic Scheme

PhenMC: Compound **1a** and **1b** were prepared by using the known procedure reported in literature. All the characterization data of the known compounds properly matched with the reported characterization details.

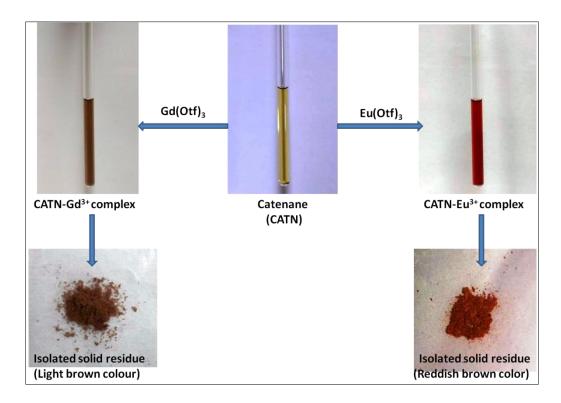


Scheme S1: Synthetic scheme of PhenMC

<u>Axle</u>: Compound **2a** and **2b** were prepared by using the known procedure reported in literature. All the characterization data of the known compounds properly matched with the reported characterization details.


Scheme S2: Synthetic scheme of Axle

[2]Catenane:



Scheme S3: Synthetic scheme of [2]Catenane

Lanthanide binded [2] Catenane:

Scheme S4: Synthetic scheme of CATN-Gd³⁺ and CATN-Eu³⁺ complexes

Figure S1: Progress of reaction between catenane with Eu³⁺ and Gd³⁺

General Procedure:

Synthesis of Compound **1c**: Compound **1b** (406 mg, 1mmol) was dissolved in CHCl₃-CH₃OH binary solvent mixture and reacted with NaBH₄ (151 mg, 4mmol) for 24h in room temperature. After that, the reaction mixture was evaporated to dryness and extracted with CHCl₃ and water by washing the organic layer several times with brine solution. Solid crystalline product was isolated as white solid (Scheme S1). Yield: 82%.

Compound **1c** ($C_{24}H_{26}O_6$, $M_w = 410.46$): HRMS (ESI-MS): $C_{24}H_{27}O_6$ [M + H]⁺: calcd, m/z 411.1808; found, m/z 411.1821. Anal. calcd for $C_{24}H_{26}O_6$: C, 70.23; H, 6.38. Found C, 71.05; H, 6.55. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 4.30 (t, 4H, J = 5 Hz, -CH₂), 4.36 (t, 4H, J = 4.5 Hz, -CH₂), 4.58 (s, 4H, -CH₂), 6.90 (d, 4H, J = 8.5 Hz, Ar-H), 6.95-7.00 (m, 4H, Ar-H), 7.22 (d, 4H, J = 8.5 Hz, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 65.15, 67.14, 68.49, 115.05, 115.83, 122.31, 128.78, 130.20, 133.66, 149.30, 158.61.

Synthesis of Compound 1d: Compound 1c (410 mg, 1mmol) in dry CH_2Cl_2 was purged with argon gas, then PBr_3 (570 μl , 6mmol) was added drop wise in the atmosphere of argon and the reaction mixture was stirred for 24h. The reaction mixture was quenched with sodium bicarbonate solution and stirred for another 6h. Thereafter, the reaction mixture was evaporated to dryness and extracted with $CHCl_3$ and water by washing the organic layer several times with brine solution. Solid crystalline product was isolated as yellowish white crystalline solid (scheme S1). Yield: 70%

Compound **1d** ($C_{24}H_{24}Br_2O_4$, M_w = 536.25). Anal. calcd for $C_{24}H_{24}Br_2O_4$: C, 53.75; H, 4.51. Found C, 55.11; H, 4.23. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 4.30 (t, 4H, J = 5.2 Hz, -CH₂), 4.36 (t, 4H, J = 4 Hz, -CH₂), 4.48 (s, 4H, -CH₂), 6.88 (d, 4H, J = 8.8 Hz, Ar-H), 6.94-7.00 (m, 4H, Ar-H), 7.29 (d, 4H, J = 8.8 Hz, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 33.98, 67.03, 68.40, 115.18, 115.91, 122.37, 130.50, 130.61, 149.23, 159.01.

Synthesis of Compound **PhenMC**: Compound **2b** (536 mg, 2mmol) was reacted with TBAF (1.044 g, 4mmol) in dry THF and stirred for 3h in the room temperature. Then the compound **1d** (3.204 g, 3mmol) in dry THF was added drop wise to the reaction mixture *via* pressure equalizer funnel and the reaction was stirred in room temperature for another 48h in the atmosphere of argon. Thereafter, the reaction mixture was evaporated to dryness and extracted with CHCl₃ and water by washing the organic layer several times with brine solution. Extracted yellowish semi-solid product was purified in column chromatography by

using 4:1 CHCl₃ and ethyl acetate as eluent mixture. Solid crystalline **PhenMC** was isolated as light yellow powder (Scheme S1). Yield: 66%

PhenMC ($C_{38}H_{30}N_2O_{8}$, M_w =642.65). HRMS (ESI-MS): $C_{38}H_{30}N_2NaO_{8}$ [M + Na]⁺: calcd, m/z 665.1900; found, m/z 665.1904. HRMS (ESI-MS): $C_{38}H_{31}N_2O_{8}$ [M + H]⁺: calcd, m/z 643.2080; found, m/z 643.2081. Anal. calcd for $C_{38}H_{30}N_2O_{8}$: C, 71.02; H, 4.71; N, 4.36. Found C, 69.91; H, 4.43; N, 4.80. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 4.32 (s, 8H, -CH₂), 5.56 (s, 4H, -CH₂), 6.97 (t, 8H, J = 4 Hz, Ar-H), 7.52 (d, 4H, J = 8.5 Hz, Ar-H), 7.92 (s, 2H, Ar-H), 8.39 (d, 2H, J = 8.5 Hz, Ar-H), 8.49 (d, 2H, J = 8 Hz, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 67.26, 67.47, 68.86, 114.21, 115.15, 115.72, 116.29, 122.34, 124.12, 128.43, 130.71, 137.45, 139.44, 149.46, 159.23, 165.86, 170.54.

Synthesis of **Axle**: Compound **2b** (536 mg, 2mmol) was reacted with TBAF (1.044 g, 4mmol) in dry THF and stirred for 3h in the room temperature. Then alkene iodide (1.680 g, 3mmol) in dry THF was added to the reaction mixture *via* pressure equalizer funnel and the reaction was stirred in room temperature for another 48h in the atmosphere of argon. Thereafter, the reaction mixture was evaporated to dryness and extracted with CHCl₃ and water by washing the organic layer several times with brine solution. Extracted liquid product was purified in column chromatography by using 9:1 CHCl₃ and ethyl acetate as eluent mixture. Pure product was isolated as yellowish oil (Scheme S2). Yield: 74%

Axle ($C_{36}H_{48}N_2O_4$, $M_w = 572.77$). HRMS (ESI-MS): $C_{36}H_{49}N_2O_4$ [M + H]⁺ : calcd, m/z 573.3692; found, m/z 573.3698. Anal. calcd for $C_{36}H_{48}N_2O_4$: C, 75.49; H, 8.45; N, 4.89. Found C, 76.33; H, 8.79; N, 5.53. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.28-1.33(m, 12H, -CH₂), 1.36-1.39(m, 8H, -CH₂), 1.45-1.50 (m, 4H, -CH₂), 1.92-1.97 (m, 4H, -CH₂), 2.01-2.05 (m, 4H, -CH₂), 4.53(t, 4H, J = 7 Hz, -CH₂), 4.91-5.00 (m, 4H, -CH₂), 5.76-5.83 (m, 2H, -CH), 7.94 (s, 2H, Ar-H), 8.41-8.46 (m, 4H, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 26.06, 28.76-29.82, 33.92, 66.75, 114.24, 123.99, 128.36, 130.78, 137.53, 139.33, 145.87, 148.75, 165.59.

Synthesis of [2]Pseudorotaxane: In the solution of PhenMC (128 mg, 0.2mmol) in dry CH₂Cl₂, [Cu(CH₃CN)₄]PF₆ (74 mg, 0.2mmol) was added in the atmosphere of argon and the reaction mixture was stirred for 6h in the room temperature. Thereafter **Axle** (114 mg, 0.2mmol) in dry CH₂Cl₂ was added to the **PhenMC-Cu^I** complex in the argon atmosphere and stirred for another 24h. Then the reaction mixture was evaporated to dryness and purple coloured crystalline solid was isolated as [2]pseudorotaxane (Scheme S3). Yield: 82%.

[2]Pseudorotaxane ($C_{74}H_{78}CuF_6N_4O_{12}P$, $M_w = 1423.94$). HRMS (ESI-MS): $C_{74}H_{78}CuN_4O_{12}$ [M-PF₆⁻]⁺: calcd, m/z 1277.4912; found, m/z 1277.4911. Anal. calcd for $C_{74}H_{78}CuF_6N_4O_{12}P$: C, 62.42; H, 5.52; N, 3.93. Found C, 64.01; H, 5.12; N, 3.72.

Synthesis of [2]Catenane: In the glove box, [2]Pseudorotaxane (200 mg, 0.15 mmol) was dissolved in dry CH₂Cl₂and then catalytic amount of Grubb's 2nd generation catalyst was added to this as a solid. The reaction mixture was stirred for 36h in the glove box to obtain metallated [2] catenane. Saturated solution of Na₂EDTA and aq. NH₃ were added to the crude residue and stirred for 48h. Then the reaction mixture was extracted with CHCl₃ and water by washing the organic layer with the brine solution. Organic layer was evaporated to obtain red coloured solid residue. The resulting solid was purified by silica column chromatography by using 24:1 CHCl₃ and CH₃CN respectively as eluent and by several times washing with diethyl ether, white coloured solid [2]Catenane (CATN) was obtained (Scheme S3). Yield: 16%

Metallated [2]catenane ($C_{72}H_{74}CuF_6N_4O_{12}P$, M_w =1395.89). HRMS (ESI-MS): $C_{72}H_{74}CuN_4O_{12}$ [M-PF₆⁻]⁺: calcd, m/z 1249.4599; found, m/z 1249.4602. Anal. calcd for $C_{72}H_{74}CuF_6N_4O_{12}P$: C, 61.95; H, 5.34; N, 4.01. Found C, 63.05; H, 5.03; N, 3.67.

[2]catenane ($C_{72}H_{74}N_4O_{12}$, $M_w = 1187.38$): HRMS (ESI-MS): $C_{72}H_{74}N_4N_4O_{12}$ [M + Na]⁺: calcd, m/z 1209.5201; found, 1209.5208. Anal. calcd for C₇₂H₇₄N₄O₁₂: C, 72.83; H, 6.28; N, 4.72. Found C, 71.26; H, 6.05; N, 4.97. Characteristic $\lambda_{max} = 280$ nm in (2 x 10⁻⁵) M CH₃CN and molar extinction coefficient (ϵ) value in = 2.2 × 10⁴ M⁻¹ cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.11-1.43(m, 28H, -CH₂), 2.04 (s, 4H, -CH₂), 3.95 (s, 4H, -CH₂), 4.05 (s, 4H, $-CH_2$), 4.39 (s, 4H, $-CH_2$), 4.95 (s, 4H, $-CH_2$), 5.55 (s, 2H, $-CH_2$), 5.69 (d, 4H, J = 8 Hz, Ar-H), 6.07 (d, 4H, J = 8 Hz, Ar-H), 7.04 (s, 4H, Ar-H), 8.26 (d, 4H, J = 7 Hz, Ar-H), 8.32(d, 2H, J = 8 Hz, Ar-H), 8.57 (d, 2H, J = 8.5 Hz, Ar-H), 8.71 (d, 2H, J = 7 Hz, Ar-H), 8.97 (d, 2H, J = 8 Hz, Ar-H), 8.57 (d, 2H, J = 8 Hz, Ar-H), 8.71 (d, 2H, J = 8 Hz, Ar-H), 8.97 (d2H, J = 8 Hz, Ar-H). 13 C NMR (100 MHz, CDCl₃) : δ (ppm) 25.88, 28.94-33.94, 65.98, 66.35, 67.15, 67.61, 111.74, 112.51, 114.19, 121.30, 123.37, 124.67, 126.24, 127.03,129.24, 130.69, 131.23, 131.48, 138.92, 139.45, 144.57, 145.22, 145.71, 146.85, 148.32, 156.34, 164.62, 165.00. IR (KBr, v cm⁻¹): 559.32, 721.33, 842.83, 943.13, 1060.78, 1130.21, 1157.21, 1247,86, 1377.08, 1454.23, 1508.23, 1614.31, 1728.10, 2852.52, 2923.88, 3433.06. Synthesis of CATN-Eu³⁺complex: Eu(OTf)₃ (30 mg, 0.05 mmol) was added to the CH₃CN/ CHCl₃ binary solvent mixture of **CATN** (50 mg, 0.042 mmol). The reaction mixture was stirred vigorously for 24h. By overnight stirring the solution mixture was turned into reddish brown color from the light yellow color and the color persisted even after evaporation. The crude solid was washed several times with chloroform and diethylether to obtain reddish brown colored solid Eu-catenate (Scheme S4). Yield: 59%

CATN-Eu³⁺complex $(C_{75}H_{74}F_9EuN_4O_{21}S_3.$ $M_w=1786.54$). for Anal. calcd C₇₅H₇₄F₉EuN₄O₂₁S₃: C, 50.42; H, 4.17; N, 3.14. Found C, 49.43; H, 4.02; N, 3.18. HRMS (ESI-MS): $C_{74}H_{76}EuF_6N_4O_{19}S_2$ [M - $CF_3SO_3^+$ + $H_2O_1^+$: calcd, m/z 1655.3651; found m/z1655.3649. Characteristic $\lambda_{max} = 294$ nm in (2×10^{-5}) M CH₃CN and molar extinction coefficient value (ϵ) = 2.35 × 10⁴ M⁻¹ cm⁻¹. Characteristic Eu³⁺ centered emission peaks at 589, 614, 651 and 697 nm in (2 x 10⁻⁵) M CH₃CN. Characteristic absorption maxima and emission peaks (Fig. S34a, S34b, ESI†) of the isolated CATN-Eu³⁺ complex matched well with the corresponding peak values obtained from the UV/Vis and PL titration data respectively, which suggested the formation of 1:1 Eu-catenate complex in the solution state. ¹H NMR (500 MHz, CD₃CN): δ (ppm) 1.28-1.50 (m), 1.60 (d), 1.76 (d), 1.87-1.89 (m), 2.10-2.19 (m), 2.32 (s), 3.08-3.11 (m), 4.23-4.42 (m), 4.61 (s), 5.56 (bs), 6.90-7.04 (m), 7.08 (s), 7.23 (bs), 7.30-7.33 (m), 7.71-7.87 (m), 8.13 (s), 8.27-8.45 (m), 8.76 (bs), 9.18 (bs), 9.79 (bs). IR (KBr, v cm⁻¹): 395.38, 516.89, 642.25, 719.40, 815.83, 875.62, 1031.85, 1172.64, 1251.72, 1400.22, 1434.94, 1467.73, 1510.16, 1589.95, 1627.81, 2927.74, 3436.91.

Synthesis of CATN-Gd³⁺ complex: Gd(OTf)₃ (30 mg, 0.05 mmol) was added to the CH₃CN/CHCl₃ binary solvent mixture of CATN (50 mg, 0.042 mmol). The reaction mixture was stirred vigorously for 24h. By overnight stirring the solution mixture was turned into light brown color from the light yellow color and the color persisted even after evaporation. The crude solid was washed several times with chloroform and diethylether to obtain light brown colored solid Gd-catenate (Scheme S4). Yield: 48%

CATN-Gd³⁺complex (C₇₅H₇₄F₉GdN₄O₂₁S₃, M_w=1791.83). Anal. calcd for C₇₅H₇₄F₉GdN₄O₂₁S₃: C, 50.27; H, 4.16; N, 3.13. Found C, 49.37; H, 4.33; N, 3.07. HRMS (ESI-MS): C₇₄H₇₆F₆GdN₄O₁₉S₂ [M - CF₃SO₃⁻+ H₂O]⁺ : calcd, *m/z* 1660.3679; found, 1660.3682. Characteristic $\lambda_{max} = 298$ nm in (2 x 10⁻⁵) M CH₃CN and molar extinction coefficient value (ε) = 2.25 × 10⁴ M⁻¹ cm⁻¹. Characteristic absorption maxima at $\lambda_{max} = 298$ nm (Fig. S35, ESI[†]) of the isolated **CATN-Gd**³⁺ complex matched well with the λ_{max} value obtained from the UV/Vis titration data, which suggested the formation of 1:1 Gd-catenate complex in the solution state. ¹H NMR (500 MHz, CD₃CN): δ (ppm) 7.01, 5.89, 4.90, 4.25,3.09, 2.32, 1.97, 1.63, 1.29, -0.68. IR (KBr, v cm⁻¹): 433.95, 636.47, 715.54, 1031.85, 1170.71, 1253.64, 1384.79, 1465.80, 1569.95, 1625.88, 2554.45, 2923.88, 3431.13.

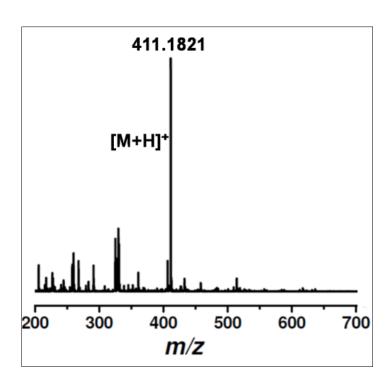


Figure S1a: ESI-MS (+ve) spectrum of Compound 1c

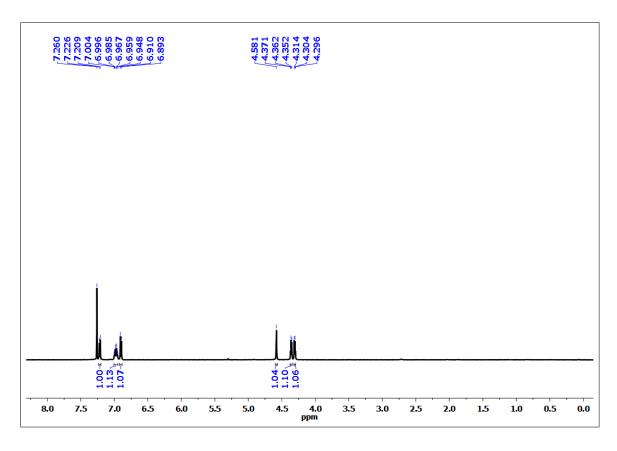


Figure S1b: ^{1}H NMR spectrum of Compound 1c in CDCl $_{3}$ (500 MHz) at 298 K

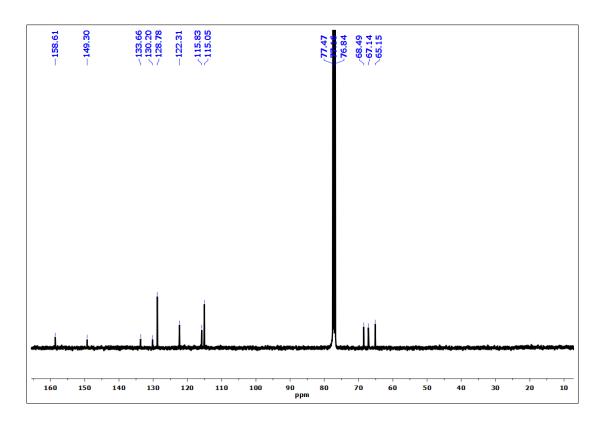


Figure S2: ¹³C NMR spectrum of Compound 1c in CDCl₃ (100 MHz) at 298 K

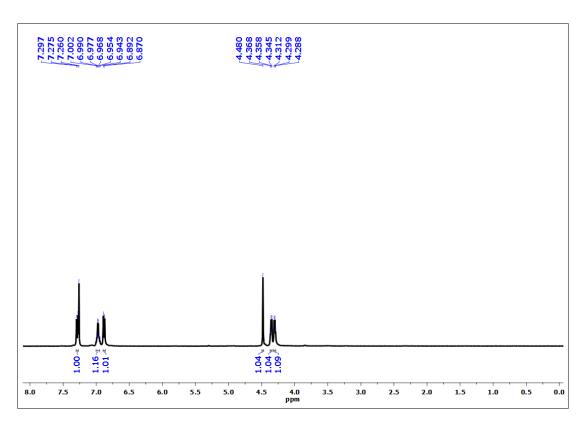


Figure S3: ¹H NMR spectrum of Compound 1d in CDCl₃ (400 MHz) at 298 K



Figure S4: 13 C NMR spectrum of Compound 1d in CDCl₃ (100 MHz) at 298 K

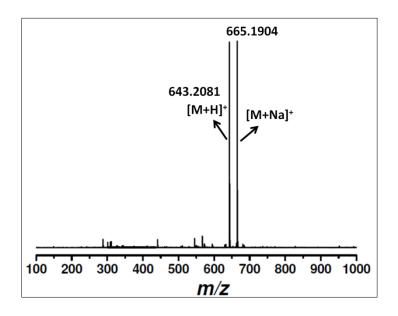


Figure S5: ESI-MS (+ve) spectrum of PhenMC

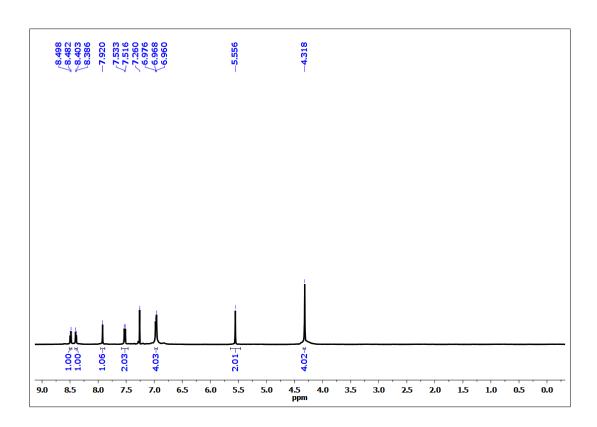


Figure S6: 1 H NMR spectrum of PhenMC in CDCl₃ (500 MHz) at 298 K

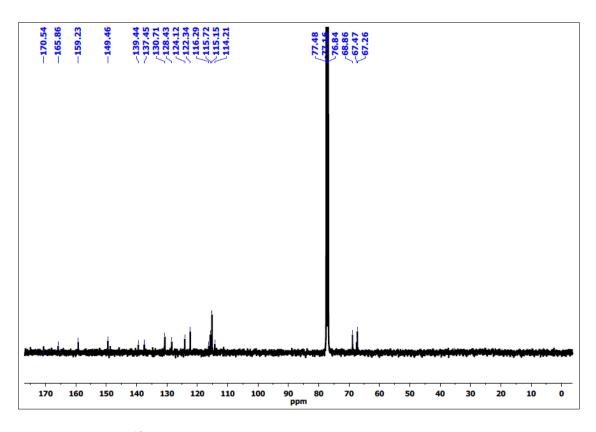


Figure S7: 13 C NMR spectrum of PhenMC in CDCl₃ (100 MHz) at 298 K

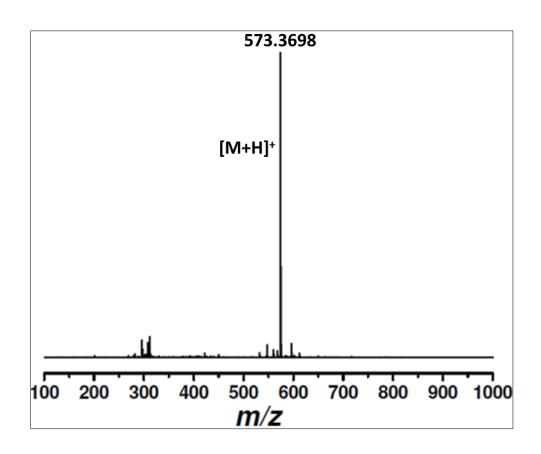


Figure S8: ESI-MS (+ve) spectrum of Axle

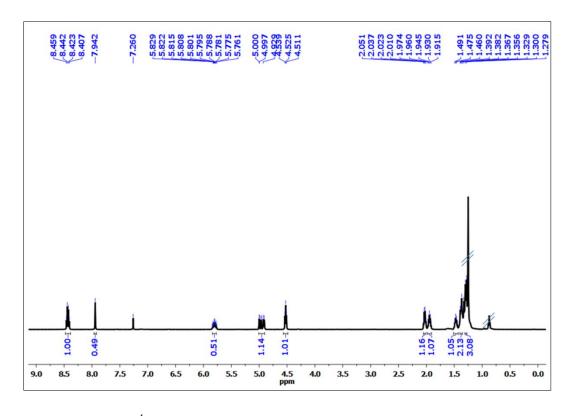


Figure S9: 1 H NMR spectrum of Axle in CDCl₃ (500 MHz) at 298 K

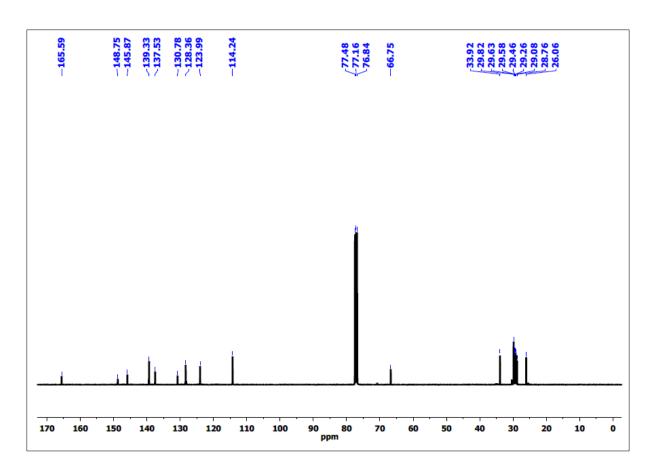
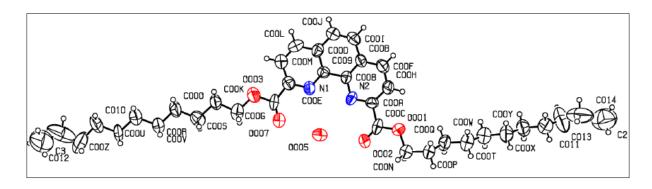
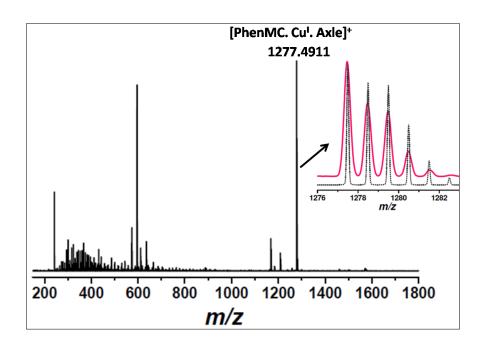


Figure S10: ¹³C NMR spectrum of Axle in CDCl₃ (100 MHz) at 298 K

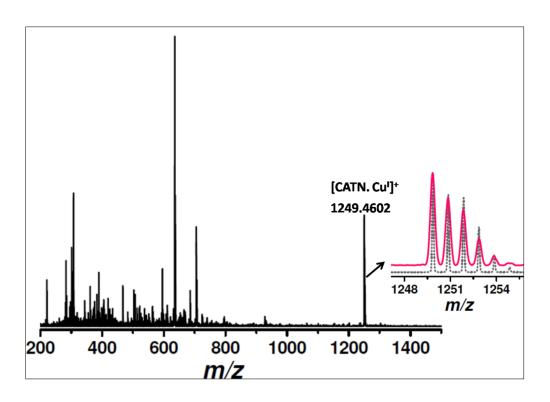

Figure S11: Single Crystal X-ray structure of Axle (ellipsoid model using platon version)

Table 1S: Crystallographic details of Axle

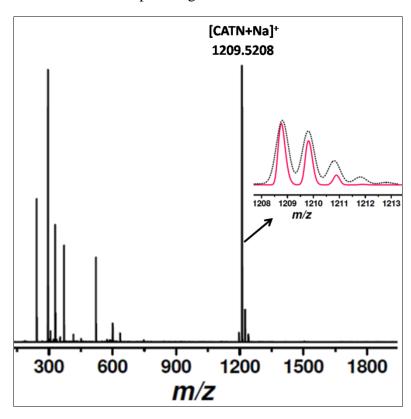

Compound reference	AXLE
Chemical formula	$C_{36}H_{48}N_2O_5$
Formula Mass	588.76
Crystal system	Monoclinic
a/Å	15.881(7)
b/Å	17.389(7)
c/Å	13.796(6)
α/°	90
<i>β</i> /°	114.134(13)
γ/°	90
Unit cell volume/Å ³	3477(3)
Temperature/K	150(2)
Space group	P21/c
No. of formula units per unit cell, Z	4
No. of reflections measured	21382
No. of independent reflections	2721
R _{int}	0.1034
Final R_I values $(I > 2\sigma(I))$	0.0642
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1317
Final R_I values (all data)	0.1173
Final $wR(F^2)$ values (all data)	0.1463
Goodness of fit on F^2	1.579
CCDC number	1871206

Figure S12: ESI-MS (+ve) spectrum of **[2]Pseudorotaxane** with the isotopic distribution pattern given in inset

Figure S13: ESI-MS (+ve) spectrum of metallated **[2]Catenane** with the isotopic distribution pattern given in inset

Figure S14: ESI-MS (+ve) spectrum of **[2]Catenane** with the isotopic distribution pattern given in inset

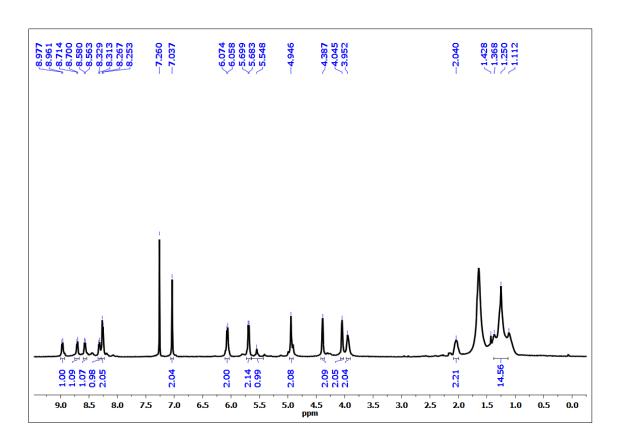


Figure S15: ¹H NMR spectrum of [2]Catenane in CDCl₃ (500MHz) at 298 K

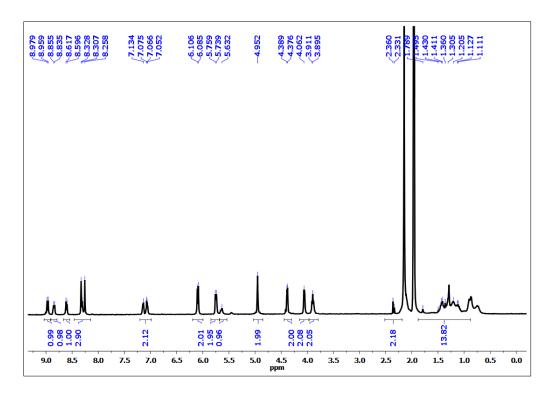


Figure S16: ¹H NMR spectrum of [2]Catenane in CD₃CN (400MHz) at 298 K

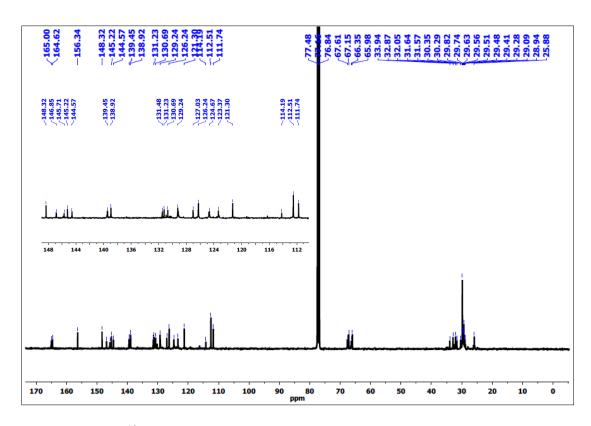


Figure S17: ¹³C NMR spectrum of [2]Catenane in CDCl₃ (100MHz) at 298 K

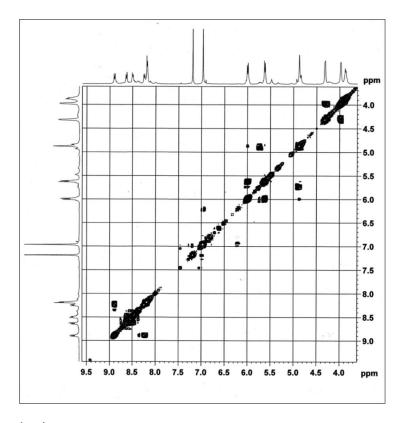
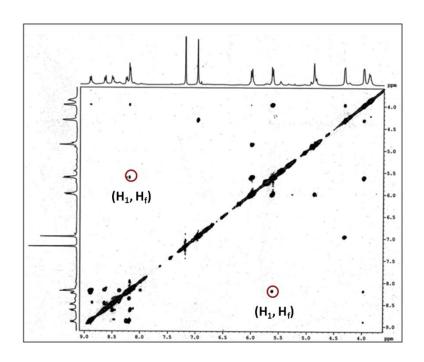



Figure S18: $^{1}\text{H-}^{1}\text{H}$ COSY spectrum of [2]catenane in CDCl₃ (400 MHz) at 298 K

Figure S19: ¹H-¹H ROESY spectrum of [2]catenane in CDCl₃ (400 MHz) at 298 K. Assignable through space coupling interactions are highlighted.

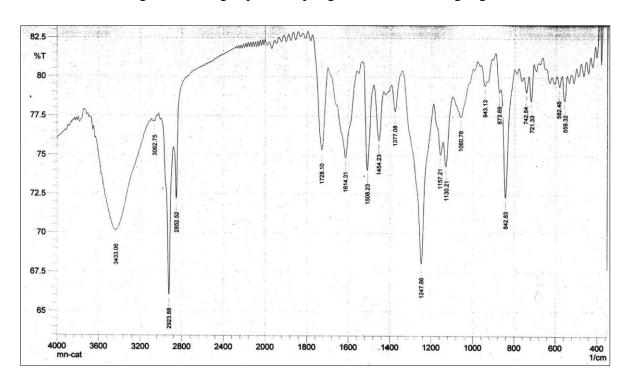
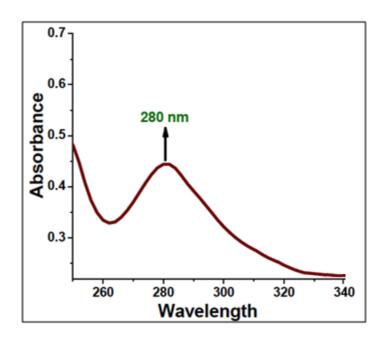
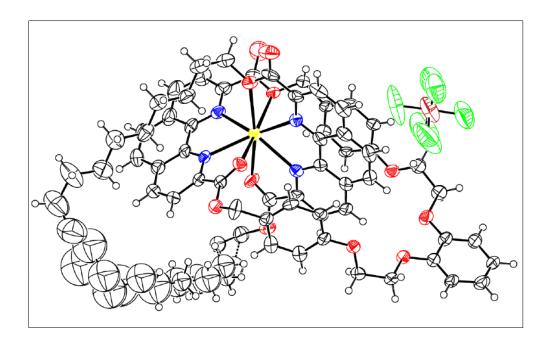
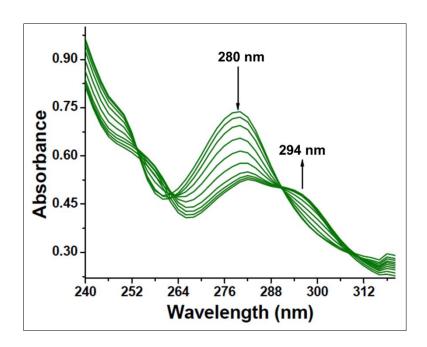




Figure S20: FTIR (KBr, v cm⁻¹) spectrum of [2]catenane


Figure S21: Characteristic UV-Vis spectrum of [2]catenane (2X10⁻⁵M) in CH₃CN:CH₃Cl (9:1) medium at 298 K

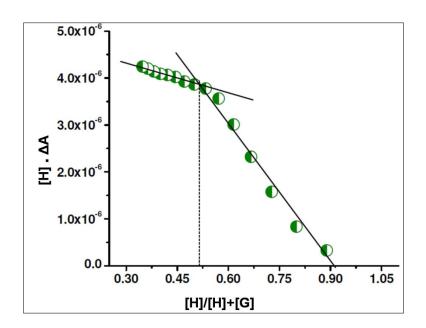
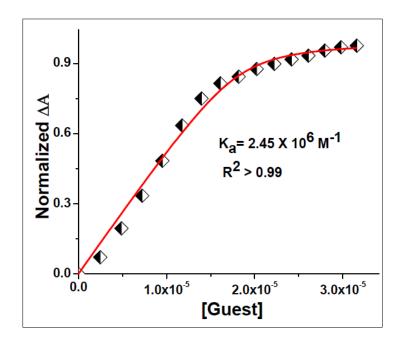
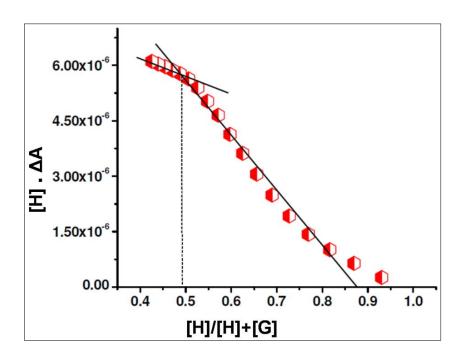
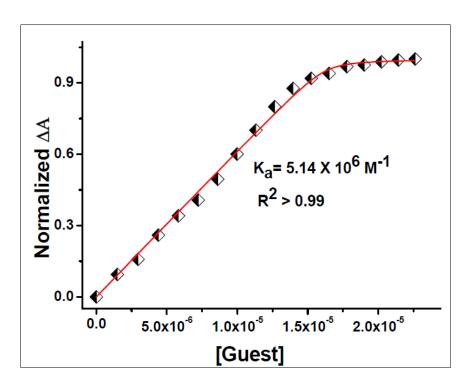
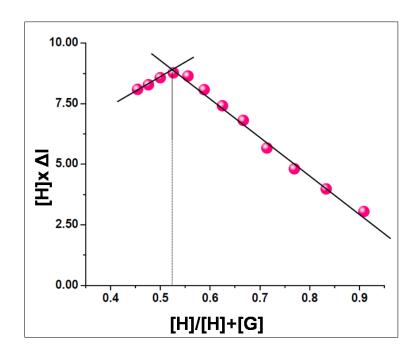

Figure S22: Single Crystal X-ray structure of **Na-Catenate** (ellipsoid model using platon version)

Table 2S: Crystallographic details of Na-Catenate


Compound reference	CATN
Chemical formula	$C_{72}H_{60}N_4NaO_{12}\bullet F_6P$
Formula Mass	1341.20
Crystal system	Triclinic
a/Å	9.036(5)
b/Å	18.365(10)
c/Å	21.014(12)
α/°	88.766(18)
β/°	85.77(2)
γ/°	87.085(19)
Unit cell volume/Å ³	3473(3)
Temperature/K	107.35
Space group	P1
No. of formula units per unit cell, Z	2
No. of reflections measured	19831
No. of independent reflections	10288
R _{int}	0.1209
Final R_I values $(I > 2\sigma(I))$	0.1218
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.3045
Final R_I values (all data)	0.2255
Final $wR(F^2)$ values (all data)	0.3667
Goodness of fit on F^2	1.024
CCDC number	1871207


Figure S23: UV-Vis titration profile between **CATN** $(2x10^{-5}M)$ and **Eu³⁺** $(2x10^{-4}M)$ in CH₃CN-CHCl₃ (9:1) at 298 K


Figure S24: Molar ratio plot from UV-Vis titration experiment between **CATN** ($2x10^{-5}M$) and $Eu^{3+}(2x10^{-4}M)$ in CH₃CN:CH₃Cl (9:1) medium at 298 K


Figure S25: Non-linear 1:1 curve fitting plot to determine binding constant for the formation of **CATN** $(2x10^{-5}M)$ **-Eu**³⁺ $(2x10^{-4}M)$ complex in CH₃CN:CH₃Cl (9:1) medium from UV-Vis titration experiment at 298 K. (Some data points in the figure deviated very marginally from the fitting curve. However, the overall fitting of the data points was reasonably good as clearly evident from the R² value of >0.99.)

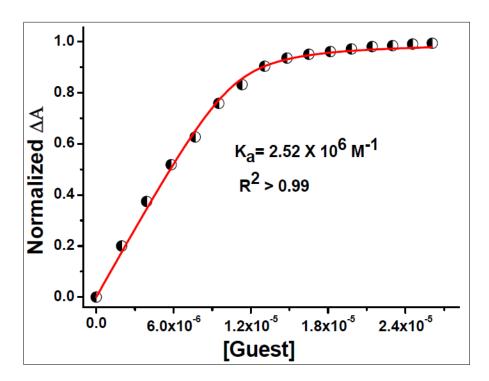

Figure S26: Molar ratio plot from UV-Vis titration experiment between **CATN** ($2x10^{-5}$ M) and **Gd**³⁺ ($2x10^{-4}$ M) in CH₃CN:CH₃Cl (9:1) medium at 298 K

Figure S27: Non-linear 1:1 curve fitting plot from UV-Vis titration experiment to determine binding constant for the formation of **CATN** (2x10⁻⁵M) **-Gd**³⁺ (2x10⁻⁴M) complex in CH₃CN:CH₃Cl (9:1) medium at 298 K. (Some data points in the figure deviated very marginally from the fitting curve. However, the overall fitting of the data points was reasonably good as clearly evident from the R² value of >0.99.)

Figure S28: Molar ratio plot from PL titration experiment at 613 nm emission wavelength between **CATN** (2x10⁻⁵M) and **Eu**³⁺ (2x10⁻⁴M) in CH₃CN:CH₃Cl (9:1) medium at 298 K

Figure S29: Non-linear 1:1 curve fitting plot from PL titration experiment to determine binding constant for the formation of **CATN** (2x10⁻⁵M) **-Eu**³⁺ (2x10⁻⁴M) complex in CH₃CN:CH₃Cl (9:1) medium at 298 K. (Some data points in the figure deviated very marginally from the fitting curve. However, the overall fitting of the data points was reasonably good as clearly evident from the R² value of >0.99.)

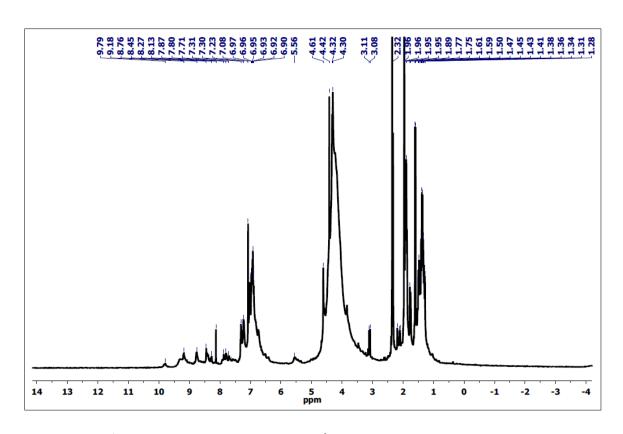
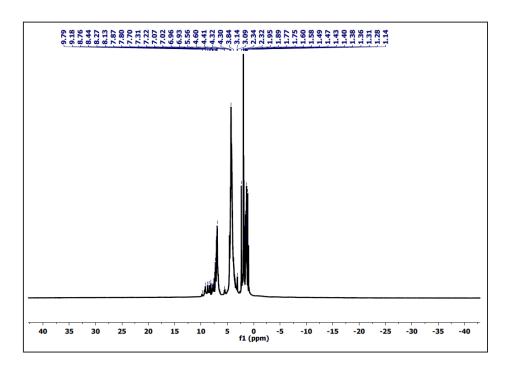
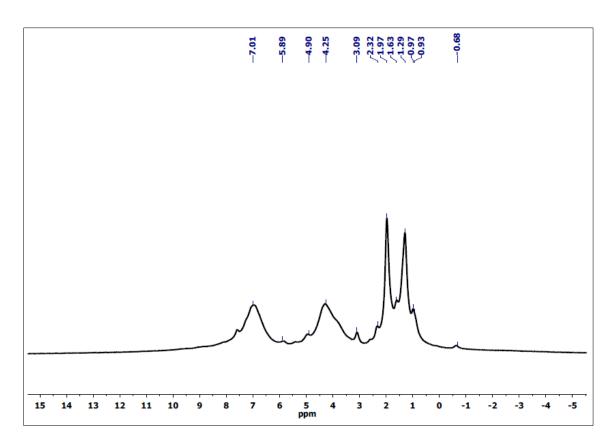
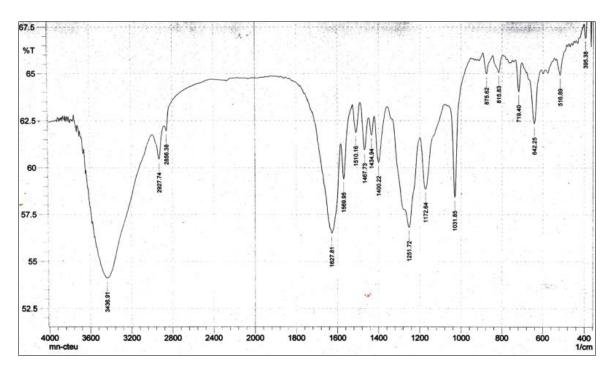
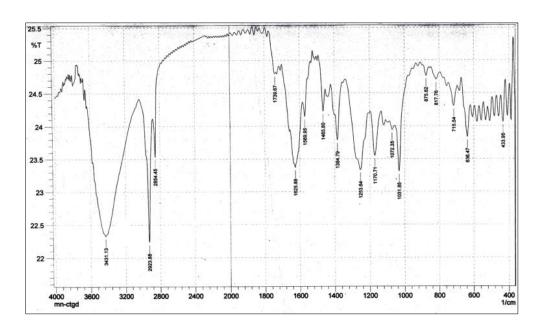
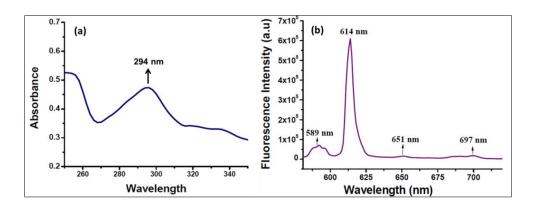



Figure S30: ¹H NMR spectrum of CATN-Eu³⁺ complex in CD₃CN (500 MHz) at 298 K

Figure S30a: ¹H NMR spectrum of **CATN-Eu**³⁺ complex in CD₃CN (500 MHz) at 298 K in a wide range chemical shift


Figure S31: ¹H NMR spectrum of CATN-Gd³⁺ complex in CD₃CN (500 MHz) at 298 K

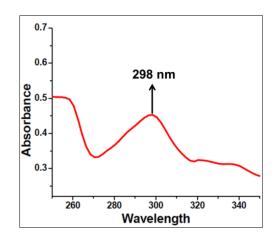

Figure S32: FTIR (KBr, $v \text{ cm}^{-1}$) spectrum of **CATN-Eu**³⁺ complex

Figure S33: FTIR (KBr, v cm⁻¹) spectrum of **CATN-Gd³⁺** complex

Figure S34: Characteristic (a) UV-Vis spectrum and (b) PL spectrum of **CATN-Eu**³⁺ (2x10⁻⁵M) in CH₃CN medium at 298 K

Figure S35: Characteristic UV-Vis spectrum of **CATN-Gd³⁺** (2x10⁻⁵M) in CH₃CN: CH₃Cl (9:1) medium at 298 K

<u>CATN-Y³⁺ complex</u>: By following the general procedure CATN-Y³⁺ complex has been prepared and off white solid Y-catenate was isolated in 52% yield.

CATN-Y³⁺ complex (C₇₅H₇₄F₉N₄O₂₁S₃Y, M_w=1723.49). Anal.calcd for C₇₅H₇₄F₉N₄O₂₁S₃Y: C, 52.27; H, 4.33; N, 3.25. Found C, 51.01; H, 4.52; N, 3.49. HRMS (ESI-MS): C₇₃H₇₄F₃N₄O₁₅SY [M- 2CF₃SO₃-]²⁺ : calcd, m/z 712.1936; found, 712.1929. Characteristic $\lambda_{max} = 292$ nm in (2 x 10⁻⁵) M CH₃CN and molar extinction coefficient value (ϵ) = 2.20 × 10⁴ M⁻¹ cm⁻¹. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 1.25-1.41 (m), 2.31 (d), 3.81 (s), 4.04-4.30 (m), 4.86 (d), 5.29-5.32 (m), 6.71 (d), 6.79 (d), 6.86-7.05 (m), 7.16-7.45 (m), 8.33 (d), 8.43 (s), 8.75 (d), 8.96-9.00 (m), 9.17 (d), 9.25 (bs). IR (KBr, v cm⁻¹): 362.59, 426.24, 516.89, 646.11, 719.40, 765.69, 1047.27, 1174.57, 1234.36, 1261.36, 1400.22, 1467.73, 1508.23, 1573.81, 1620.09, 2927.74, 3394.48.

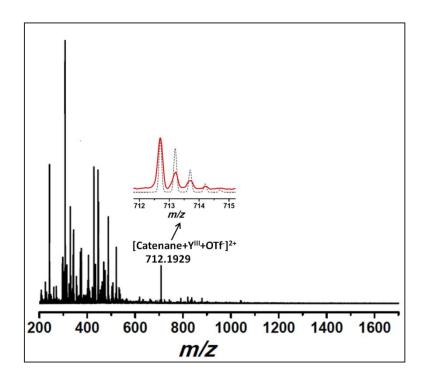


Figure S36: ESI-MS of CATN-Y³⁺ complex

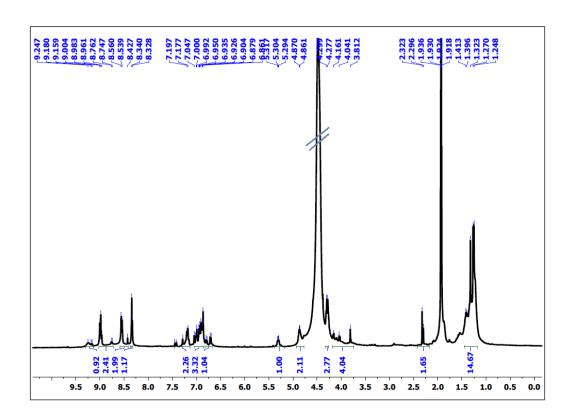
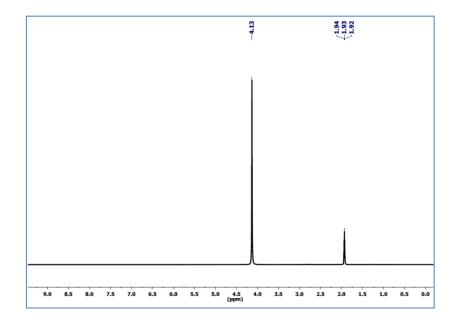
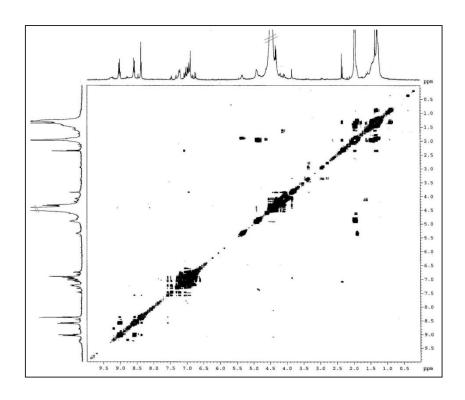




Figure S37: ¹H NMR spectrum of CATN-Y³⁺ complex in CD₃CN (400 MHz) at 298 K

Figure S37a: ¹H NMR spectrum of **Y(OTf)**₃ in CD₃CN (400 MHz) at 298K (broad singlet peak appeared at 4.13 ppm may be due to the hygroscopic nature of the salt)

Figure S38: ¹H-¹H COSY spectrum of **CATN-Y**³⁺ complex in CD₃CN (300 MHz) at 298 K

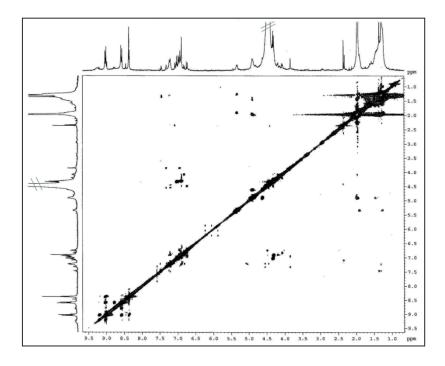


Figure S39: ¹H-¹H ROESY spectrum of CATN-Y³⁺ complex in CD₃CN (300 MHz) at 298 K.

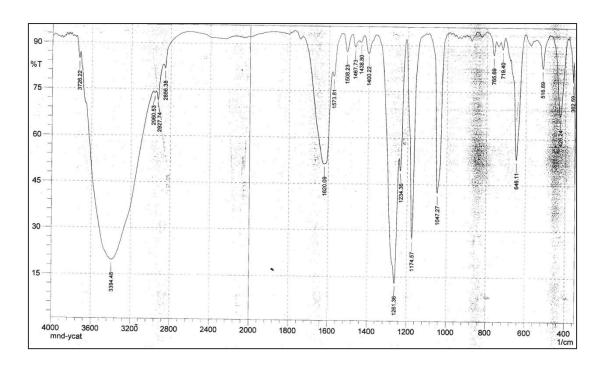


Figure S40: FTIR (KBr, $v \text{ cm}^{-1}$) spectrum of CATN-Y³⁺complex

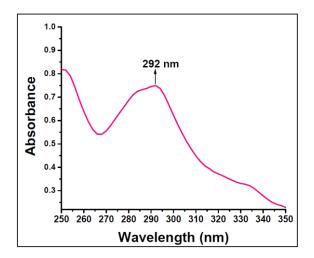


Figure S41: Characteristic UV-Vis spectrum of CATN- Y^{3+} (2x10⁻⁵M) in CH₃CN: CH₃Cl (9:1) medium at 298 K

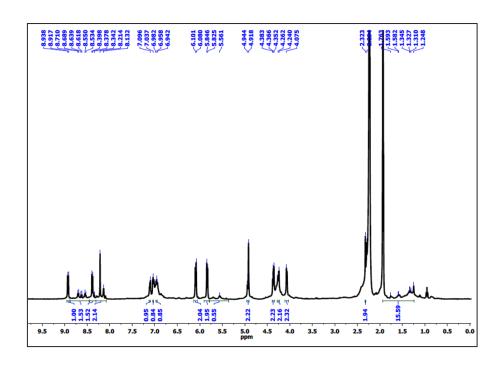


Figure S42: ¹H NMR spectrum of Na-catenate in CD₃CN (400 MHz) at 298 K

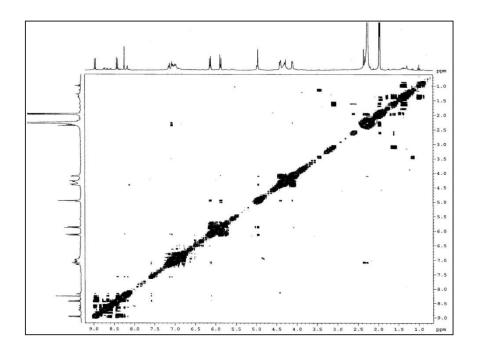


Figure S43: ¹H-¹H COSY spectrum of Na-catenate complex in CD₃CN (300 MHz) at 298 K

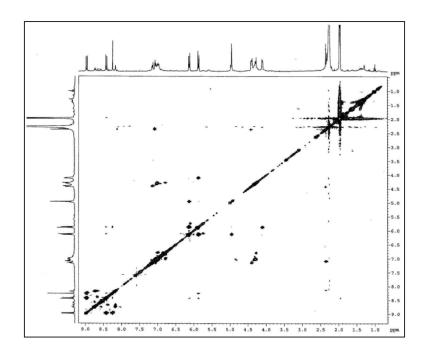


Figure S44: ¹H-¹H ROESY spectrum of Na-catenate complex in CD₃CN (300 MHz) at 298 K.

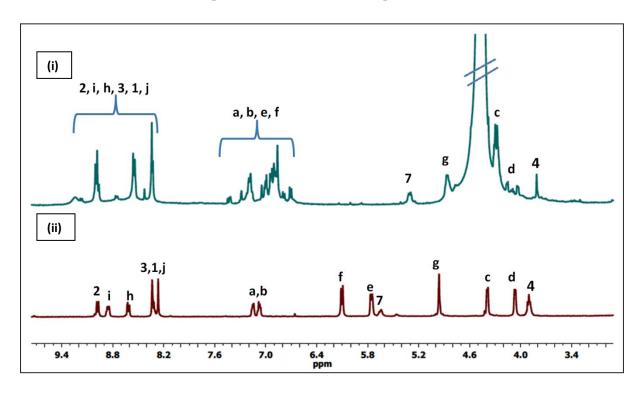


Figure S45: Comparative 1 H NMR analysis between (i) Y-catenate and (ii) [2]catenane in CD₃CN (400 MHz) at 298 K.

References

- S. Santra, S. Mukherjee, S. Bej, S. Saha and P. Ghosh, *Dalton Trans.*, 2015, 44, 15198.
- 2. J. Dehaudt, N. J. Williams, I. A. Shkrob, H. Luo and S. Dai, *Dalton Trans.*, 2016, **45**, 11624
- 3. M. Nandi, S. Santra, B. Akhuli and P. Ghosh, *Dalton Trans.*, 2017, **46**, 7421.
- 4. G. M. Sheldrick, *SAINT and XPREP*, *version 5.1*, Siemens Industrial Automation Inc., Madison, WI, 1995.
- 5. G. M. Sheldrick, *SHELXS97*. *Program for Crystal Structure Solution and Refinement*, University of Göttingen, Göttingen, 1997.
- 6. G. M. Sheldrick, *SHELXL v. 2014, Program for Crystal Structure Refinement*, University of Göttingen, 2014.
- 7. G. M. Sheldrick, *SADABS*, Empirical Absorption Correction Program, University of Göttingen, Göttingen, Germany, 1997.
- 8. A. L. Spek, *PLATON-97*, University of Utrecht, Utrecht, the Netherlands, 1997.
- 9. Mercury, version 3.7, supplied with Cambridge Structural Database, CCDC, Cambridge, U.K., 2003–2004.