Electronic Supplementary Information (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer balance

Dongyu Li,^a Jinke Bai,^b Tingting Zhang,^a Chun Chang,^b Xiao Jin,^{a,b,*} Zhen Huang,^a Bing Xu^a and Qinghua Li^{a,b,*}

^aSchool of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, P. R. China

^bJiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China

*Email: siaojin@163.com; qhli@hqu.edu.cn

Experimental section

Chemicals

Cadmium oxide (CdO, 99.998%), Tributylphosphine (TBP, 98%), tellurium powder (Te, 99.8%), 1-octadecence (1-ODE, 90%), oleic acid (OA, 90%),1-octadecene (ODE, 90%), sulfur (S, 99.99%, powder), dimethyl sulfoxide (DMSO, 99.7%), TFB(poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine]), chlorobenzene(99%), zinc acetate (Zn(Ac)₂, 99.99%), tetramethylammoniumhydroxide (TMAH, 97%) and were purchased from Aldrich. poly(3,4-ethylenedioxylenethiophene)-polystylene sulfonic acid (PEDOT:PSS) and methanol (analytical reagent) were obtained from Sigma-Aldrich. ITO glasses were obtained from Xiamen Weihua. Poly-TPD was purchased from American Dye Source., hexanes (analytical grade), acetone (analyticalgrade), sopropanol (analytical grade) and methanol (analytical grade) were obtained from Beijing Chemical Reagent Co. Ltd, China.

Preparation of Cd_{1-x}Zn_xS/ZnS core/shell QDs

The synthesis of $Cd_{0.1}Zn_{0.9}S$ core has been described in our previous work.¹ In a typical synthetic procedure, 0.5 mmol of CdO and 5 mmol Zn(Ac)₂ were placed in mixture solvent containing 4 mL of OA and 10 mL ODE in 50 mL of 3-neck rector in 150 °C, degassed under 100 mtorr pressure for 30 min, and then the temperature of the reaction was further heated to 300 °C under N₂ flow. At this temperature, 0.8 mmol of S powder dissolved in 2 mL of ODE was quickly injected into reaction flask, subsequently, the temperature was elevated to 310 °C for growth of $Cd_xZn_{1-x}S$ cores. After the elapse of 8 min of reaction, 7 mmol S powder dissolved in OA (S-OA) were introduced into the reactor to overcoat ZnS shells onto existing $Cd_xZn_{1-x}S$ cores. Timing sampling was

taken during the reaction to monitor the development of QDs. The temperature was kept for 1 hour to annealing the QDs and then cooled down to room temperature. Finally, QDs were purified by adding hexane and an excess amount of ethanol (done thrice); then they were redispersed in n-octane or chloroform for further characterization.

Device fabrication

ZnO and ZnO:Mg nanoparticles were synthesized using the method reported previously.² For a typical preparation, a solution of zinc acetate with or without magnesium acetate tetrahydrate in DMSO (0.5 M) and 30 mL of a solution of TMAH in ethanol (0.55 M) were mixed and stirred for 1 h in ambient air, then washed and dispersed in ethanol at a concentration of 30 mg mL⁻¹. The spin-coating or evaporation of each layer is the same as our previous work except the TBF layer. The TFB layer was spin-coated at a concentration of 8 mg mL⁻¹ in chlorobenzene at 3000 rpm for 50 s, and then baked at 150°C for 30 min. The active area of the QLED is 4 mm².

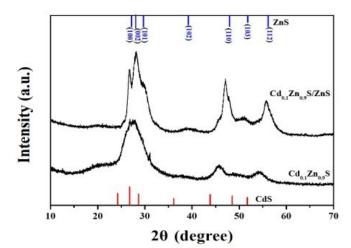


Fig. S1 XRD patterns of the pure Cd_{0.1}Zn_{0.9}S and Cd_{0.1}Zn_{0.9}S/ZnS core/shell QDs.

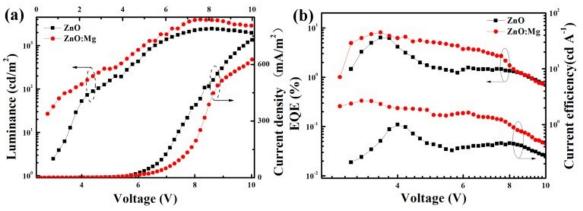


Fig. S2 (a) The current density and Luminance, (b) EQE and current efficiency of ZnO and ZnO:Mg devices.

References

- 1. X. Jin, J. Bai, X. Gu, C. Chang, H. Shen, Q. Zhang, F. Li, Z. Chen and Q. Li, *Opt. Mater. Express*, 2017, 7, 4395-4407.
- 2. S. Wang, Y. Guo, D. Feng, L. Chen, Y. Fang, H. Shen and Z. Du, J. Mater. Chem. C, 2017, 5, 4724-4730.