Electronic Supplementary Information

Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal-support interaction for RWGS reaction

Yang Yu,^a Renxi Jin,^{*b} Justin Easa,^b Wei Lu,^a Man Yang,^a Xianchun Liu,^a Yan Xing^{*a} and Zhan Shi^{*c}

- ^a Jilin Provincial Key Laboratory of Advanced Energy Materials, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
- ^b Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
- ^c College of Chemistry, Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative, Changchun 130022, China.

Experimental

Synthesis of SiO₂ hollow nanofibers. The SiO₂ hollow nanofibers were prepared through a single capillary electrospinning method. 0.95 g of polyvinylpyrrolidone (PVP, $M_n = 1300000$) was completely dissolved in 10 mL of ethanol. After stirring for several minutes, 1.6 ml of tetraethylorthosilicate (TEOS) was slowly added to form a homogeneous solution. Then, the precursor was transferred into a plastic syringe for electrospinning under the voltage of 9.5 kV and the products were collected at a distance about 20 cm to the syringe tip. Finally, the composites of PVP/TEOS were calcined in the air at 550 °C for 2 h to obtain SiO₂ hollow nanofibers.

Synthesis of hierarchical double-shells CuSiO hollow nanofibers. The hierarchical double-shells CuSiO hollow nanofibers were prepared through a simple hydrothermal process. In brief, copper acetate monohydrate (0.2 mmol), ammonia chloride (2 mmol) and $NH_3 \cdot H_2O$ (0.2 mL, 28%) were added to 10 mL distilled water and transferred into a 15 mL Teflon-lined autoclave after full mixing with as-prepared SiO₂ hollow nanofibers (0.02 g). The autoclave was sealed and maintained at 140 °C for 10 h, the

resulting light blue precipitates were collected and washed several times with distilled water and absolute ethanol. The final products were dried at 60 °C for 12 h.

Synthesis of CuSiO/CuO_x hollow nanofibers. The CuSiO/CuO_x hollow nanofibers were prepared through a simple hydrogen reduction process. The obtained products were placed in a porcelain boat, and then calcined at 350 °C for 2 hours in a tubing furnace under H₂/Ar (5% H₂, 95% Ar) mixed atmosphere. The final black products were CuSiO/CuO_x hollow nanofibers. Conventional SiO₂/Cu and TiO₂/Cu catalysts were prepared by impregnation method. 0.85 g of fused SiO₂ or TiO₂ power was impregnated by soaking the powders in a solution of 0.57 g of Cu(NO₃)₂·3H₂O in a sealed vial, followed by drying. Then, the obtained powers were calcined at 350 °C for 2 hours in a tubing furnace under H₂/Ar mixed atmosphere, too. The surface composition of copper was determined to be 15 wt% from the XPS data.

Catalyst Evaluation for the RWGS Reaction. The RWGS reaction was conducted under atmospheric pressure in a quartz-tube fixed bed reactor (i.d. 4 mm). A 20 mg amount of the catalyst was used for one batch. A gas mixture of 4% Ar, 24% CO₂ and 72% H₂ was passed through the catalyst bed at a flow rate of 20 mL/min. The products were analyzed by an online gas chromatograph (Agilent 7820) equipped with a TCD detector. The outlet gas flow rate was determined by the inner standard method, in which the CH₄, CO, and CO₂ were calculated based on the flow rate of inner gas (Ar). CO₂ conversion was calculated from the measured CO₂ concentration using the formula CO₂ conversion = [(CO_{2in} – CO_{2out})/CO_{2in}], where CO_{2in} and CO_{2out} were the inlet and outlet CO₂ concentration, respectively.

Characterization. Siemens D5005 Diffractometer was used to record the X-ray diffraction (XRD) patterns. Transmission electron microscopic (TEM) images and high angle annular dark field STEM (HAADF-STEM) image were obtained on a JEM-2100F microscope. Scanning electron microscopy (SEM) images were obtained on XL30 ESEM FEG microscope. Elemental analysis was performed with a TJAPOEMS spectrometer. X-ray photoelectron spectroscopy (XPS) was analyzed on Thermo ESCALAB 250 XPS instrument. The Brunauer-Emmett-Teller (BET) surface area of the samples was performed on Micromeritics Tristar 3000 analyzer at 77.4 K.

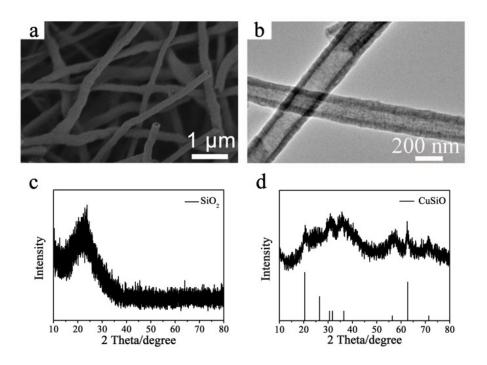


Fig. S1 Typical SEM (a) and TEM (b) images of SiO₂ nanofibers; XRD patterns of (c) SiO₂ and (d) CuSiO nanofibers.

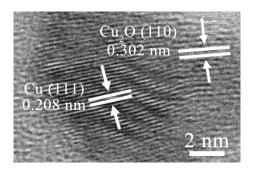


Fig. S2 HRTEM image of the CuO_x nanoparticles.

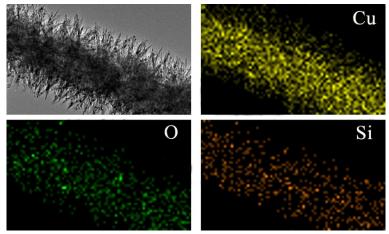


Fig. S3 Mapping of elements by EDX analysis of CuSiO/CuO_x

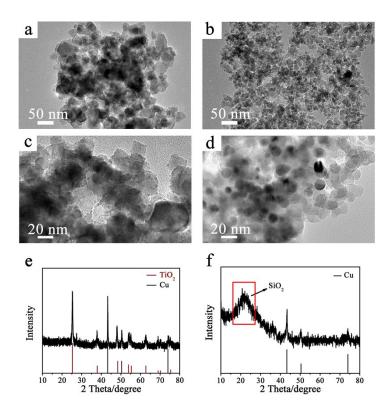


Fig. S4 Typical TEM images of (a, c) TiO_2/Cu and (b, d) SiO_2/Cu ; XRD patterns of (e) TiO_2/Cu and (f) SiO_2/Cu .

Catalyst	Temperature (°C)	Activity (10 ⁻⁵ mol _{CO2} /g _{cat} /s)	References
CuSiO/CuO _X	500	3.18	This work
TiO ₂ /Cu	500	1.78	This work
SiO ₂ /Cu	500	1.11	This work
Cu/Al_2O_3	500	0.9	1
Cu/Al_2O_3	600	3.1	2
CuO _x /CeO ₂	550	1.23	3
Cu-CeO ₂	400	2.23	4
Cu/β-Mo ₂ C	500	1.64	5
Cu/mesoporous silica	400	0.167	6
Cu/SiO ₂	500	3.34	7
Cu/SiO ₂	600	1.49	8
Fe/SiO ₂	600	0.744	8
CuFe/Al ₂ O ₃	400	2.67	9
Ni/Ce-Zr-O	550	2.17	10
In_2O_3	500	2.38	11
CeO ₂	500	1.34	11
In ₂ O ₃ –CeO ₂	500	2.98	11

Table S1 Catalytic activities of the $CuSiO/CuO_X$ compared with reported conventional catalysts toward the RWGS

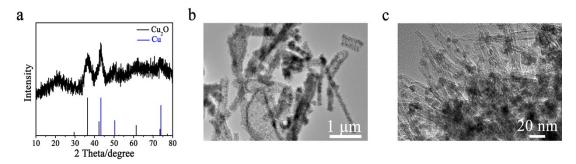


Fig. S5 XRD (a) patterns and TEM (b, c) images of CuSiO/CuO_x catalysts after stability test.

References

[1] Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al_2O_3 catalyst. Catalysis Letters, 68 (2000) 45–48.

[2] Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations. SCIENTIFIC REPORTS, 2017, 7, 41207.

[3] CuO_x/CeO₂ catalyst derived from metal organic framework for reverse water-gas shift reaction. Applied Catalysis A, General, 562 (2018) 28–36.

[4] CO₂ Reverse Water-Gas Shift Reaction on Mesoporous M-CeO₂ Catalysts. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 95 (2017) 634-642.

[5] Understanding the promoter effect of Cu and Cs over highly effective β -Mo₂C catalysts for the reverse water-gas shift reaction. Applied Catalysis B: Environmental, 244 (2019) 889–898.

[6] CeCu composite catalyst for CO synthesis by reverse water–gas shift reaction: Effect of Ce/Cu mole ratio. Journal of CO₂ Utilization, 21 (2017) 292–301.

[7] Study of reverse water gas shift reaction by TPD, TPR and CO₂ hydrogenation over potassium-promoted Cu/SiO₂ catalyst. Applied Catalysis A: General, 238 (2003) 55–67.

[8] Study of iron-promoted Cu/SiO₂ catalyst on high temperature reverse water gas shift reaction. Applied Catalysis A: General, 257 (2004) 97-106.

[9] CO₂ valorisation via Reverse Water-Gas Shift reaction using advanced Cs doped Fe-Cu/Al₂O₃ catalysts. Journal of CO₂ Utilization, 21 (2017) 423–428.

[10] Ni/Ce-Zr-O catalyst for high CO₂ conversion during reverse water gas shift reaction (RWGS). International Journal of Hydrogen Energy, 40 (2015) 15985-15993.

[11] Reverse water gas shift over In₂O₃-CeO₂ catalysts. Catalysis Today, 259 (2016) 402-408.