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Experimental section

Materials: All chemicals used in the experiment were purchased commercially and
without further purification, which included cobalt nitrate hexahydrate
(Co(NO;),°6H,0, 99%), 1,3-bis(4-pyridyl)propane (bpp, 97%), 2,5-thiophenedicarbo-
xylic acid (Hytda, 98%), commercial RuO, (99.9%) and Pt/C (Pt 20 wt.%), N,N-
Dimethylformamide (DMF), deionized water. All the solvents used were in analytical

grade.

Synthesis of Co-NSOMOF: Co-NSOMOF was prepared with the improved method
according to the literature.!® Co(NOs),"6H,O (0.435 g), 2,5-thiophenedicarboxylic
acid (0.1721 g), 1,3-bis(4-pyridyl)propane (0.1982 g) were dissolved in 30 mL N,N-
dimethylformamide (DMF) under room temperature with stirring for 2 h. Then the
mixture was refluxed for 12 h at 120 °C to form the purple precipitates. The resulting
product was collected by centrifugation and washed with water and ethanol several

times, followed by drying at 60 °C overnight.

Synthesis of Co/Co¢Ss@NSOC catalysts: The Co/CoySg@NSOC catalysts were
synthesized by the pyrolysis of Co-NSOMOF precursor. The Co-NSOMOF was
placed in a tube furnace and calcined at various temperatures (600, 700, 800 and 900
°C) for 3 h under a flowing N, with a heating rate of 10 °C min!. After naturally
falling to room temperature, the resulting products were treated in aqueous HCI
solution for 6 h, followed by centrifugation and washed with deionized water and
ethanol several times. Then the obtained products were dried at 60 °C for 12 h. The
catalysts synthesized at different temperatures were named as Co/CoySg@NSOC-T (T
represents different pyrolysis temperatures).

Material characterization: The X-ray diffraction (XRD) patterns of the compounds
were recorded on a Rigaku B/Max-RB X-ray diffractometer with Cu K, radiation
(A=1.5418 A). The X-ray photoelectron spectroscopy (XPS) measurements were
carried out by ESCALAB 250 system (Thermo Electron) with an Al K, (300 W) X-
ray resource. The scanning electron microscope (SEM) measurements were
performed using Zeiss Sigma 500. The transmission electron microscopy (TEM)
images were obtained in FEI Tecnai G2 F20 S-TWIN electron microscope at an
accelerating voltage of 200 kV. The Raman spectra were recorded on a LabRam HR
Evolution. Nitrogen adsorption isotherms were measured at 77 K by using automatic

volumetric adsorption equipment (Belsorp Max).



Electrochemical measurements: The electrochemical measurements were carried
out with a typical three-electrode system by using CHI 660E electrochemical analyzer
(CH Instruments Inc.). The Ag/AgCl (KCIl, saturated) electrode and glassy carbon
electrode coated with the as-prepared catalysts ink was used as the reference electrode
and working electrode respectively. A graphite rod was used as the counter electrode
(as considering that metal Pt will dissolve to some extent during the electrochemical
cycling in electrolyte).’ 8! The well-dispersed catalyst ink was prepared by dispersing
2 mg of the catalyst in 220 pL solution that containing 100 uL water, 100 uL. DMF
and 20 puL 5 wt.% Nafion solution, followed by ultrasonication for 30 minutes. Then,
5 uL of the catalyst ink was pipetted onto the glass-carbon electrode (GCE) with a
catalyst loading of 0.64 mg cm2. The linear sweep voltammetry (LSV) curves were
obtained at a scan rate of 5 mV s! in 1 M KOH solution. The chronoamperometric
measurement of Co/CogSg@NSOC-800 was conducted at a constant working
potential for 10 h in 1 M KOH. The electrochemical impedance spectroscopy (EILS)
measurements were carried out from 1000000 Hz to 0.1 Hz with an AC voltage
amplitude of 5 mV. In all measurements, all the potentials were converted to the
reversible hydrogen electrode (RHE) through RHE calibration: Eryp = Eygugcr +
0.197+ 0.059 x pH. The overpotential () was calculated according to the following
formula:
OER: = Epyp-123V
HER: =Egyg-0V
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Fig. S1 PXRD pattern of as-prepared Co-NSOMOF. (Simulated pattern was obtained

from the single-crystal data by the Mercury 1.8, CCDC number: 805455).

Fig. S2 SEM images of the (a, b) Co/CoySg@NSOC-600; (c, d) Co/CosSg@NSOC-

700; (e, ) Co/CosSs@NSOC-900.
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Fig. S3 XPS spectra and results based on the spectra for Co/CoySg@NSOC materials.

(a) XPS survey spectra. Lines a, b, ¢ and d are Co/CoySg@NSOC-600,

Co/CoySg@NSOC-700, Co/CoySg@NSOC-800, and Co/CoySg@NSOC-900; (b) N/C

atomic ratios of Co/CogSg@NSOC-T materials.
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Fig. S4 High-resolution XPS spectra of C 1Is for (a) Co/CoeSg@NSOC-600; (b)

Co/CoySs@NSOC-700; (c) Co/CosSs@NSOC-800; (d) Co/CosSs@NSOC-900.
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Fig. S5 High-resolution XPS spectra of N 1s for (a) Co/CoySg@NSOC-600; (b)

Co/CoySs@NSOC-700; (c) Co/CoySz@NSOC-800; (d) Co/ CogSs@NSOC-900.
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Fig. S6 High-resolution XPS spectra of S 2p for (a) Co/CoySg@NSOC-600; (b)

Co/CoySs@NSOC-700; (c) Co/CoySz@NSOC-800; (d) Co/ CogSs@NSOC-900.
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Fig. S7 High-resolution XPS spectra of O 1s for (a) Co/CoySg@NSOC-600; (b)

Co/CoySs@NSOC-700; (c) Co/CoySz@NSOC-800; (d) Co/CoySs@NSOC-900.
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Fig. S8 High-resolution XPS spectra of Co 2p for (a) Co/CoySg@NSOC-600; (b)

Co/CoySs@NSOC-700; (c) Co/CoySz@NSOC-800; (d) Co/CoySs@NSOC-900.
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Fig. S9 (a) Tafel plots of Co/CoySs@NSOC-T materials and RuO, for OER; (b) Tafel

plots of Co/CoySg@NSOC-T materials and Pt/C for HER.
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Fig. S10 Nyquist plots of the Co/CogSg@NSOC-T and 20% Pt/C materials recorded

at the frequency from 1000000 to 0.1 Hz at -0.227 V vs. RHE.
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Fig. S11 Cyclic voltammograms (CVs) measured at various scan rates from 20 to 100
mV s in the non-Faradaic region in 1 M KOH electrolyte. The materials are (a)
Co/CoySs@NSOC-600; (b) Co/CogSg@NSOC-700; (c) Co/CoeSs@NSOC-800; (d)
Co/CoySg@NSOC-900; (inset: the corresponding scan rate dependence of the current

density of Co/CoySg@NSOC-600, 700, 800 and 900 respectively).
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Fig. S12 The stability test of RuO, for OER and Pt/C for HER in 1 M KOH.

Note: As shown in Fig. S12, the relative current of commercial Pt/C for HER
decreased to 64% and RuO, for OER decreased to 74% after 8 h continuous operation.
And as shown in Fig. 3d, the relative current of Co/CoySg@NSOC-800 were well
maintained after 10 h continuous operation for both OER and HER, indicating that the

electrochemical stability of Co/CosSg@NSOC-800 was better than that of RuO, and

Pt/C.

after HER test

DORRIPRTNIPISTION WS TPy

after OER test

before test

Intensity(a.u.)

CogSs | | (PDF#e6-2273)

1
Co(PDF#89-4307) |

A

10 20 30 40 50 60 70
2 Theta(deg.)

Fig. S13 PXRD patterns of the Co/CosSg@NSOC-800 before and after 10 h

chronoamperometry test for OER and HER.



Fig. S14 SEM images of the Co/CogSgs@NSOC-800 before and after 10 h
chronoamperometric test. (a, b) after OER long-term stability test; (c, d) after HER

long-term stability test.



Table S1. Specific surface area and total pore volume of the Co/CoySg@NSOC

materials at different temperatures.

Sample BET surface area (m? g'!) Pore volume (cm? g!)
Co/CoySg@NSOC-600 2.3 0.01
Co/CoySg@NSOC-700 38.7 0.05
Co/CoySg@NSOC-800 96.4 0.16
Co/CoySg@NSOC-900 64.2 0.13

Table S2. Comparison of HER and OER activity data of Co/CoeSg@NSOC-T

materials.

Catalyst Reaction  Mj=1oma cm™ Tafel slope Ca R
[V] [mV dec] [mF cm2] [Q]

600 °C OER 0.530 97
0.68 648

HER 0.517 165

700 °C OER 0.421 88
HER 0.336 157 10.74 tel

800 °C OER 0.373 80
HER 0.216 149 29.70 23

900 °C OER 0.395 95
18.13 135

HER 0.310 159




Table S3. Comparison of electrocatalytic OER and HER performance of

Co/CoySg@NSOC-800 with other nonnoble metal electrocatalysts in the literatures.

OER HER
Catalyst Ni=10mA em™ Electrolyte | Mj=10ma em” Electrolyte | Ref
[mV] [mV]
CoySs@MoS,/CNFs 430 1 M KOH 190 0.5 M H,SO4 | S2
Co;Sy 363 1 M KOH 290 1 M KOH S3
Co/Co0O/CoFe,04 330 1 M KOH 365 1 M KOH S4
CoSy@MoS, 347 1 M KOH 239 0.5M H,SO4 | S5
CoySs@NPC-10 403 1 M KOH 261 1 M KOH 6
Co-S/CP 363 1 M KOH 357 1 M KOH S6
Co,S,@C-1000 470 0.1 M KOH — — S7
PO-Ni/Ni-N-CNFs 420 1 M KOH 262 1 M KOH S8
Ni;S; 400 1 M KOH 300 1 M KOH S9
This
Co/CoySs@NSOC-800 373 1 M KOH 216 1 M KOH

Work




Table S4. Comparison of overall water splitting electrolysis cell performance of

Co/CoySg@NSOC-800 with other nonnoble metal electrocatalysts in the literatures.

Catalyst Ei1oma em? vs. RHE Ref

CoP 1.62 S10

Co0304 1.63 S11

Ni,P 1.63 S12

CoySg-NSC@Mo,C/NF 1.61 S13

C00.9S0.58P0.42 1.59 S14
CooSg 1.60 10

Cu@CoFe LDH-60 1.681 S15
CogNi P 1.59 1

O-CoMoS 1.60 S16
PO-Ni/Ni-N-CNFs 1.69 S8

Co/CoySg@NSOC-800 1.56 This Work
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