Supporting Information

for

Silylene induced cooperative B–H bond activation and unprecedented aldehyde C–H bond splitting with amidinate ring expansion

V. S. V. S. N. Swamy, K. Vipin Raj, Kumar Vanka,* Sakya S. Sen* and Herbert W. Roesky*

Table of Contents

- ✤ General Experimental Information
- Synthesis and characterization of compound **2**.
- Synthesis and characterization of compounds **3**.
- Synthesis and characterization of compound 4 and 5.
- ✤ Analytical data for compounds 2-5.
- Crystallographic data for the structural analysis of compounds 2, 3, 4 and 5.
- ✤ Tentative mechanisms for the formation of 3-5.
- Details of the theoretical computational for compound **2**.
- References

General Experimental Information. All manipulations were carried out in an inert atmosphere of argon using standard Schlenk techniques and in argon filled glove box. Solvents especially toluene and hexane were purified by MBRAUN solvent purification system MB SPS-800.The starting material, [PhC(NtBu)2SiN(Si(CH3)3)2] was prepared by using literature procedures.S1 Other chemical purchased from Sigma Aldrich and TCI Chemicals were used without further purification. ¹H, ¹³C, ²⁹Si, ¹¹B and ¹⁹F NMR spectra were recorded in C₆D₆ using a Bruker Avance DPX 200, Bruker Avance DPX 400 or a Bruker Avance DPX 500 spectrometer referenced to external SiMe₄, in the case of ¹H, ¹³C and ²⁹Si NMR and CFCl₃ for the ¹⁹F NMR spectra, respectively. Elemental analysis was performed by CSIR-National Chemical Laboratory, Pune. Furthermore, Melting points were measured in a sealed glass tube on a Stuart SMP-30 melting point apparatus.

Synthesis and characterization of compound 2. A toluene solution of 1 (0.2 g, 0.47 mmol in toluene 10 mL) was added drop by drop to a toluene solution (10 mL) of pinacolborane (0.06 g, 0.47 mmol) at ambient conditions and the reaction was stirred for 3 hours. Then the solvent was removed under reduced pressure and extracted with toluene (15 mL). The solvent was again reduced *in vacuo* to 5 mL and stored at -30 °C in a freezer for 2 days to obtain colorless crystals of 2. Yield: 0.237g (90.7%). Mp: 133.6 °C. ¹H NMR (400.31 MHz, CDCl₃, 25 °C) δ 0.42 (s, 18H, SiMe₃), 0.99 (s, 18H, *t*Bu), 1.31 (s, 12H, pinCH₃), 7.17-7.24 (m, 5H, Ph) ppm; ¹³C NMR (100.67 MHz, CDCl₃, 25 °C); δ 6.44 (SiMe₃), 25.92 (PinCH₃), 30.83 (*t*Bu), 50.74 (*Ct*Bu), 73.46 (CH), 83.41(OC(CH₃)₂), 127.26, 128.39, 129.97, 141.73, 147.65 (Ph) ppm; ²⁹Si{¹H} NMR (79.53 MHz, CDCl₃, 25 °C); δ -52.41 (SiN(SiMe₃)₂), 3.13 (N(SiMe₃)₂) ppm; ¹¹B NMR (128.44 MHz, CDCl₃, 25 °C); δ 37.84 ppm. HRMS (m/z): calcd: 547.36, found: 547.3611. Elemental

analysis (%) calcd for C₂₇H₅₄BN₃O₂Si₃ (547.81): C, 59.20; H, 9.94; N, 7.67; found: C, 58.98; H, 9.63; N, 7.88.

Synthesis and characterization of compound 3. A toluene solution of 1 (0.2 g, 0.47 mmol, 10 mL) was added drop by drop to a solution of benzaldehyde (0.05 g, 0.47 mmol in 5 mL toluene) at ambient conditions. The reaction was monitored by NMR spectroscopy which indicates after 12 hours the formation of a product. The solvent was then removed under reduced pressure and extracted with freshly distilled toluene (15 mL). The solvent was again reduced to 5 mL and stored at -30 °C in a freezer for 3 days to obtain colorless crystals of 3. Yield: 0.180 g (72 %). ¹H NMR (400.31 MHz, C₆D₆, 25 °C): δ 0.32 (s, 9H, SiMe₃), 0.43 (s, 9H, SiMe₃), 1.27 (s, 9H, *t*Bu), 1.46 (s, 9H, *t*Bu), 4.93 (brs, 1H, NH), 6.96-7.04 (m, 5H, Ph), 7.12-7.14 (m, 5H, Ph) ppm; ¹³C NMR (100.67 MHz, C₆D₆, 25 °C): δ 2.51 (SiMe₃), 8.00 (SiMe₃), 33.19 (*t*Bu), 33.82(*t*Bu), 53.54 (C*t*Bu), 55.56 (C*t*Bu), 124.69, 142.46 (C = C), 128.53, 130.62, 131.07, 133.40, 133.61, 133.71, 134.07, 135.92, 137.61, 140.93 (Ph) ppm; ²⁹Si{¹H}NMR (79.53 MHz, C₆D₆, 25 °C): δ -39.48 (SiN(SiMe₃)₂), 1.47, 2.18 (N(SiMe₃)₂) ppm. HRMS (ESI, m/z): calcd: 525.95, found: 526.3100 [M+H]⁺. Elemental analysis (%) calcd. for C₂₈H₄₇N₃OSi₃ (525.96): C, 63.94; H, 9.01; N, 7.99; found: C, 63.61; H, 8.82; N, 8.12.

Synthesis and characterization of compounds 4 and 5. A toluene solution of 4fluorobenzaldehyde (0.059 g, 0.47 mmol, 10 mL) was added drop by drop to a toluene solution (10 mL) of **1** (0.2 g, 0.47 mmol) at room temperature. The reaction mixture was slowly turned from yellow to colorless. After six hours, the ¹H NMR spectrum was recorded and indicated the formation of two products. The solution was removed under reduced pressure and extracted with toluene (10 mL) which was reduced *in vacuo* to 5 mL and kept at room temperature for 7 days to obtain colorless crystals of **4** in major fraction along with the formation of minor product **5**. **Spectroscopic data for 4.** Yield: 0.200 g (63.1%). Mp: 154.3 °C. ¹H NMR (400.31 MHz, C₆D₆, 25 °C); δ 0.33 (s, 9H, SiMe₃), δ 0.44 (s, 9H, SiMe₃), 1.28 (s, 9H, *t*Bu), 1.47 (s, 9H, *t*Bu), 6.61-6.66 (m, 2H, CHCH), 7.01-7.04 (dd, 4H, Ph), 7.10-7.14 (m, 5H, Ph), 7.30-7.33 (d, 2H, Ph), 7.52-7.55 (d, 2H, Ph) ppm; ¹³C NMR (100.6 MHz, C₆D₆, 25 °C); δ 2.48 (SiMe₃), 7.97 (SiMe₃), 33.15 (*t*Bu), 33.81 (*t*Bu), 53.53 (C*t*Bu), 55.55 (C*t*Bu), 114.68 (CHCH), 114.89 (CHCH), 126.09, 126.17, 128.48, 128.59, 128.65, 130.09, 130.11, 130.35, 137.43, 140.94, 153.02, 159.49 (Ph), 161.91 (NCN) ppm; ¹⁹F NMR (376.63 MHz, C₆D₆, 25 °C); δ -38.17 (SiN(SiMe₃)₂), 2.88, 3.49 (N(SiMe₃)₂) ppm. HRMS (ESI, m/z): calcd: 668.05, found: 668.3330 [M+H]⁺. Elemental analysis (%) calcd. for C₃₅H₅₂F₂N₃O₂Si₃ (668.05) C, 62.83; H, 7.83; N, 6.28; found: C, 56.75; H, 7.11; N, 5.46.

Spectroscopic data for 5. Yield: 0.020 g (8%) ¹H NMR (400.31 MHz, C₆D₆, 25 °C); δ 0.32 (s, 9H, SiMe₃), δ 0.44 (s, 9H, SiMe₃), 1.28 (s, 9H, *t*Bu), 1.47 (s, 9H, *t*Bu), 4.90 (brs, 1H, NH), 6.61-6.65 (m, 2H, Ph), 7.00-7.13 (m, 5H, Ph), 7.13 (d, 1H, Ph), 7.53 (d, 1H, Ph) ppm; ¹⁹F NMR (376.63 MHz, C₆D₆, 25 °C); δ -118.96 (s, 1F, Ar F) ppm; HRMS (ESI, m/z): calcd: 543.95, found: 544.3005 [M+H]⁺. As the formation of **5** is always accompanied by formation of **4** as major product, we were not able fully resolve the ¹³C NMR of **5**. Similarly, in the ²⁹Si NMR, we have always obtained the resonances corresponding to **4**.

Analytical data for compounds 2-5.

¹H NMR of 2:

²⁹ Si NMR of 2:

¹¹B NMR of 2:

¹H NMR of 3:

¹³C NMR of 3:

²⁹Si NMR of 3:

HRMS of 3:

S9

¹H NMR of 4:

¹³C NMR of 4:

²⁹Si NMR of 4:

¹⁹F NMR of 4:

¹³C NMR of 5:

¹⁹F NMR of 5:

HRMS of 5:

Crystallographic data for the structural analysis of compounds 2, 3, 4 and 5. X-ray intensity data measurements of **2** and **3-5** were carried out on a Bruker SMART APEX II CCD diffractometer with graphite-monochromatized (CuK α = 1.54178 Å) and (MoK α = 0.71073 Å) radiation, respectively. The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from three sets of 36 frames. Data were collected with ω scan width of 0.5° at different settings of φ and 2 θ keeping the sample-to-detector distance fixed at 5.00 cm. The X-ray data collection was monitored by APEX2 program (Bruker, 2006).S2 All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker, 2006). SHELX-97 was used for structure solution and full matrix least-squares refinement on *F*2.S3 All the hydrogen atoms were placed in geometrically idealized position and constrained to ride on their parent atoms. An *ORTEP III*S4 view of compounds **2**, **3**, **4** and **5** were drawn with 50% probability displacement ellipsoids and H atoms omitted for clarity.

Crystal Data for compound 2. $C_{27}H_{54}B_1N_3O_2Si_3$, M =547.81, colorless, 0.33 x 0.25 x 0.16 mm³, orthorhombic, space group '*P* b c a', *a* = 11.4586 (16) Å, *b* = 19.143 (3) Å, *c* = 30.168 (4) Å, $\alpha = \beta = \gamma = 90^{\circ}$, *V* = 6617.4 (16) Å³, *Z* = 8, *T* = 296(2) K, $2\theta_{max} = 124.998^{\circ}$, D_{calc} (g cm⁻³) = 1.100, *F*(000) = 2400, μ (mm⁻¹) = 1.516, 124812 reflections collected, 5261 unique reflections ($R_{int} = 0.1669$), 4011 observed ($I > 2\sigma$ (I)) reflections, multi-scan absorption correction, $T_{min} = 0.666$, $T_{max} = 0.785$, 346 refined parameters, *S* = 1.198, *R*1 = 0.0742, *wR*2 = 0.2282 (all data *R* = 0.1006, *wR*2 =0.2282), maximum and minimum residual electron densities; $\Delta \rho_{max} = 0.544$, $\Delta \rho_{min} = -0.830$ (eÅ⁻³).

Crystal Data for compound 3. $C_{28}H_{47}N_3O_1Si_3$, M =525.95, colorless, 0.38 x 0.28 x 0.18 mm³, triclinic, space group *P* -1, *a* = 10.8132 (14) Å, *b* = 10.9099 (13) Å, *c* = 13.5038 (17) Å, *a* =

80.743 (3) °, β = 78.036 (3) °, γ = 79.717 (3) °, V = 5120.7 (3) Å³, Z = 2, T = 296 (2) K, $2\theta_{\text{max}}$ =49.994°, D_{calc} (g cm⁻³) = 1.149, F(000) = 572.0, μ (mm⁻¹) = 0.181, 54149 reflections collected, 5343 unique reflections (R_{int} = 0.1319), 3489 observed ($I > 2\sigma$ (I)) reflections, multiscan absorption correction, T_{min} = 0.941, T_{max} = 0.968, 329 refined parameters, S = 1.026, R1 = 0.0535, wR2 = 0.1049 (all data R = 0.1084, wR2 =0.1049), maximum and minimum residual electron densities; $\Delta \rho_{\text{max}}$ = 0.301, $\Delta \rho_{\text{min}}$ = -0.403 (eÅ⁻³).

Crystal Data for compound 4. $C_{35}H_{51}F_2N_3O_2Si_3$, M =668.05, colorless, 0.38 x 0.28 x 0.17 mm³, monoclinic, space group '*P* 21/c', *a* = 11.174 (4) Å, *b* = 16.174 (6) Å, *c* = 20.535 (8) Å, *a*= $\gamma = 90^{\circ}$, $\beta = 101^{\circ}.522$ (9), *V* = 3636 (2) Å³, *Z* = 4, *T* = 296(2) K, $2\theta_{max} = 50.00^{\circ}$, D_{calc} (g cm⁻³) = 1.220, *F*(000) = 1432, μ (mm⁻¹) = 0.175, 123259 reflections collected, 6408 unique reflections ($R_{int} = 0.2604$), 3736 observed ($I > 2\sigma$ (I)) reflections, multi-scan absorption correction, $T_{min} = 0.943$, $T_{max} = 0.971$, 419 refined parameters, S = 1.046, R1 = 0.0693, wR2 = 0.1185 (all data R = 0.1479, wR2 = 0.1185), maximum and minimum residual electron densities; $\Delta \rho_{max} = 0.353$, $\Delta \rho_{min} = -0.285$ (eÅ⁻³).

Crystal Data for compound 5. $C_{28}H_{46}F_1N_3O_1Si_3$, M =543.95, colorless, 0.38 x 0.28 x 0.17 mm³, orthorhombic, space group *P* 21/c, *a* = 11.5454 (3) Å, *b* = 16.4615 (4) Å, *c* = 17.4112 (4) Å, $\alpha = \gamma 90^\circ$, $\beta = 106.504 (10)^\circ$, *V* = 3172.5 (14) Å³, *Z* = 4, *T* = 217 (2) K, $2\theta_{max}$ =49.99°, D_{calc} (g cm⁻³) = 1.139, *F*(000) = 1176.0, μ (mm⁻¹) = 0.179, 28441 reflections collected, 5477 unique reflections (R_{int} = 0.0294), 4667 observed ($I > 2\sigma$ (I)) reflections, multi-scan absorption correction, $T_{min} = 0.924$, $T_{max} = 0.965$, 341 refined parameters, *S* = 1.020, *R*1 = 0.0377, *wR*2 = 0.0923 (all data *R* = 0.0469, *wR*2 =0.0923), maximum and minimum residual electron densities; $\Delta \rho_{max} = 0.368$, $\Delta \rho_{min} = -0.329$ (eÅ⁻³).

Tentative mechanisms for the formation of 3-5.

Fig. S1. Tentative mechanism for the formation of 3 and 5.

Fig. S2. Tentative mechanism for the formation of 4.

Details of the theoretical computational for compound 2. All the calculations in this study have been performed with density functional theory (DFT), with the aid of the Turbomole 7.1 suite of programs,^{S5} using the PBE functional.^{S6} The TZVP3 basis set has been employed. The resolution of identity (RI),^{S7} along with the multipole accelerated resolution of identity (marij)^{S8} approximations have been employed for an accurate and efficient treatment of the electronic Coulomb term in the DFT calculations. Solvent correction were incorporated with optimization calculations using the COSMO model,^{S9} with toluene ($\varepsilon = 2.374$) as the solvent. The values reported are ΔG values, with

zero point energy corrections, internal energy and entropic contributions were included through frequency calculations on the optimized minima, with the temperature taken to be 298.15 K. The translational entropy term in the calculated structures was corrected through a free volume correction introduced by Mammen *et al.*^{S10} This volume correction is to account for the unreasonable enhancement in translational entropy that is generally observed in computational softwares. Harmonic frequency calculations were performed for all stationary points to confirm them as a local minima or transition state structures.

PBE/TZVP optimized	geometries	for all	the comp	pounds a	and trans	sition sta	te.
(i) 1	C -5.03	4547 0.575336	-1.028929	Н 2.127	589 0.878979	-3.932004	
68	Н -5.28	9291 -0.492395	-1.034349	Н 1.158	970 -0.430452	-3.208266	
Si -0.671973 1.049147 0.433024	Н -4.81	0.884100	-2.060822	Н 2.789	219 -0.066272	-2.579240	
Si -2.168870 -1.468587 -0.950269	Н -5.92	9062 1.128793	-0.701285	Н -1.284	-0.277961	2.988246	
C -3.383888 -2.583618 0.004940	C -3.40	2301 2.922047	-0.082135	C 2.944	644 -0.213419	0.197238	
C -2.690198 -1.371082 -2.778260	Н -4.38	7070 3.405094	0.026837	C 1.479	434 0.056533	0.174904	
C -0.516214 -2.400224 -0.949884	Н -3.02	1811 3.149943	-1.089489	C 3.445	781 -1.390686	-0.379532	
Н -0.680284 -3.363112 -1.458947	Н -2.71	2572 3.361344	0.649878	C 4.815	257 -1.662379	-0.348165	
Н -0.150770 -2.601564 0.064198	Н -0.46	1993 2.743969	-1.975372	C 5.695	840 -0.760797	0.258435	
Н 0.260748 -1.849819 -1.495537	C -0.00	2825 2.005781	-2.650458	C 5.201	916 0.415066	0.832756	
Н -3.052492 -2.694418 1.048650	Н 0.26	3957 2.513160	-3.588228	C 3.832	656 0.689483	0.801900	
Н -3.405171 -3.585303 -0.452367	Н -0.75	1391 1.231567	-2.867417	C 1.689	338 -2.011369	2.527743	
Н -4.412783 -2.198954 0.019094	C 1.252	2650 1.391609	-2.008945	Н 1.678	660 -2.448249	3.537025	
Н -2.694088 -2.380391 -3.219312	C 2.25	7853 2.519222	-1.703987	Н 2.729	772 -1.774767	2.272719	
Н -3.688524 -0.935973 -2.914999	Н 2.47	7707 3.085958	-2.621468	Н 1.322	958 -2.770245	1.821318	
N -2.096226 0.155094 -0.211599	Н 1.83	6605 3.211466	-0.960139	Н 2.754	445 -2.098102	-0.841942	
Н -1.972005 -0.759419 -3.345388	Н 3.204	4244 2.120618	-1.316654	Н 5.195	124 -2.581996	-0.797330	
C -4.166563 0.699749 1.930739	N 0.792	2928 0.717908	-0.778053	Н 6.766	-0.974050	0.283755	
Si -3.612879 1.046568 0.146428	C 1.87	0.377320	-2.986866	Н 5.885	163 1.123655	1.304936	

Η	3.448412	1.610790	1.243212	Η	-3.947794	-0.444136	2.022158	Н	0.425310	3.097481	-1.030991
С	1.381061	0.320770	3.436012	Н	-3.153155	-1.830382	1.240179	C	1.202599	3.678503	-1.547919
Н	1.424116	-0.045526	4.473078	Н	-4.148781	-0.707981	0.273545	Н	1.480529	3.138692	-2.463675
Н	2.400689	0.588809	3.127119	Н	-3.392058	1.806547	0.138877	Si	-3.341866	-1.589089	-0.568563
Н	0.756905	1.225180	3.406960	Н	-1.753914	2.233317	0.706415	C	-4.907382	-1.844965	0.489787
N	0.594738	-0.231765	1.146388	С	-2.619919	1.581423	0.887667	C	-3.843996	-1.548301	-2.403868
С	0.791152	-0.762192	2.510575	Н	-3.022704	1.816128	1.882474	C	-2.331065	-3.177192	-0.340098
С	-0.610431	-1.146750	3.014372	Н	1.001125	0.015821	2.031255	Н	-2.961752	-4.017072	-0.672222
Н	-0.555861	-1.510607	4.050093	(iii)) RC"			Н	-2.055723	-3.347366	0.707774
Н	-1.048449	-1.936154	2.387349	90				Н	-1.416120	-3.170357	-0.944351
Н	-5.115706	1.209454	2.158787	Si	-0.720730	0.156726	0.182872	Н	-4.641644	-1.938620	1.553621
Н	-3.406343	1.059617	2.640577	В	2.390556	2.123208	0.856674	Н	-5.398028	-2.781681	0.180739
Н	-4.303855	-0.378717	2.099022	0	2.912102	2.461094	-0.373782	Н	-5.645180	-1.036458	0.394899
(ii)	HBpin			0	1.817765	3.173462	1.536390	Н	-4.432202	-2.446226	-2.650851
22				С	2.122636	4.393831	0.768808	Н	-4.446418	-0.665071	-2.654078
В	-0.002005	-0.022616	1.380222	С	2.443233	3.828415	-0.667864	Ν	-2.486675	-0.090868	-0.101460
0	-1.254551	-0.098141	1.944349	С	0.916100	5.320056	0.832779	Н	-2.951419	-1.545020	-3.047084
0	0.000362	0.005214	0.004735	С	3.331809	5.041047	1.448475	C	-4.120188	1.376449	2.002603
С	-1.382250	-0.284107	-0.425799	Н	4.209424	4.380295	1.415035	Si	-3.446905	1.386612	0.224964
С	-2.224289	0.103729	0.849174	Н	3.086117	5.231495	2.502259	C	-4.902576	1.568791	-0.989293
С	-1.683850	0.542580	-1.667695	Н	3.593625	5.997992	0.975185	Н	-5.618038	0.735897	-0.961573
С	-1.430924	-1.778569	-0.750735	Н	0.759241	5.648918	1.869581	Н	-4.534619	1.670015	-2.021096
Н	-1.208715	-2.388501	0.136374	Н	0.003763	4.818353	0.489373	Н	-5.452658	2.488874	-0.735578
Н	-0.676532	-2.001290	-1.517596	Н	1.082730	6.213293	0.212632	C	-2.422641	2.973023	0.014021
Н	-2.416899	-2.070016	-1.138748	С	3.546250	4.565690	-1.414675	Н	-3.094170	3.836456	0.152533
Н	-1.041988	0.210983	-2.495671	Н	3.711686	4.087683	-2.390478	Н	-1.988070	3.034432	-0.994368
Н	-1.500709	1.610325	-1.497962	Н	4.492624	4.551712	-0.860374	Н	-1.603191	3.041234	0.741080
Н	-2.732087	0.408532	-1.972873	Н	3.256984	5.612108	-1.592087	Н	-0.052106	1.137069	-2.532442
С	-3.436558	-0.778994	1.108817	Н	0.790861	4.656423	-1.833478	С	-0.155277	0.174997	-3.055209

Н	0.147284	0.314795	-4.102710	С	1.203215	-0.969050	3.203937	C	1.261325	4.817803	-2.292489
Н	-1.214798	-0.113749	-3.030032	Н	1.220030	-1.179264	4.284369	Н	1.313770	4.407887	-3.311222
С	0.725427	-0.896518	-2.390703	Н	2.182510	-1.242006	2.788146	Н	2.284279	4.905195	-1.906437
С	2.193060	-0.432078	-2.436919	Н	1.050919	0.109196	3.056977	Н	0.818675	5.823615	-2.351331
Н	2.480911	-0.216251	-3.477355	Н	2.498478	1.026756	1.316880	Н	-1.520995	4.572155	-2.216419
Н	2.330571	0.481423	-1.841603	N	-0.043696	-1.410387	1.097793	Н	-1.529807	2.924770	-1.522387
Н	2.872887	-1.205318	-2.055663	С	0.072509	-1.766521	2.526073	C	-0.939600	3.647042	-2.098897
N	0.218977	-1.039298	-1.009361	С	-1.268791	-1.369644	3.167211	Н	-0.761136	3.224242	-3.097813
С	0.563652	-2.223650	-3.154778	Н	-1.247892	-1.573727	4.247118	Si	-2.560096	-2.573638	-0.297577
Н	0.855201	-2.087051	-4.206668	Н	-2.102298	-1.928629	2.718947	C	-3.904391	-3.312690	0.833452
Н	-0.481862	-2.563587	-3.126701	Н	-4.726487	2.275831	2.192794	C	-3.143462	-2.757514	-2.097479
Н	1.198423	-3.010602	-2.726187	Н	-3.286677	1.370623	2.721686	C	-1.073856	-3.723729	-0.049072
Н	-1.463794	-0.296723	3.022481	Н	-4.742877	0.493012	2.199473	Н	-1.410971	-4.749444	-0.266533
С	1.885126	-2.654250	0.027219	(iv)) TS_1"			Н	-0.709036	-3.694378	0.985544
С	0.700048	-1.751500	0.031300	90				Н	-0.242658	-3.483675	-0.720985
С	1.737574	-4.003090	-0.331224	Si	-0.636974	-0.030565	0.024473	Н	-3.570974	-3.324190	1.881650
С	2.840089	-4.860700	-0.317025	В	0.845045	2.127612	0.000865	Н	-4.065231	-4.357575	0.522766
С	4.099374	-4.378781	0.053944	0	1.093009	2.622768	-1.294311	Н	-4.873768	-2.799504	0.785448
С	4.252783	-3.034405	0.409149	0	0.241494	3.104802	0.817250	Н	-3.383312	-3.810983	-2.311519
С	3.152132	-2.174882	0.395928	С	0.278809	4.365959	0.084157	Н	-4.042165	-2.155740	-2.292755
С	0.302614	-3.273683	2.732353	С	0.407454	3.903070	-1.419846	Ν	-2.234088	-0.850107	0.077230
Н	0.226825	-3.505029	3.804907	С	-0.983546	5.161362	0.397507	Н	-2.363838	-2.438965	-2.803750
Н	1.295026	-3.588698	2.387700	С	1.514998	5.127138	0.579018	С	-4.122669	-0.186662	2.394374
Н	-0.453483	-3.866123	2.198222	Н	2.436110	4.569363	0.357400	Si	-3.618731	0.168103	0.594960
Н	0.751047	-4.381755	-0.605141	Н	1.441724	5.244847	1.669126	C	-5.123883	-0.088231	-0.541399
Н	2.713761	-5.909177	-0.593817	Н	1.588307	6.126232	0.125696	Н	-5.528035	-1.109553	-0.525053
Н	4.960539	-5.049556	0.066027	Н	-0.997045	5.425729	1.464658	Н	-4.862716	0.160588	-1.580970
Н	5.234389	-2.650728	0.693942	Н	-1.888808	4.583100	0.177846	Н	-5.927546	0.593732	-0.221768
Н	3.273551	-1.122603	0.658307	Н	-1.007943	6.094418	-0.185126	С	-3.212710	2.015915	0.514643

Н	-4.018339	2.561650	1.031815	Н	2.103488	-3.898661	-0.465419	Н	4.192901	-1.146761	2.101081
Н	-3.189241	2.364579	-0.527131	Н	4.422554	-4.790652	-0.507849		2.110318	1.248845	
Н	-2.253831	2.280608	0.982297	Н	6.355420	-3.262504	-0.119230	C	-2.855691	3.230596	0.717381
Н	-0.214640	0.916944	-2.818353	Н	5.952939	-0.835823	0.294367	C	-2.475788	3.222314	-0.814499
С	-0.219823	-0.111717	-3.202807	Н	3.629856	0.057725	0.306170	C	-4.338384	3.011295	1.003225
Н	-0.072889	-0.078947	-4.291608	С	1.811722	-0.070835	2.962536	C	-2.365516	4.493883	1.438853
Н	-1.202778	-0.560576	-3.000301	Н	1.948989	-0.131088	4.052827	Н	-1.299859	4.669868	1.237157
С	0.907318	-0.924336	-2.545661	Н	2.801164	-0.135205	2.491286	Н	-2.488508	4.347676	2.521301
С	2.244406	-0.207150	-2.806516	Н	1.372419	0.905763	2.718190	Н	-2.935071	5.386593	1.142118
Н	2.370114	-0.066040	-3.890920	Н	1.619196	1.306155	0.426609	Н	-4.510553	3.019668	2.089310
Н	2.247820	0.780627	-2.327385	N	0.581417	-1.100838	1.050279	Н	-4.683263	2.047185	0.610741
Н	3.099709	-0.791742	-2.445311	С	0.894220	-1.214683	2.489849	Н	-4.944276	3.813501	0.555191
N	0.559518	-1.009637	-1.106924	С	-0.454359	-1.099607	3.219267	C	-2.432305	4.605886	-1.460366
С	0.944774	-2.338601	-3.153664	Н	-0.304046	-1.172932	4.305276	Н	-2.140557	4.507907	-2.515862
Н	1.127614	-2.273714	-4.236362	Н	-1.146237	-1.891585	2.901124	Н	-1.701538	5.256182	-0.964551
Н	-0.008784	-2.862024	-2.996372	Н	-5.001954	0.425178	2.651344	Н	-3.420174	5.089586	-1.421617
Н	1.750725	-2.938676	-2.709453	Н	-3.308981	0.089669	3.080865	Н	-4.395207	2.643318	-1.713494
Н	-0.926466	-0.128899	3.004668	Н	-4.376420	-1.238933	2.575294	Н	-3.344583	1.275738	-1.247666
С	2.718370	-1.862785	-0.074343	(v)	Int_1"			C	-3.354566	2.292336	-1.657857
С	1.321480	-1.349620	-0.043261	90				Н	-2.950952	2.252976	-2.679685
С	2.949764	-3.226451	-0.312054	Si	-0.437958	-0.336573	0.083916	Si	-0.106990	-3.393354	-0.727128
С	4.253615	-3.727356	-0.326751	В	-0.957038	1.923378	0.402726	C	-0.547233	-5.009513	0.180479
С	5.336485	-2.870873	-0.106809	0	-1.129890	2.689658	-0.799846	C	-0.426528	-3.649563	-2.582228
С	5.110890	-1.510426	0.128283	0	-			C	1.764751	-3.237236	-0.474320
С	3.809150	-1.006294	0.145063	С	3.421116	1.994883	0.541491	Н	2.220151	-4.175232	-0.827564
С	1.536005	-2.571345	2.827255	С	2.876381	-1.096586	2.794214	Н	2.019646	-3.111097	0.585762
Н	1.619865	-2.669281	3.919417	Н	3.011449	-1.265792	3.872370	Н	2.200076	-2.407990	-1.041832
Н	2.542045	-2.665997	2.400613	Н	3.670150	-0.418804	2.456913	Н	-0.266855	-4.951917	1.242615
Н	0.921520	-3.403255	2.454401	Н	2.998797	-2.059421	2.277607	Н	0.047500	-5.815454	-0.277780

Н	-1.603500	-5.300969	0.118761	Н	-0.589942	-1.042616	2.996774	Si	3.416508	11.865684	13.096688
Н	0.122784	-4.534721	-2.939112	С	3.229601	0.668339	0.124098	0	6.567291	11.475367	9.502857
Н	-1.494673	-3.801045	-2.791083	С	1.865960	0.077545	0.072450	0	7.512018	10.752760	11.492575
N	-1.062752	-1.994013	-0.121076	С	4.338492	-0.109990	-0.240962	N	5.137275	8.044824	11.425726
Н	-0.086830	-2.783581	-3.168258	С	5.624572	0.432029	-0.187381	N	3.252798	10.341937	12.159292
С	-2.826661	-3.187605	2.079122	С	5.812092	1.753610	0.228448	N	4.235327	8.890410	9.634916
Si	-2.758301	-2.319252	0.389223	С	4.708450	2.532704	0.591664	С	5.836196	6.922199	9.226614
С	-3.663730	-3.376296	-0.907966	-0.5	548870			С	5.330436	8.080983	10.028372
Н	-3.238061	-4.378036	-1.054997	Н	6.481986	-0.181938	-0.469654	С	3.944550	9.391146	8.265331
Н	-3.670939	-2.860224	-1.879746	Н	6.817486	2.176561	0.268668	С	7.818414	12.213830	9.636956
Н	-4.709248	-3.501700	-0.585276	Н	4.849095	3.567031	0.910861	С	4.972835	5.832501	9.027994
С	-3.767321	-0.732108	0.566706	Н	2.553715	2.603172	0.802664	Н	3.972182	5.861564	9.462790
Н	-4.671801	-0.972311	1.148878	С	1.356946	0.865626	3.232039	С	6.003155	7.386244	12.429686
Н	-4.095720	-0.372451	-0.418254	Н	1.496975	0.750739	4.317280	С	5.159354	9.414388	7.319402
Н	-3.238644	0.089869	1.071057	Н	2.121071	1.561962	2.861651	Н	5.979507	10.003626	7.749081
Н	-0.825804	1.068918	-2.573999	Н	0.367951	1.307923	3.049033	Н	4.858974	9.882273	6.369155
С	-0.123172	0.384658	-3.068373	Н	0.174016	2.018914	0.861480	Н	5.517821	8.402361	7.093298
Н	-0.045013	0.667871	-4.127278	N	1.168489	-0.427957	1.103738	С	2.846479	8.490908	7.665211
Н	-0.521233	-0.638520	-3.014331	С	1.476452	-0.509450	2.547655	Н	3.206418	7.457025	7.564418
С	1.257639	0.481414	-2.399626	С	0.419908	-1.452942	3.144651	Н	2.551579	8.851336	6.667796
С	1.719533	1.949109	-2.436552	Н	0.584174	-1.567846	4.225171	Н	1.957671	8.484218	8.312756
Н	1.701713	2.303842	-3.478417	Н	0.459537	-2.443842	2.672487	С	4.850937	12.890455	12.419853
Н	1.038139	2.576330	-1.845966	Н	-3.874628	-3.434500	2.311369	Н	5.822787	12.405592	12.588920
Н	2.744503	2.064595	-2.062280	Н	-2.459887	-2.515531	2.868096	Н	4.857053	13.864060	12.934647
N	1.076182	-0.035099	-1.019268	Н	-2.239799	-4.113544	2.121055	Н	4.745302	13.073737	11.341216
С	2.261525	-0.407477	-3.156173	(vi)) TS_2"			С	8.589184	11.416668	10.765394
Н	2.344326	-0.067333	-4.198906	90				С	1.846961	12.921955	12.941496
Н	1.933424	-1.455930	-3.162232	Si	4.588603	9.768318	11.196998	Н	1.671983	13.199106	11.891495
Н	3.260858	-0.354231	-2.702899	Si	1.717995	9.393628	12.247319	Н	1.988095	13.849536	13.517985

Η	0.942676	12.428361	13.322119	С	7.511535	7.485675	12.136176	Н	6.438205	9.144520	9.983561
C	3.407531	10.825937	8.409569	Н	7.778220	6.946771	11.217525	(vii) Product"		
Н	2.574982	10.865466	9.127067	Н	8.072002	7.027153	12.965658	90			
Н	3.037726	11.191050	7.440316	Н	7.824113	8.532297	12.036947	Si	4.461587	9.776114	11.243743
Н	4.206535	11.500354	8.751805	С	8.513173	12.212992	8.275692	Si	1.769955	8.551856	12.140199
С	5.394819	4.723275	8.291191	Н	8.648333	11.194215	7.892140	Si	2.190976	11.578242	12.386719
Н	4.715753	3.881202	8.143195	Н	9.496840	12.702405	8.335378	0	6.629901	11.748267	10.691316
С	5.600047	5.902409	12.533002	Н	7.898090	12.769114	7.554145	0	5.977416	11.864598	12.896977
Н	4.528549	5.806920	12.759203	С	9.364246	12.287322	11.748394	N	5.366874	8.235762	11.361383
Н	6.173407	5.407784	13.331590	Н	8.704687	12.994081	12.266941	N	2.895069	9.962454	12.024686
Н	5.800247	5.374054	11.591084	Н	10.151621	12.854939	11.230636	N	4.483147	9.172129	9.566885
C	7.123228	6.883809	8.677831	Н	9.843898	11.648384	12.503331	C	5.350681	6.801097	9.261046
Н	7.782738	7.740528	8.826472	С	6.683321	4.691123	7.747020	C	5.531032	8.176723	9.883281
C	5.711930	8.083700	13.767841	Н	7.013268	3.824371	7.170907	C	4.370473	9.809165	8.245517
Н	6.050076	9.131173	13.737499	С	3.775178	11.499113	14.923055	C	7.423787	12.848863	11.263688
Н	6.245763	7.577910	14.585275	Н	2.952737	10.963480	15.415550	C	4.139865	6.105319	9.373630
Н	4.635913	8.070880	13.993998	Н	3.941356	12.442925	15.465613	Н	3.307989	6.579822	9.893756
C	0.428559	10.135877	11.067929	Н	4.685121	10.887920	15.016850	C	6.421194	7.772637	12.281170
Н	0.289394	11.214207	11.224813	С	9.506178	10.320372	10.208002	C	5.740101	10.255676	7.691401
Н	-0.542271	9.638690	11.220079	Н	9.879005	9.710271	11.042278	Н	6.255692	10.901327	8.416648
Н	0.725047	9.978122	10.020842	Н	10.369126	10.743260	9.674393	Н	5.606080	10.812321	6.751007
C	7.474335	13.653474	10.027599	Н	8.958075	9.659016	9.523072	Н	6.383343	9.389950	7.472306
Н	6.776597	14.062733	9.283325	С	1.029745	9.414426	14.018725	C	3.703674	8.850936	7.236874
Н	8.373476	14.286370	10.043948	Н	1.745934	8.962707	14.720822	Н	4.308441	7.946738	7.087662
Н	6.991081	13.702778	11.010034	Н	0.113049	8.804358	14.034693	Н	3.580545	9.347057	6.261514
C	1.949779	7.577383	11.780877	Н	0.769594	10.415791	14.386729	Н	2.713367	8.540045	7.599125
Н	2.403975	7.477741	10.786922	В	6.452394	10.555410	10.572526	C	3.202361	13.066939	11.774681
Н	0.957107	7.099002	11.777648	С	7.546827	5.774421	7.942554	Н	4.056480	13.272922	12.429264
Н	2.589666	7.051564	12.501072	Н	8.552775	5.756837	7.518496	Н	2.523647	13.934470	11.811914

Н	3.558671	12.974540	10.739946	Н	5.781098	14.264565	10.988563	Н	-0.222324	7.922476	13.424906
С	7.209354	12.672217	12.821668	С	2.634845	6.968163	12.712433	Н	-0.206098	9.694419	13.348117
С	0.521598	11.788865	11.493238	Н	3.505054	6.718058	12.097331	В	5.748530	11.299981	11.655400
Н	0.689249	11.807739	10.405360	Н	1.908881	6.140263	12.673796	С	6.273844	4.929764	8.006464
Н	0.091045	12.761229	11.780867	Н	2.971439	7.075380	13.754295	Н	7.110627	4.475532	7.471035
Н	-0.225610	11.015339	11.707523	С	7.825301	8.246273	11.844903	Н	6.535673	8.539518	9.581936
С	3.477680	11.045759	8.416284	Н	8.154700	7.735859	10.927977	(vii	i) TS_2'		
Н	2.519309	10.772774	8.882467	Н	8.566216	8.030190	12.629364	90			
Н	3.270002	11.509685	7.441420	Н	7.827000	9.327744	11.646207	Si	0.069077	1.167174	0.590990
Н	3.977871	11.796342	9.046962	С	8.864304	12.682607	10.795177	Si	-2.786398	0.564911	1.726463
C	3.995053	4.835738	8.815388	Н	9.265360	11.695917	11.056698	С	-3.277563	1.332913	3.396220
Н	3.045454	4.303827	8.909709	Н	9.508628	13.454097	11.241585	C	1 327508	0.245532	0 656895
С	6.425946	6.231059	12.365227	Н	8.907963	12.791477	9.702443	c	-4.527598	0.243332	0.050895
Н	5.455385	5.859968	12.721621	С	6.969677	13.971808	13.581723	С	-2.148890	-1.180578	2.119950
Н	7.206759	5.890413	13.062797	Н	6.100988	14.518639	13.195265	Н	-2.962427	-1.695680	2.654723
Н	6.623026	5.779657	11.383393	Н	7.852061	14.624872	13.515866	Н	-1.260270	-1.193636	2.760518
C	6.410938	6.204104	8.568772	Н	6.789430	13.747130	14.642259	Н	-1.929227	-1.744597	1.204251
Н	7.356814	6.746059	8.471922	С	5.064162	4.241241	8.131218	Н	-2.397707	1.388043	4.054445
С	6.100432	8.341410	13.672976	Н	4.950961	3.246797	7.694492	Н	-4.037693	0.709404	3.892290
Н	6.147736	9.440330	13.682571	С	2.020598	11.820773	14.259574	Н	-3.682481	2.349060	3.299114
Н	6.822080	7.964053	14.412319	Н	1.343823	11.096290	14.729680	Н	-4.898827	-0.584778	1.101069
Н	5.092946	8.037528	13.989154	Н	1.644874	12.833228	14.475290	Н	-4.998846	1.108389	0.572941
C	0.937955	8.265235	10.458645	Н	3.013086	11.718889	14.724466	N	-1.610346	1.619381	0.888094
Н	0.287880	9.109617	10.186878	С	8.306737	11.862381	13.513529	н	-1 029859	-0.057913	-0 358448
Н	0.327746	7.349369	10.470219	Н	7.992623	11.648448	14.544527		1.021034	-0.037913	1 401024
Н	1.706180	8.167540	9.678511	Н	9.252180	12.421343	13.547961	C	-1.221834	4.5/2/18	1.481834
C	6.832896	14.142203	10.699017	Н	8.484361	10.903816	13.009618	Si	-2.101132	3.288919	0.402723
Н	6.880876	14.101826	9.602095	С	0.430346	8.809571	13.468442	С	-3.971062	3.600911	0.588027
Н	7.397893	15.021502	11.038844	Н	0.880588	8.837113	14.471224	Н	-4.393815	3.361817	1.571976

Н	-4.552232	3.076864	-0.182618	С	3.699529	-3.512776	0.364069	C	3.595773	2.929470	-0.724105
Н	-4.108617	4.682271	0.425131	C	2.966178	-2.324788	0.373850	C	3.816042	2.473855	-2.171723
С	-1.752912	3.584000	-1.435877	C	1.671525	-1.520320	3.597610	Н	2.858438	2.406153	-2.706979
Н	-2.126079	4.584037	-1.708851	Н	2.003831	-1.412113	4.640218	Н	4.275260	1.475097	-2.160187
Н	-2.287136	2.843136	-2.048829	Н	2.390188	-2.168073	3.082613	Н	5.497605	2.113452	-0.113959
Н	-0.680167	3.548475	-1.663008	Н	0.692939	-2.021792	3.604627	Н	4.481616	3.156187	-2.720408
Н	-0.595746	0.976019	-2.311068	Н	-0.099010	-3.584826	1.197570	С	4.931592	3.048623	0.002664
С	-1.063954	-0.018209	-2.329448	Н	1.212733	-5.699675	1.189536	Н	5.535184	3.868779	-0.415440
Н	-1.255292	-0.294343	-3.376118	Н	3.648384	-5.655290	0.658239	Н	4.787055	3.227797	1.075224
Н	-2.025122	0.047758	-1.800905	Н	4.764942	-3.488933	0.127883	Н	3.848203	5.597131	-1.803950
С	-0.147944	-1.060767	-1.668971	Н	3.446131	-1.370749	0.146436	С	2.823829	5.197103	-1.765756
С	1.205526	-1.074589	-2.405747	C	2.991734	0.489687	2.847397	С	2.675304	4.200048	-0.624095
Н	1.045811	-1.242781	-3.481336	Н	3.458637	0.559130	3.841591	Н	2.588574	4.735019	-2.732687
Н	1.719389	-0.111728	-2.271566	Н	3.628409	-0.133803	2.205170	Н	2.133323	6.038659	-1.611776
Н	1.859471	-1.873235	-2.031361	Н	2.939820	1.488087	2.395843	C	2.797558	4.912673	0.727153
N	0.010637	-0.622853	-0.263918	Ν	0.923479	-0.117842	1.637819	Н	2.651306	4.205744	1.557333
С	-0.821999	-2.441356	-1.750201	С	1.582715	-0.117257	2.972905	Н	2.015491	5.682192	0.794943
Н	-1.031307	-2.690214	-2.801387	С	0.728844	0.765523	3.902983	Н	3.775320	5.401122	0.842418
Н	-1.774860	-2.437975	-1.200933	Н	1.227941	0.861449	4.878120	Н	0.915758	2.469023	1.493919
Н	-0.181018	-3.229901	-1.336185	Н	-0.262200	0.320246	4.068862	(ix)	Product'		
Н	0.596804	1.766502	3.469498	Н	-1.543305	5.587053	1.198437	90			
С	1.594239	-2.349705	0.670647	Н	-0.133665	4.501375	1.359791	Si	-0.130617	1.225805	1.397478
С	0.833047	-1.074942	0.682419	Н	-1.466102	4.413501	2.543148	Si	-2.435400	-0.116020	-0.337772
С	0.965269	-3.569584	0.956272	В	1.446240	2.340484	-0.094138	C	-3.943704	-0.658413	0.690376
С	1.705452	-4.753832	0.956609	0	1.339368	3.611381	-0.703127	C	-2.999292	0.335149	-2.099725
С	3.072042	-4.728174	0.659315	О	2.799504	1.901966	-0.067985	С	-1.363763	-1.668473	-0.526714

Н	-1.973355	-2.426778	-1.043169	Н	3.809214	1.317999	-2.553369	Н	1.460573	-0.932302	4.963858
Н	-1.043550	-2.083153	0.436866	Н	3.385122	1.936569	-0.939290	Н	2.589306	-0.323453	3.725955
Н	-0.468836	-1.466984	-1.126193	Н	4.062242	0.292919	-1.119322	Н	1.139926	0.622149	4.143379
Н	-3.632070	-0.884931	1.721423	Ν	1.282228	0.279185	-0.446119	Ν	0.774726	-0.348002	1.637744
Н	-4.381683	-1.572278	0.259117	C	1.982074	-0.756704	-2.625193	C	0.736345	-1.141408	2.914267
Н	-4.729198	0.107256	0.735516	Н	2.339187	-0.490624	-3.631881	C	-0.738686	-1.289320	3.349117
Н	-3.544049	-0.516413	-2.536909	Н	0.972477	-1.180930	-2.725118	Н	-0.781179	-1.830137	4.305607
Н	-3.660430	1.211174	-2.139919	Н	2.650105	-1.527996	-2.223401	Н	-1.305987	-1.869151	2.606954
N	-1.621324	1.269617	0.427761	Н	-1.229964	-0.318782	3.482309	Н	-2.451293	4.892148	1.810561
Н	-2.126262	0.541971	-2.736529	C	2.826371	-1.372736	0.599021	Н	-0.909113	4.057609	2.084672
С	-1.983149	3.900838	1.919905	C	1.616145	-0.493572	0.546197	Н	-2.395509	3.421206	2.818735
Si	-2.386821	2.886840	0.360184	C	2.855833	-2.628803	-0.023708	В	1.218446	2.737672	1.248383
С	-4.288324	2.817572	0.327897	C	4.010150	-3.413539	0.022514	0	1.471357	3.613852	0.209320
Н	-4.684141	2.383717	1.257259	C	5.151454	-2.947620	0.683728	0	1.980819	3.014660	2.372533
Н	-4.708360	2.262373	-0.521184	C	5.131279	-1.692194	1.301194	С	2.963522	4.050529	2.016999
Н	-4.654402	3.854726	0.259311	C	3.974822	-0.909863	1.260681	С	4.288602	3.327585	1.766883
С	-1.787225	3.849143	-1.159803	C	1.282475	-2.575337	2.779632	Н	4.205432	2.611620	0.938195
Н	-2.263052	4.841682	-1.199705	Н	1.010790	-3.126730	3.691634	Н	4.561692	2.768815	2.673428
Н	-2.025114	3.312481	-2.089592	Н	2.372154	-2.614754	2.682807	Н	3.522376	4.463842	4.057999
Н	-0.697441	3.984126	-1.110709	Н	0.832919	-3.097820	1.923590	Н	5.097391	4.035737	1.539675
Н	1.102156	2.504454	-1.866997	Н	1.960286	-3.001689	-0.523627	C	3.101666	5.003479	3.198234
С	1.118755	1.578470	-2.454619	Н	4.017371	-4.394127	-0.457590	Н	3.780937	5.831938	2.949022
Н	1.534178	1.792832	-3.451115	Н	6.053773	-3.561207	0.718568	Н	2.132593	5.421226	3.497814
Н	0.083144	1.229533	-2.571281	Н	6.019006	-1.321556	1.817533	Н	4.029024	5.836231	-0.002234
С	1.960720	0.505622	-1.738657	Н	3.956020	0.070100	1.741792	C	3.336505	5.061800	-0.363967
С	3.396473	1.039124	-1.571776	С	1.528561	-0.396071	4.004919	С	2.332616	4.693435	0.721834

Η	3.921311	4.194253	-0.690802	Н	0.870675	6.142272	0.092481
Н	2.801953	5.462365	-1.236258	Н	1.991188	6.762124	1.333726
С	1.414956	5.883371	1.011379	Н	-0.627603	1.448048	2.813686
Н	0.675519	5.645737	1.787119				

References

S1. S. S. Sen, J. Hey, R. Herbst-Irmer, H. W. Roesky and D. Stalke, *J. Am. Chem. Soc.*, 2011, **133**, 12311–12316.

S2. Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

S3. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112-122.

S4. L. J. Farrugia, J. Appl. Cryst., 1997, 30, 565.

S5. TURBOMOLE V7.1 2016, a development of University of Karlsruhe and Forschungszentrum

Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from

http://www.turbomole.com.

S6. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

S7. A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.

S8. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, 240, 283–289.

S9. M. Sierka, A. Hogekamp and R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136-9148.

S10. A. Klamt and G. Schuurmann, J. Chem. Soc., Perkin Trans., 1993, 2, 799-805.