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Experimental

Materials and instruments.

All the chemical reagents were purchased from Sigma Aldrich. Recombinant
glucosyltransferases was gifted from Professor Jungui Dai of Institute of Materia
Medica, Chinese Academy of Medical Sciences and Peking Union Medical College.
Human uridine-disphosphate  glucuronosyl-transferases (UGT1A7, UGTI1A10,
UGT2B10, UGT2BI11); human Carboxylesterase (CES1b, CESlc, CES2) were
purchased from Corning Incorporated Life Sciences. DPP8 peptidase and proteins
BSA, HSA were purchased from sigma-aldrich.

NMR spectra were measured using Bruker-600, 500 with tetramethylsilane (TMS)
as the internal standard (Bruker, USA). HR-MS data were obtained on an Agilent
1290 infinity 6540 UHD accurate mass Q-TOF MS (Agilent, USA). Constant
temperature incubator shaker (ZHWY-2012C) was the production of by Shanghai
Zhicheng Analytical Instrument Co. Ltd (P. R. China). Fluorescence microscopic
imaging was conducted with Leica Confocal Microscope. The bioassay solutions in

96-well plates were also analysed using a BioTek Synergy H1 microplate reader

(BioTek, USA).
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Scheme S1. The synthesis route of fluorescent probe PENA.
Synthesis of the fluorescent probe N-phenethyl-4-hydroxy-1,8-naphthalimide
(PENA)

Synthesis of compound 1

4-Bromo-1,8-naphthalic anhydride (1 g, 3.62 mmol) and phenylethylamine (0.482
g, 3.98 mmol) were dissolved in ethanol (50 mL). The reaction mixture was stirred
and refluxed for 8 h. After cooling to room temperature, the mixture was poured into
ice water; the precipitate was isolated, washed with water, and dried to yield 1.25 g of
a yellowish-color solid (90.9%)."H NMR (500 MHz, CDCls) § 8.67 (d, J = 7.3 Hz,
1H), 8.59 (d, J= 8.5 Hz, 1H), 8.43 (d, /= 7.9 Hz, 1H), 8.06 (d, /= 7.8 Hz, 1H), 7.91
—7.80 (m, 1H), 7.36 (d, J= 7.4 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.2 Hz,
1H), 4.47 — 4.33 (m, 2H), 3.06 — 2.95 (m, 2H). >*C NMR (125 MHz,CDCls) § 163.49,
163.46, 138.65, 133.32, 132.04, 131.23, 131.14, 130.68, 130.32, 129.01, 128.53,
128.11, 126.51, 123.10, 122.23, 41.91, 34.25. HRMS caled for CxH;sBrNO,"
([M+H]") 380.0281, found 380.0276.

Synthesis of compound 2

A mixture of compound 1 (0.8 g, 2.1 mmol) and K>CO3 (2.54 g, 18.4 mmol) in 30
mL CH30OH was refluxed for 10 h. After cooling to room temperature, excess
methanol was removed under reduced pressure and the precipitate was filtered,
washed with water and dried to yield compound 2 as a yellow solid (0.593 g, yield:
85.3%). 'H NMR (500 MHz, CDCls) § 8.62 (dd, J= 7.3, 0.9 Hz, 1H), 8.58 (d, J = 8.3
Hz, 2H), 7.76 — 7.68 (m, 1H), 7.38 (d, J = 7.2 Hz, 2H), 7.31 (t, /= 7.5 Hz, 2H), 7.22
(t,J=17.3 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 4.48 — 4.33 (m, 2H), 4.14 (s, 3H), 3.09 —
2.95 (m, 2H). 3C NMR (125 MHz, CDCl3) & 164.40, 163.82, 160.87, 139.00, 133.45,
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129.42, 129.04, 128.69, 128.47, 126.37, 125.97, 123.56, 122.42, 115.11, 105.23,
56.21, 41.71, 34.37. HRMS caled for CHisNO;™ ((M+H]") 332.1281, found
332.1283.

Synthesis of fluorescent probe N-phenethyl-4-hydroxy-1,8-naphthalimide (PENA)

A mixture of compound 2 (0.3 g, 0.91 mmol) and 10 mL concentrated HI (55 - 58%)
was refluxed for 14 h. After cooling the mixture was poured into water; the precipitate
was isolated, washed with water, and dried to yield 0.232 g of the yellow needles
solid (80.4%). 'H NMR (500 MHz, DMSO-d6) & 11.89 (s, 1H), 8.56 (d, J = 8.3 Hz,
1H), 8.50 (d, J= 7.2 Hz, 1H), 8.38 (d, J = 8.2 Hz, 1H), 7.82 — 7.76 (m, 1H), 7.38 —
7.25 (m, 4H), 7.25 — 7.13 (m, 2H), 4.30 — 4.17 (m, 2H), 2.96 — 2.86 (m, 2H). 1*C
NMR (125MHz, DMSO-d6) & 163.56, 162.87, 160.31, 138.82, 133.58, 131.14,
129.19, 128.95, 128.58, 128.42 126.29, 125.62, 122.40, 121.77, 112.54, 109.99, 40.74,
33.60. HRMS calcd for C20H14NO3™ ([M-H]) 316.0979, found 316.0986.

Preparation of 4-O-f-D-glucopyranosyl-N-phenethyl-4-hydroxy-1,8-
naphthalimide (PENA-G) by the glucoylation of PENA mediated by fungi
Rhizopus oryzae.

The filamentous fungi R. oryzae was pre-incubated in potato medium to get enough
fungi cells for the glucosylation experiment. After filtration, the fungi cells were
suspended in the glucosylation medium. The glucosylation medium was sodium
phosphate buffer: 13.62 g NaH>POs, 2.36 g NaOH, and 20 g D-glucose in 1000 mL
water. 1.5 g R. oryzae AS 3.2380 fungus cells were pre-incubated in the glucosylation
medium (200 mL), 30 °C, 130 rpm for 12 h. Then, PENA substrates (50 mg)
dissolved in acetone were injected into the medium with the continued incubation for
24 h. When the fungus cells were filtered, the incubation culture was subjected to a
MCI column, which was eluted by 30% ethanol aqueous, 50% ethanol aqueous, and
95% ethanol, successively. The PENA could be obtained in the 50% ethanol aqueous
elution with the purity > 95%, the structure of which was determined on the basis of
widely spectroscopic data.

The glucosylation of PENA mediated by GTFs and the Glucosyltransferase

activity analysis of GTFs by the fluorescent probe PENA.
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The fluorescent probe PENA was glucosylated by GTFs in the presence of UDPG
(300 uM) with the yield of PENA-G. The glucosyltransferase (10 pg/mL) was
dissolved in 200 puL phosphate buffer (pH 7) together with PENA (5 uM) and
uridine-diphosphate glucose (UDPG, 300 uM), which was incubated at 37 °C for 30
min. PENA (10 uM) was obtained when the PENA stock solution (1 mM, DMSO)
was added into the phosphate buffer with the DMSO volume < 1%, which could
improve the solubility of PENA and keep the activity of GTFs. Then, 100 uL
acetonitrile was added to stop the enzymatic reaction. The reaction solutions were
measured the fluorescence spectra using BioTek Synergy H1 microplate reader (Aex
395 nm). The enzymatic reaction solution was analysed for the production of
PENA-G using HPLC (20%-100% methanol, 0-30 min, flow rate 0.8 mL/min)

Fluorescence responses of PENA (5 uM) to the concentration of GTFs were
performed upon addition of increasing concentration of GT (0 — 32 pg/mL) in
phosphate buffer for 30 min. Meantime, fluorescence responses of PENA (5 uM) to
the incubation time were studied upon the addition of GTFs (10 pg/mL) in phosphate
buffer for incubation time 0 — 80 min with acetonitrile (33%, v/v) to terminate the
enzymatic reaction (Aex 395 nm, 37 °C). The relationship was analyzed on the basis of
the fluorescence intensities ratio (I440/1560).

The enzymatic selectivity experiments towards different enzymes (10 pg/mL) were
preformed according to their enzymatic reaction conditions, including Human
uridine-disphosphate glucuronosyl-transferases (UGT1A7, UGT1A10, UGT2B10,
UGT2BI11); human Carboxylesterase (CES1b, CESlc, CES2), DPP8 peptidase and
proteins BSA, HSA.

The fluorescence intensity ratio (lsso/lseo) was studied on the basis of the
fluorescence emission (Aex 395 nm). The influence of metal ions on the fluorescence
emission of PENA and PENA-G and the activity of GTFs were measured with the
presence of K¥, Fe**, Ba?*, Ca?*, Na®, Mn?*, Sn*', Zn?**, Ni**, Cu?*, Cr*" (each 2 mM).
Similarly, the influence of amino acids on the fluorescence intensities of PENA and
PENA-G and the glucosylation capability of GTFs were studied in the presence of

various amino acids, such as Ala, Pro, Iso, Phe, Met, Gln, Try, Glu, Asp.
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In order to estimate the kinetic parameters of PENA for GTFs, the reaction kinetics
were performed. Brieflyy, PENA (0—40 uM) was incubated with GTFs for 30 min
which ensured less than 20% of substrate was metabolized, and the formation rates of
PENA-G were in relation to incubation time and protein concentration in the linear
range. The PENA stock solution was prepared to be 10 mM in DMSO, which was
added into the GTFs enzymatic reaction system with DMSO < 1%. The apparent Kn
and Vmax values were calculated from nonlinear regression analysis of experimental

data according to the Michaelis-Menten equation.

VinaxX[S
e ] e (1)

Km+([S]

The Vmax represents the maximum rate and K, is the substrate concentration at the
half-maximal rate. Kinetic constants were obtained using Origin 7.5 (origin Lap Corp.
Northampton. MA.USA) and produced as the mean + SD of the parameter estimate.

Confocal laser microscopic imaging of bacteria.

In our work, PENA was incubated with seven bacteria strains, including
Streptococcus  mutans, Hemolytic streptococcus, Lactobacillus amylovorus,
Streptococcus pasteurianus strain 080205, Bacillus cereus 994000168 LBK,
Escherichia coli DH5alpha BRL, Staphylococcus aureus ssp. aureus DSM 3463, to
get the fluorescence images by confocal laser scanning microscope. These bacteria
were culutred in Luria-Bertani (LB) medium for 24 h to get enuogh bacteria cells with
OD value 0.8. Then, PENA (50 uM) was subjected into the culture for a
co-incubation with bacteria about 1h at 37 °C. After the clean out of the medium, the
bacterial cells were suspended in PBS solution, which were dropped on slide glasses
for imaging experiment. The bacteria were imaged using Confocal Microscope with
Aex 405/hem 415 — 465 nm, Aex 405/Aem 535 — 585 nm. To study the enzyme specificity,
the bacteria were pretreated with enzyme inhibitor EGCG (50 uM) and labeled with
PENA for imaging studies.

Isolated of GTFs inhibitors from green tea.

500 g green tea was extracted with 70% ethanol in water refluxed for 2h. Then,

after the evaporation of solvents, the extract was subjected to Waters preparative
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HPLC with RP C-18 column for the bioactive fractions preparation. The mobile phase
(methanol-water) was assigned as gradient elution for the pre-HPLC. The gradient
elution was determined as 10%-20% methanol (0-10 min); 20%-30% methanol (10-40
min); 30%-40% methanol (40-50 min); 40%-100% methanol (50-55 min). For the
bioactive fractions with inhibitory effects on GTFs, the main chemical constituents
were purified using pre-HPLC again. The structures of isolated compounds were
determined on the basis of 'TH NMR, *C NMR and ESI-MS analysis in combination
with the literatures. The spectroscopic data of isolated compounds were submitted as
followed.

Gallocatechin gallate (GCG). 'H NMR (600 MHz, MeOD) § 6.97 (s, 2H), 6.39 (s,
2H), 5.95 (s, 2H), 5.38 (q, J = 5.2 Hz, 1H), 5.05 (d, /= 5.2 Hz, 1H), 4.10 (q, /= 7.1
Hz, 1H), 2.74 (qd, J = 16.7, 5.1 Hz, 2H), 2.01 (s, 1H), 1.24 (t, J = 7.1 Hz, 1H). *C
NMR (150 MHz, MeOD) & 14.46. 20.85, 23.67, 61.54, 71.06, 79.18, 95.57, 96.36,
99.51, 106.27, 110.13, 121.42, 130.99, 133.94, 139.88, 146.39, 146.98, 156.39,
157.64, 158.12, 167.67, 173.01. (+)-ES-MS m/z 459.1 [M+H]", caled for C2oHi9011",
459.0927.

Epigallocatechin gallate (EGCG). 'H NMR (600 MHz, MeOD) § 6.96 (s, 1H),
6.52 (s, 1H), 5.97 (s, 1H), 5.55 (s, 1H), 3.00 (dd, J = 17.2, 4.6 Hz, 1H), 2.86 (dd, J =
17.3, 2.4 Hz, 1H). '3C NMR (150 MHz, MeOD) & 25.44, 48.17, 48.45, 68.53, 77.21,
94.46, 95.10, 98.00, 105.46, 108.84, 120.11, 129.40, 132.38, 138.38, 144.88, 145.28,
155.83, 156.45, 156.49, 166.25. (+)-ES-MS m/z 459.1 [M+H]", calcd for C22Hi9011"
459.0927.

1,4,6-tri-O-galloyl-g-D-glucose (TGG). 'H NMR (600 MHz, MeOD) § 7.17 (s,
2H), 7.12 (s, 2H), 7.08 (s, 2H), 5.80 (d, J = 8.2 Hz, 1H), 5.24 (t, J=9.7 Hz, 1H), 4.46
(dd, J=12.3, 2.0 Hz, 1H), 4.24 (dd, J = 12.4, 4.8 Hz, 1H), 4.08 (ddd, J = 10.0, 4.7,
2.2 Hz, 1H), 3.86 (t, J = 9.3 Hz, 1H), 3.70 — 3.62 (m, 1H). *C NMR (150 MHz,
MeOD) 6 48.17, 62.22, 70.46, 72.89, 73.02, 74.62, 94.43, 108.89, 109.00, 109.20,
119.11, 119.61, 119.75, 138.50, 138.69, 139.07, 145.02, 145.11, 145.15, 165.51,
166.04, 166.65. (+)-ES-MS m/z 659.1 [M+Na]", calcd for C27H24NaO1s" 659.0860.

Epicatechin gallate (ECG). 'H NMR (600 MHz, MeOD) § 6.99 — 6.92 (m, 3H),
510



6.83 (dd, J=8.2, 1.9 Hz, 1H), 6.71 (d, J= 8.2 Hz, 1H), 5.98 (t, J= 1.9 Hz, 1H), 5.54
(d, J= 1.6 Hz, 1H), 5.05 (s, 1H), 3.01 (dd, J = 17.3, 4.6 Hz, 1H), 2.87 (dd, J= 17.4,
2.1 Hz, 1H). 3C NMR (150 MHz, MeOD) § 27.47, 50.18, 50.46, 70.57, 79.23, 99.96,
110.79, 115.70, 116.59,119.97, 122.06, 132.06, 140.38, 146.55, 146.57, 146.92,
157.82, 158.40, 158.44, 168.19. (-)-ES-MS m/z 441.0 [M-H], calcd for C2Hi7010"
441.0822.

Catechin gallate (CG). 'H NMR (600 MHz, MeOD) § 6.98 (s, 2H), 6.85 (s, 1H),
6.74 (s, 2H), 5.97 (dd, J = 9.4, 2.3 Hz, 2H), 5.39 (q, /= 5.9 Hz, 1H), 5.08 (d, /= 5.9
Hz, 1H), 2.83 (dd, J = 16.5, 5.1 Hz, 1H), 2.73 (dd, J = 16.5, 6.0 Hz, 1H). '*C NMR
(150 MHz, MeOD) § 166.17, 156.76, 156.25, 155.10, 144.98, 144.93, 144.84, 138.47,
130.11, 119.98, 117.81, 114.81, 113.01, 108.72, 98.23, 95.03, 94.18, 77.94, 69.75,
22.93. (+)-ESI-MS m/z 465.1 [M+Na]", calcd for C,,H1sNaO1" 465.0798.

Epigallocatechin (EGC). 'H NMR (600 MHz, MeOD) § 6.53 (s, 2H), 5.95 (d, J =
2.3 Hz, 1H), 5.93 (d, J = 2.3 Hz, 1H), 4.77 (s, 1H), 4.19 (t, J = 3.0 Hz, 1H), 2.87 (dd,
J=16.6,4.6 Hz, 1H), 2.75 (dd, J = 16.7, 2.9 Hz, 1H). '3C NMR (150 MHz, MeOD) §
156.60, 156.28, 155.92, 145.29, 132.20, 130.12, 105.55, 98.67, 94.94, 94.45, 78.50,
66.12, 27.76. (+)-ESI-MS m/z 307.0 [M+H]", calcd for C1sH;507" 307.0818.

Catechin (CA). '"H NMR (600 MHz, MeOD) & 6.75 (d, J = 1.9 Hz, 1H), 6.67 (d, J
=8.1 Hz, 1H), 6.63 (dd, J=8.1, 1.9 Hz, 1H), 5.84 (d, J=2.3 Hz, 1H), 5.76 (d, J=2.3
Hz, 1H), 4.47 (d, J= 7.5 Hz, 1H), 3.88 (td, J = 7.9, 5.5 Hz, 1H), 2.76 (dd, J = 16.1,
5.4 Hz, 1H), 2.42 (dd, J = 16.1, 8.2 Hz, 1H). '*C NMR (150 MHz, MeOD) & 156.46,
156.20, 155.53, 144.86, 144.84, 130.81, 118.63, 114.65, 113.84, 99.39, 94.85, 94.07,
81.47,67.42, 27.14. (+)-ESI-MS m/z 291.3 [M+H]", caled for C1sHisO6™ 291.2790.

Gallocatechin (GC). '"H NMR (600 MHz, MeOD) § 6.32 (s, 2H), 5.84 (d, J = 2.3
Hz, 1H), 5.77 (d, J = 2.3 Hz, 1H), 4.44 (d, J = 7.2 Hz, 1H), 3.88 (td, /= 7.5, 5.4 Hz,
1H), 2.73 (dd, J = 16.1, 5.3 Hz, 1H), 2.42 (dd, J = 16.1, 7.8 Hz, 1H). '*C NMR (150
MHz, MeOD) § 156.44, 156.21, 155.45, 145.46, 132.60, 130.14, 105.76, 99.29, 94.83,
94.08, 81.48, 67.37, 26.71. (+)-ESI-MS m/z 329.1 [M+Na]", calcd for CisH;4NaO;"
329.0637 .
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Epicatechin (ECA). 'H NMR (600 MHz, MeOD) § 6.99 (d, J = 1.9 Hz, 1H), 6.82
(dd, J = 8.2, 1.9 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.96 (d, J = 2.3 Hz, 1H), 5.93 (d, J
= 2.3 Hz, 1H), 4.84 (s, 1H), 4.22 — 4.16 (m, 1H), 2.88 (dd, J = 16.7, 4.6 Hz, 1H), 2.76
(dd, J = 16.8, 2.8 Hz, 1H). 3C NMR (150 MHz, MeOD) § 156.62, 156.28, 155.98,
144,55, 144.39, 130.89, 117.98, 114.47, 113.91, 98.65, 94.96, 94.47, 78.48, 66.10,
27.88. (+)-ESI-MS m/z 313.1 [M+Na]*, calcd for C1sH14NaOs* 313.0688.
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Wavelength (nm) Wavelength (nm)

=}

Fig. S1. (a) Absorbance spectra and (b) fluorescence spectra of PENA and PENA-G,
Aex 395 nm.

HPLC-DAD chromatograms
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Fig. S2. HPLC-DAD chromatograms of the enzymatic glucosylation of PENA
mediated by GTFs. (1) Enzymatic reaction solution for the co-incubation of PENA,
GTFs (10 pg/mL), and UDPG (300 uM). (2) Control solution containing GTFs (10
pg/mL), UDPG (300 uM). (3) Reference PENA-G. (4) Reference PENA.
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Fig. S3. (a) Fluorescence responses of PENA towards GTFs with different
concentrations (0 — 32 ug/mL). (b) Linear relationship between fluorescence ratio (1440

/Is60) and GTFs concentrations (0 — 32 pg/mL). PENA-G Aex 395/ em 440 nm, PENA

Aex 395/Aem 560 nm.
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Fig. S4. (a) Fluorescence responses of PENA towards GTFs with different incubation
time (0 — 80 min). (b) Linear relationship between fluorescence ratio (Is40/Is60) and

incubation time (0 — 80 min). PENA-G Aex 395/Aem 440 nm, PENA Aex 395/Aem 560

nm.
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Fig. S5. Glucosylation of PENA mediated by GTFs with different incubation

temperature (5 — 55 °C).
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Fig. S6. Fluorescence intensities of PENA and PENA-G in various PBS solutions
with different pH (3 - 12).
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Fig. S7. The conversion rate of PENA glucosylation by GTFs in various PBS

solutions with different pH conditions.

(a) 207 @8 PENA+GT (b) 5,
@8 PENA B PENA+GT
g 151 =4 BB PENA
$ E
< 1.0 \E
= 0.5 -
0.0- N
I SN T, SR R RV Y B S _x\ WX X o R
W I NFFEE ?‘30&0 P R S ‘t’%,‘;o ¢t C’Zo&
<

Fig. S8. Interferences of various amino acids (0.5 mM) (a) and metal ions (2 mM) (b)

for the glucosylation of PENA by GTFs.
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Fig. S9. Enzymatic analysis for glucosylation of PENA (5 uM) by GFTs. (a) Specify
evaluation for glucosylation of PENA mediated by GFTs in comparison with various
biological enzymes, including glycosidase glucuronidases (UGT1A7, UGTI1A10,
UGT2B10, and UGT2B11), hydrolases (CES1b, CESlc, CES2, DPPS), BSA and
HSA (10 pg/mL). (b) The kinetics about the glucosylation of PENA by GTFs.
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Fig. S10. Fluorescence images of various bacteria blank control groups without
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PENA. (a) Streptococcus mutans; (b) Hemolytic streptococcus; (¢) Lactobacillus
amylovorus; (d) Streptococcus pasteurianus strain 080205; (e) Bacillus cereus

994000168 LBK.

Bright PENA-G PENA Merged Ratio

(@)

(b)

(c) 8

(d)

Fig. S11. Fluorescence images of Escherichia coli DH5alpha BRL (a, blank group
without PENA; b, experimental group with PENA 50 uM, Ratio = 0.04); and
Staphylococcus aureus ssp. aureus DSM 3463 (¢, blank group without PENA; d,
experimental group with PENA 50 uM, Ratio = 0.05).

516



IC5y=12.55 + 0.045 pM

404

Residual activity %

)
s

00 04 08 12 1.6 20
Log [Catechin,uM]

Fig. S12. Dose-dependent inhibitory effect of CA on the glucosylation of PENA by
GTFs.
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Fig. S13. Dose-dependent inhibitory effect of CG on the glucosylation of PENA by
GTFs.
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Fig. S14. Dose-dependent inhibitory effect of ECA on the glucosylation of PENA by
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Fig. S15. Dose-dependent inhibitory effect of EGC on the glucosylation of PENA by

GTFs.
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Fig. S16. Dose-dependent inhibitory effect of EGCG on the glucosylation of PENA

by GTFs.
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Fig. S17. Dose-dependent inhibitory effect of GC on the glucosylation of PENA by
GTFs.
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Fig. S18. Dose-dependent inhibitory effect of GCG on the glucosylation of PENA by
GTFs.
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Fig. S19. Dose-dependent inhibitory effect of TGG on the glucosylation of PENA by
GTFs.
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Fig. S20. Dose-dependent inhibitory effect of ECG on the glucosylation of PENA by

GTFs.
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Fig. S21. Inhibition kinetics of GCG on the glucsoylation of PENA mediated by
GTFs. (a,b) Lineweaver—Burk plot of GCG’s inhibition towards the activity of GTFs;
(c) Dixon plot of GCG’s inhibition towards the activity of GTFs; (d) determination of
inhibition kinetic parameter (Ki) using the slopes from Lineweaver—Burk plot towards
the concentration of GCG. The data points represent the mean value of

duplicateexperiments.
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Fig. S22. Inhibition kinetics of EGCG on the glucsoylation of PENA mediated by
GTFs. (a,b) Lineweaver—Burk plot of EGCG’s inhibition towards the activity of
GTFs; (c) Dixon plot of EGCG’s inhibition towards the activity of GTFs; (d)
determination of inhibition kinetic parameter (Ki) using the slopes from Lineweaver—
Burk plot towards the concentration of EGCG. The data points represent the mean

value of duplicate experiments.
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Fig. S37. (+)-ESI-MS spectrum of GCG.
LI-11-2 " o I " R
1H MR LJ-11-2 in MDD b 5 z SRk EX
g < “ “ 0 o cd e e i o
| | e 2 1000
!/ ”
| [ \ ) Fo00
"‘ |
/ | |
| | |
| I f-800
| f
] | / | .‘I f
f ! / /
F700
F600
k500
k100
F300
F200
‘ k100
| ‘,
1 A U S V. . N
oL oy b T Ealian
w [o)] (=] — 1 —
o (o3} [} o — 0
— ) — ] o o
T T T T T T T T T T T T T T T T T T T T T T T T
74 T2 L0 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 3.8 36 34 32 50 2.8

£1 (ppm)

Fig. S38.'H-NMR spectrum of EGCG.

S30



LI-11-2 w»ny oo = o o000 o — o
Conm i (s BE BAS = 2% goe 5 0B ] = I
I~ SN 2N | NN S ! Fe00
800
700
rE00
500
400
300
=200
| =100
N 1 ] |
. L] N -
. L LI B
T T T T T T T T T T T T T T T T
170 160 130 140 130 120 110 100 90 80 0 60 30 40 30 20
1 (ppm)
Fig. $39.3C-NMR spectrum of EGCG.
[ W +Q1: 30 MCA scans from Sample 13 (GOG Q1+) of 20180505 MW.wiff (Turbo Spray) Max. 9.7e6 cps
4501
9.5¢67
9.0e67
85e67
8.0e6
7.5¢61
4811
7.0e6
6.5¢67
n  6.0e6]
o
© 55667
2
‘% 5.0e67
c
S 45e6]
=
4,066
3.5¢67
3.0e6]

2.5e6

2.0e67
1.5e61
1.0e6

5.0e51

40 405 M0 45 40 45 40 435 40 45 40 45 460 465 40 455 40 485 40 4% 500
mz, amu

Fig. S40. (+)-ESI-MS spectrum of EGCG.

S31



EEESEEEE 28 85¢83835¢8 &
L 1 1 L 1 1 1 1 1 1 1 1 1 1 L 1 L I 1
so'¢
%Lw -
gt —_ =
G
oR'g-t —_ - .
55 7 . J Fogt
Ly —_— Fout
T 5
sey — ml Fort
Sh |
St [ — I.l.-lm a0l
tl%
L

_J
2es
VTS — == Fill
oz ,
6LS, . - .
185" - = 001
g
=
g
SGL~ _ _ Ll
s —_— mum._
L - | s
b 1
e |

4.5

6.0

£1 (ppm)

Fig. S41."H-NMR spectrum of TGG.

LJ-15-2

0
1200

F1100

1000

900

800

600

Fo00

400

200

=100

2229,
apoL
m_m.?/
z0°EL
29pe

£Fre—

68801
8.%@.
0601
RIS
19611
mw_m:ﬂ
08 °8E |
%.WSW
L0GEL
zuspl
:.miw
§1spl

18691
g.u.ﬁW
S999L

13C MR LJ-15-2 in Me0D

-20

-10

10

20

50 40

60

90 80

100

210 200 190 180 17 160 150 140 130 120 110 £1 o)
Fig. S42. *C-NMR spectrum of TGG.

0

S32



[ W +Q1: 50 MCA scans from Sanple 3 (LJ-15-2 Q1+) of 20180506.wiff (Turbo Spray) Mex. 3.1€7 cps|
3167 659.1
3.0e71
2.8671
2.6e71
2.4e74
22671
2.0e74
(72}
o
o 1.8e7
=
> 1.6e7
f=
]
= lder
1.2e7- 675.1
659.9
1.0e74
8.0e61
6.0e61
656.3| 661.2
4,066 63
2061 634 a3t 64826493 654 46634
- . .. .. 3 I
580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 6/0 675 680
m'z, amu
Fig. S43. (+)-ESI-MS spectrum of TGG.
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Fig. S44. 'H-NMR spectrum of ECG.
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Fig. S45. 3*C-NMR spectrum of ECG.
[ W -Q1: 50 MCA scans from Sarrple 12 (LJ-16 Q1-) of 20180505 MW.wiff (Turbo Spray) Max. 1.3e8 cps
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Fig. S46. (-)-ESI-MS spectrum of ECG.
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Fig. S47. '"H-NMR spectrum of CG.
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[l +Q1: 60 MCA scans from Sanple 5 (OG Q1+) of 20180828 MW.wiff (Turbo Spray) Mex. 3.1e7 cps
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Fig. $49. (+)-ESI-MS of CG.
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Fig. S50. 'H-NMR spectrum of EGC.
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Fig. S51. >*C-NMR spectrum of EGC.
[ W +Q1: 60 MCA scans from Sanple 16 (EGC QL+) of 20180828 MW.wiff (Turbo Spray) Mex. 1.3e7 cps,
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Fig. S52. (+)-ESI-MS of EGC.
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[ W +Q1: 60 MCA scans from Sample 13 (Catechin Q1+) of 20180828 MW.wiff (Turbo Spray) Max. 8.6€6 cps,
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Fig. S55. (+)-ESI-MS of CA.
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Fig. S56. 'H-NMR spectrum of GC.
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Fig. S57. *C-NMR spectrum of GC.
[l +Q1: 60 MCA scans from Sanmple 3 (GC Q1+) of 20180828 MW.wiff (Turbo Spray) Max. 1.3e7 cps.
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Fig. $58. (+)-ESI-MS of GC.
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Fig. S59. '"H-NMR spectrum of ECA.
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[ W +Q1: 60 MCA scans from Sample 7 (EC Q1+) of 20180828 MW.wiff (Turbo Spray)
186
1766
1666
1566
14e6
13661
1266
1166
10e6{
9.0e51
8.0e51

Intensity, cps

7.0e5
6.0e5-
5.0e5
4.0e5+
3.0e5
20654 2744

1.0e5

3131

4.0

Max. 1.8e6 cps|

20 255 260 265 200 275 25 200 205 30

2
25652584 7339t 2 2911 2 3103\31£j 823196 -
B2 p e 2061205, W 2775 i 203 PR M i A

Fig. S61. (+)-ESI-MS of ECA.
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