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Experimental  

Materials and instruments.  

All the chemical reagents were purchased from Sigma Aldrich. Recombinant 

glucosyltransferases was gifted from Professor Jungui Dai of Institute of Materia 

Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. 

Human uridine-disphosphate glucuronosyl-transferases (UGT1A7, UGT1A10, 

UGT2B10, UGT2B11); human Carboxylesterase (CES1b, CES1c, CES2) were 

purchased from Corning Incorporated Life Sciences. DPP8 peptidase and proteins 

BSA, HSA were purchased from sigma-aldrich.  

NMR spectra were measured using Bruker-600, 500 with tetramethylsilane (TMS) 

as the internal standard (Bruker, USA). HR-MS data were obtained on an Agilent 

1290 infinity 6540 UHD accurate mass Q-TOF MS (Agilent, USA). Constant 

temperature incubator shaker (ZHWY-2012C) was the production of by Shanghai 

Zhicheng Analytical Instrument Co. Ltd (P. R. China). Fluorescence microscopic 

imaging was conducted with Leica Confocal Microscope. The bioassay solutions in 

96-well plates were also analysed using a BioTek Synergy H1 microplate reader 

(BioTek, USA).  
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Scheme S1. The synthesis route of fluorescent probe PENA. 

Synthesis of the fluorescent probe N-phenethyl-4-hydroxy-1,8-naphthalimide 

(PENA) 

Synthesis of compound 1 

4-Bromo-1,8-naphthalic anhydride (1 g, 3.62 mmol) and phenylethylamine (0.482 

g, 3.98 mmol) were dissolved in ethanol (50 mL). The reaction mixture was stirred 

and refluxed for 8 h. After cooling to room temperature, the mixture was poured into 

ice water; the precipitate was isolated, washed with water, and dried to yield 1.25 g of 

a yellowish-color solid (90.9%).1H NMR (500 MHz, CDCl3) δ 8.67 (d, J = 7.3 Hz, 

1H), 8.59 (d, J = 8.5 Hz, 1H), 8.43 (d, J = 7.9 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.91 

– 7.80 (m, 1H), 7.36 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.2 Hz, 

1H), 4.47 – 4.33 (m, 2H), 3.06 – 2.95 (m, 2H). 13C NMR (125 MHz,CDCl3) δ 163.49, 

163.46, 138.65, 133.32, 132.04, 131.23, 131.14, 130.68, 130.32, 129.01, 128.53, 

128.11, 126.51, 123.10, 122.23, 41.91, 34.25. HRMS calcd for C20H15BrNO2
+ 

([M+H]+) 380.0281, found 380.0276. 

Synthesis of compound 2 

A mixture of compound 1 (0.8 g, 2.1 mmol) and K2CO3 (2.54 g, 18.4 mmol) in 30 

mL CH3OH was refluxed for 10 h. After cooling to room temperature, excess 

methanol was removed under reduced pressure and the precipitate was filtered, 

washed with water and dried to yield compound 2 as a yellow solid (0.593 g, yield: 

85.3%). 1H NMR (500 MHz, CDCl3) δ 8.62 (dd, J = 7.3, 0.9 Hz, 1H), 8.58 (d, J = 8.3 

Hz, 2H), 7.76 – 7.68 (m, 1H), 7.38 (d, J = 7.2 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.22 

(t, J = 7.3 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 4.48 – 4.33 (m, 2H), 4.14 (s, 3H), 3.09 – 

2.95 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 164.40, 163.82, 160.87, 139.00, 133.45, 
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129.42, 129.04, 128.69, 128.47, 126.37, 125.97, 123.56, 122.42, 115.11, 105.23, 

56.21, 41.71, 34.37. HRMS calcd for C21H18NO3
+ ([M+H]+) 332.1281, found 

332.1283. 

Synthesis of fluorescent probe N-phenethyl-4-hydroxy-1,8-naphthalimide (PENA) 

A mixture of compound 2 (0.3 g, 0.91 mmol) and 10 mL concentrated HI (55 - 58%) 

was refluxed for 14 h. After cooling the mixture was poured into water; the precipitate 

was isolated, washed with water, and dried to yield 0.232 g of the yellow needles 

solid (80.4%). 1H NMR (500 MHz, DMSO-d6) δ 11.89 (s, 1H), 8.56 (d, J = 8.3 Hz, 

1H), 8.50 (d, J = 7.2 Hz, 1H), 8.38 (d, J = 8.2 Hz, 1H), 7.82 – 7.76 (m, 1H), 7.38 – 

7.25 (m, 4H), 7.25 – 7.13 (m, 2H), 4.30 – 4.17 (m, 2H), 2.96 – 2.86 (m, 2H). 13C 

NMR (125MHz, DMSO-d6) δ 163.56, 162.87, 160.31, 138.82, 133.58, 131.14, 

129.19, 128.95, 128.58, 128.42 126.29, 125.62, 122.40, 121.77, 112.54, 109.99, 40.74, 

33.60. HRMS calcd for C20H14NO3
- ([M-H]-) 316.0979, found 316.0986. 

Preparation of 4-O-β-D-glucopyranosyl-N-phenethyl-4-hydroxy-1,8- 

naphthalimide (PENA-G) by the glucoylation of PENA mediated by fungi 

Rhizopus oryzae.  

The filamentous fungi R. oryzae was pre-incubated in potato medium to get enough 

fungi cells for the glucosylation experiment. After filtration, the fungi cells were 

suspended in the glucosylation medium. The glucosylation medium was sodium 

phosphate buffer: 13.62 g NaH2PO4, 2.36 g NaOH, and 20 g D-glucose in 1000 mL 

water. 1.5 g R. oryzae AS 3.2380 fungus cells were pre-incubated in the glucosylation 

medium (200 mL), 30 ºC, 130 rpm for 12 h. Then, PENA substrates (50 mg) 

dissolved in acetone were injected into the medium with the continued incubation for 

24 h. When the fungus cells were filtered, the incubation culture was subjected to a 

MCI column, which was eluted by 30% ethanol aqueous, 50% ethanol aqueous, and 

95% ethanol, successively. The PENA could be obtained in the 50% ethanol aqueous 

elution with the purity > 95%, the structure of which was determined on the basis of 

widely spectroscopic data.  

The glucosylation of PENA mediated by GTFs and the Glucosyltransferase 

activity analysis of GTFs by the fluorescent probe PENA.  
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The fluorescent probe PENA was glucosylated by GTFs in the presence of UDPG 

(300 μM) with the yield of PENA-G. The glucosyltransferase (10 μg/mL) was 

dissolved in 200 µL phosphate buffer (pH 7) together with PENA (5 μM) and 

uridine-diphosphate glucose (UDPG, 300 μM), which was incubated at 37 ºC for 30 

min. PENA (10 μM) was obtained when the PENA stock solution (1 mM, DMSO) 

was added into the phosphate buffer with the DMSO volume < 1%, which could 

improve the solubility of PENA and keep the activity of GTFs. Then, 100 µL 

acetonitrile was added to stop the enzymatic reaction. The reaction solutions were 

measured the fluorescence spectra using BioTek Synergy H1 microplate reader (λex 

395 nm). The enzymatic reaction solution was analysed for the production of 

PENA-G using HPLC (20%-100% methanol, 0-30 min, flow rate 0.8 mL/min) 

Fluorescence responses of PENA (5 μM) to the concentration of GTFs were 

performed upon addition of increasing concentration of GT (0 − 32 μg/mL) in 

phosphate buffer for 30 min. Meantime, fluorescence responses of PENA (5 μM) to 

the incubation time were studied upon the addition of GTFs (10 μg/mL) in phosphate 

buffer for incubation time 0 – 80 min with acetonitrile (33%, v/v) to terminate the 

enzymatic reaction (λex 395 nm, 37 °C). The relationship was analyzed on the basis of 

the fluorescence intensities ratio (I440/I560).  

The enzymatic selectivity experiments towards different enzymes (10 μg/mL) were 

preformed according to their enzymatic reaction conditions, including Human 

uridine-disphosphate glucuronosyl-transferases (UGT1A7, UGT1A10, UGT2B10, 

UGT2B11); human Carboxylesterase (CES1b, CES1c, CES2), DPP8 peptidase and 

proteins BSA, HSA.  

The fluorescence intensity ratio (I440/I560) was studied on the basis of the 

fluorescence emission (λex 395 nm). The influence of metal ions on the fluorescence 

emission of PENA and PENA-G and the activity of GTFs were measured with the 

presence of K+, Fe3+, Ba2+, Ca2+, Na+, Mn2+, Sn4+, Zn2+, Ni2+, Cu2+, Cr3+ (each 2 mM). 

Similarly, the influence of amino acids on the fluorescence intensities of PENA and 

PENA-G and the glucosylation capability of GTFs were studied in the presence of 

various amino acids, such as Ala, Pro, Iso, Phe, Met, Gln, Try, Glu, Asp.  
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In order to estimate the kinetic parameters of PENA for GTFs, the reaction kinetics 

were performed. Briefly, PENA (0−40 μM) was incubated with GTFs for 30 min 

which ensured less than 20% of substrate was metabolized, and the formation rates of 

PENA-G were in relation to incubation time and protein concentration in the linear 

range. The PENA stock solution was prepared to be 10 mM in DMSO, which was 

added into the GTFs enzymatic reaction system with DMSO < 1%. The apparent Km 

and Vmax values were calculated from nonlinear regression analysis of experimental 

data according to the Michaelis-Menten equation.  

v=
𝑉𝑚𝑎𝑥×[𝑆]

𝐾𝑚+[𝑆]
………………………………………………………….…………...(1) 

The Vmax represents the maximum rate and Km is the substrate concentration at the 

half-maximal rate. Kinetic constants were obtained using Origin 7.5 (origin Lap Corp. 

Northampton. MA.USA) and produced as the mean ± SD of the parameter estimate. 

Confocal laser microscopic imaging of bacteria.  

In our work, PENA was incubated with seven bacteria strains, including 

Streptococcus mutans, Hemolytic streptococcus, Lactobacillus amylovorus, 

Streptococcus pasteurianus strain 080205, Bacillus cereus 994000168 LBK, 

Escherichia coli DH5alpha BRL, Staphylococcus aureus ssp. aureus DSM 3463, to 

get the fluorescence images by confocal laser scanning microscope. These bacteria 

were culutred in Luria-Bertani (LB) medium for 24 h to get enuogh bacteria cells with 

OD value 0.8. Then, PENA (50 μM) was subjected into the culture for a 

co-incubation with bacteria about 1h at 37 ºC. After the clean out of the medium, the 

bacterial cells were suspended in PBS solution, which were dropped on slide glasses 

for imaging experiment. The bacteria were imaged using Confocal Microscope with 

λex 405/λem 415 – 465 nm, λex 405/λem 535 – 585 nm. To study the enzyme specificity, 

the bacteria were pretreated with enzyme inhibitor EGCG (50 μM) and labeled with 

PENA for imaging studies. 

Isolated of GTFs inhibitors from green tea.  

500 g green tea was extracted with 70% ethanol in water refluxed for 2h. Then, 

after the evaporation of solvents, the extract was subjected to Waters preparative 
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HPLC with RP C-18 column for the bioactive fractions preparation. The mobile phase 

(methanol-water) was assigned as gradient elution for the pre-HPLC. The gradient 

elution was determined as 10%-20% methanol (0-10 min); 20%-30% methanol (10-40 

min); 30%-40% methanol (40-50 min); 40%-100% methanol (50-55 min). For the 

bioactive fractions with inhibitory effects on GTFs, the main chemical constituents 

were purified using pre-HPLC again. The structures of isolated compounds were 

determined on the basis of 1H NMR, 13C NMR and ESI-MS analysis in combination 

with the literatures. The spectroscopic data of isolated compounds were submitted as 

followed.  

Gallocatechin gallate (GCG). 1H NMR (600 MHz, MeOD) δ 6.97 (s, 2H), 6.39 (s, 

2H), 5.95 (s, 2H), 5.38 (q, J = 5.2 Hz, 1H), 5.05 (d, J = 5.2 Hz, 1H), 4.10 (q, J = 7.1 

Hz, 1H), 2.74 (qd, J = 16.7, 5.1 Hz, 2H), 2.01 (s, 1H), 1.24 (t, J = 7.1 Hz, 1H). 13C 

NMR (150 MHz, MeOD) δ 14.46. 20.85, 23.67, 61.54, 71.06, 79.18, 95.57, 96.36, 

99.51, 106.27, 110.13, 121.42, 130.99, 133.94, 139.88, 146.39, 146.98, 156.39, 

157.64, 158.12, 167.67, 173.01. (+)-ES-MS m/z 459.1 [M+H]+, calcd for C22H19O11
+, 

459.0927.  

Epigallocatechin gallate (EGCG). 1H NMR (600 MHz, MeOD) δ 6.96 (s, 1H), 

6.52 (s, 1H), 5.97 (s, 1H), 5.55 (s, 1H), 3.00 (dd, J = 17.2, 4.6 Hz, 1H), 2.86 (dd, J = 

17.3, 2.4 Hz, 1H). 13C NMR (150 MHz, MeOD) δ 25.44, 48.17, 48.45, 68.53, 77.21, 

94.46, 95.10, 98.00, 105.46, 108.84, 120.11, 129.40, 132.38, 138.38, 144.88, 145.28, 

155.83, 156.45, 156.49, 166.25. (+)-ES-MS m/z 459.1 [M+H]+, calcd for C22H19O11
+ 

459.0927. 

1,4,6-tri-O-galloyl-β-D-glucose (TGG). 1H NMR (600 MHz, MeOD) δ 7.17 (s, 

2H), 7.12 (s, 2H), 7.08 (s, 2H), 5.80 (d, J = 8.2 Hz, 1H), 5.24 (t, J = 9.7 Hz, 1H), 4.46 

(dd, J = 12.3, 2.0 Hz, 1H), 4.24 (dd, J = 12.4, 4.8 Hz, 1H), 4.08 (ddd, J = 10.0, 4.7, 

2.2 Hz, 1H), 3.86 (t, J = 9.3 Hz, 1H), 3.70 – 3.62 (m, 1H). 13C NMR (150 MHz, 

MeOD) δ 48.17, 62.22, 70.46, 72.89, 73.02, 74.62, 94.43, 108.89, 109.00, 109.20, 

119.11, 119.61, 119.75, 138.50, 138.69, 139.07, 145.02, 145.11, 145.15, 165.51, 

166.04, 166.65. (+)-ES-MS m/z 659.1 [M+Na]+, calcd for C27H24NaO18
+ 659.0860. 

Epicatechin gallate (ECG). 1H NMR (600 MHz, MeOD) δ 6.99 – 6.92 (m, 3H), 
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6.83 (dd, J = 8.2, 1.9 Hz, 1H), 6.71 (d, J = 8.2 Hz, 1H), 5.98 (t, J = 1.9 Hz, 1H), 5.54 

(d, J = 1.6 Hz, 1H), 5.05 (s, 1H), 3.01 (dd, J = 17.3, 4.6 Hz, 1H), 2.87 (dd, J = 17.4, 

2.1 Hz, 1H). 13C NMR (150 MHz, MeOD) δ 27.47, 50.18, 50.46, 70.57, 79.23, 99.96, 

110.79, 115.70, 116.59,119.97, 122.06, 132.06, 140.38, 146.55, 146.57, 146.92, 

157.82, 158.40, 158.44, 168.19. (-)-ES-MS m/z 441.0 [M-H]-, calcd for C22H17O10
- 

441.0822. 

Catechin gallate (CG). 1H NMR (600 MHz, MeOD) δ 6.98 (s, 2H), 6.85 (s, 1H), 

6.74 (s, 2H), 5.97 (dd, J = 9.4, 2.3 Hz, 2H), 5.39 (q, J = 5.9 Hz, 1H), 5.08 (d, J = 5.9 

Hz, 1H), 2.83 (dd, J = 16.5, 5.1 Hz, 1H), 2.73 (dd, J = 16.5, 6.0 Hz, 1H). 13C NMR 

(150 MHz, MeOD) δ 166.17, 156.76, 156.25, 155.10, 144.98, 144.93, 144.84, 138.47, 

130.11, 119.98, 117.81, 114.81, 113.01, 108.72, 98.23, 95.03, 94.18, 77.94, 69.75, 

22.93. (+)-ESI-MS m/z 465.1 [M+Na]+, calcd for C22H18NaO10
+ 465.0798. 

Epigallocatechin (EGC). 1H NMR (600 MHz, MeOD) δ 6.53 (s, 2H), 5.95 (d, J = 

2.3 Hz, 1H), 5.93 (d, J = 2.3 Hz, 1H), 4.77 (s, 1H), 4.19 (t, J = 3.0 Hz, 1H), 2.87 (dd, 

J = 16.6, 4.6 Hz, 1H), 2.75 (dd, J = 16.7, 2.9 Hz, 1H). 13C NMR (150 MHz, MeOD) δ 

156.60, 156.28, 155.92, 145.29, 132.20, 130.12, 105.55, 98.67, 94.94, 94.45, 78.50, 

66.12, 27.76. (+)-ESI-MS m/z 307.0 [M+H]+, calcd for C15H15O7
+ 307.0818. 

Catechin (CA). 1H NMR (600 MHz, MeOD) δ 6.75 (d, J = 1.9 Hz, 1H), 6.67 (d, J 

= 8.1 Hz, 1H), 6.63 (dd, J = 8.1, 1.9 Hz, 1H), 5.84 (d, J = 2.3 Hz, 1H), 5.76 (d, J = 2.3 

Hz, 1H), 4.47 (d, J = 7.5 Hz, 1H), 3.88 (td, J = 7.9, 5.5 Hz, 1H), 2.76 (dd, J = 16.1, 

5.4 Hz, 1H), 2.42 (dd, J = 16.1, 8.2 Hz, 1H). 13C NMR (150 MHz, MeOD) δ 156.46, 

156.20, 155.53, 144.86, 144.84, 130.81, 118.63, 114.65, 113.84, 99.39, 94.85, 94.07, 

81.47, 67.42, 27.14. (+)-ESI-MS m/z 291.3 [M+H]+, calcd for C15H15O6
+ 291.2790. 

Gallocatechin (GC). 1H NMR (600 MHz, MeOD) δ 6.32 (s, 2H), 5.84 (d, J = 2.3 

Hz, 1H), 5.77 (d, J = 2.3 Hz, 1H), 4.44 (d, J = 7.2 Hz, 1H), 3.88 (td, J = 7.5, 5.4 Hz, 

1H), 2.73 (dd, J = 16.1, 5.3 Hz, 1H), 2.42 (dd, J = 16.1, 7.8 Hz, 1H). 13C NMR (150 

MHz, MeOD) δ 156.44, 156.21, 155.45, 145.46, 132.60, 130.14, 105.76, 99.29, 94.83, 

94.08, 81.48, 67.37, 26.71. (+)-ESI-MS m/z 329.1 [M+Na]+, calcd for C15H14NaO7
+ 

329.0637 . 
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Epicatechin (ECA). 1H NMR (600 MHz, MeOD) δ 6.99 (d, J = 1.9 Hz, 1H), 6.82 

(dd, J = 8.2, 1.9 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.96 (d, J = 2.3 Hz, 1H), 5.93 (d, J 

= 2.3 Hz, 1H), 4.84 (s, 1H), 4.22 – 4.16 (m, 1H), 2.88 (dd, J = 16.7, 4.6 Hz, 1H), 2.76 

(dd, J = 16.8, 2.8 Hz, 1H). 13C NMR (150 MHz, MeOD) δ 156.62, 156.28, 155.98, 

144.55, 144.39, 130.89, 117.98, 114.47, 113.91, 98.65, 94.96, 94.47, 78.48, 66.10, 

27.88. (+)-ESI-MS m/z 313.1 [M+Na]+, calcd for C15H14NaO6
+ 313.0688. 

 

 

Fig. S1. (a) Absorbance spectra and (b) fluorescence spectra of PENA and PENA-G, 

λex 395 nm.  

 

 

Fig. S2. HPLC-DAD chromatograms of the enzymatic glucosylation of PENA 

mediated by GTFs. (1) Enzymatic reaction solution for the co-incubation of PENA, 

GTFs (10 μg/mL), and UDPG (300 μM). (2) Control solution containing GTFs (10 

μg/mL), UDPG (300 μM). (3) Reference PENA-G. (4) Reference PENA. 
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Fig. S3. (a) Fluorescence responses of PENA towards GTFs with different 

concentrations (0 – 32 μg/mL). (b) Linear relationship between fluorescence ratio (I440 

/I560) and GTFs concentrations (0 – 32 μg/mL). PENA-G λex 395/λem 440 nm, PENA 

λex 395/λem 560 nm.  

 

Fig. S4. (a) Fluorescence responses of PENA towards GTFs with different incubation 

time (0 – 80 min). (b) Linear relationship between fluorescence ratio (I440/I560) and 

incubation time (0 – 80 min). PENA-G λex 395/λem 440 nm, PENA λex 395/λem 560 

nm. 

 

Fig. S5. Glucosylation of PENA mediated by GTFs with different incubation 

temperature (5 – 55 °C).  
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Fig. S6. Fluorescence intensities of PENA and PENA-G in various PBS solutions 

with different pH (3 - 12).  

 

Fig. S7. The conversion rate of PENA glucosylation by GTFs in various PBS 

solutions with different pH conditions.  

 

Fig. S8. Interferences of various amino acids (0.5 mM) (a) and metal ions (2 mM) (b) 

for the glucosylation of PENA by GTFs.  
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Fig. S9. Enzymatic analysis for glucosylation of PENA (5 μM) by GFTs. (a) Specify 

evaluation for glucosylation of PENA mediated by GFTs in comparison with various 

biological enzymes, including glycosidase glucuronidases (UGT1A7, UGT1A10, 

UGT2B10, and UGT2B11), hydrolases (CES1b, CES1c, CES2, DPP8), BSA and 

HSA (10 μg/mL). (b) The kinetics about the glucosylation of PENA by GTFs.  

 

Fig. S10. Fluorescence images of various bacteria blank control groups without 
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PENA. (a) Streptococcus mutans; (b) Hemolytic streptococcus; (c) Lactobacillus 

amylovorus; (d) Streptococcus pasteurianus strain 080205; (e) Bacillus cereus 

994000168 LBK.  

 

 

 

 

 

Fig. S11. Fluorescence images of Escherichia coli DH5alpha BRL (a, blank group 

without PENA; b, experimental group with PENA 50 μM, Ratio = 0.04); and 

Staphylococcus aureus ssp. aureus DSM 3463 (c, blank group without PENA; d, 

experimental group with PENA 50 μM, Ratio = 0.05).  
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Fig. S12. Dose-dependent inhibitory effect of CA on the glucosylation of PENA by 

GTFs.  

 

Fig. S13. Dose-dependent inhibitory effect of CG on the glucosylation of PENA by 

GTFs.  
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Fig. S14. Dose-dependent inhibitory effect of ECA on the glucosylation of PENA by 

GTFs.  

 

 

 

Fig. S15. Dose-dependent inhibitory effect of EGC on the glucosylation of PENA by 

GTFs.  
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Fig. S16. Dose-dependent inhibitory effect of EGCG on the glucosylation of PENA 

by GTFs.  

 

 

 

Fig. S17. Dose-dependent inhibitory effect of GC on the glucosylation of PENA by 

GTFs.  
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Fig. S18. Dose-dependent inhibitory effect of GCG on the glucosylation of PENA by 

GTFs.  

 

 

 

 

Fig. S19. Dose-dependent inhibitory effect of TGG on the glucosylation of PENA by 

GTFs.  
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Fig. S20. Dose-dependent inhibitory effect of ECG on the glucosylation of PENA by 

GTFs.  

 

Fig. S21. Inhibition kinetics of GCG on the glucsoylation of PENA mediated by 

GTFs. (a,b) Lineweaver–Burk plot of GCG’s inhibition towards the activity of GTFs; 

(c) Dixon plot of GCG’s inhibition towards the activity of GTFs; (d) determination of 

inhibition kinetic parameter (Ki) using the slopes from Lineweaver–Burk plot towards 

the concentration of GCG. The data points represent the mean value of 

duplicateexperiments. 
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Fig. S22. Inhibition kinetics of EGCG on the glucsoylation of PENA mediated by 

GTFs. (a,b) Lineweaver–Burk plot of EGCG’s inhibition towards the activity of 

GTFs; (c) Dixon plot of EGCG’s inhibition towards the activity of GTFs; (d) 

determination of inhibition kinetic parameter (Ki) using the slopes from Lineweaver–

Burk plot towards the concentration of EGCG. The data points represent the mean 

value of duplicate experiments. 
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Fig. S23. 1H NMR spectrum of compound 1. 

 

 

 

Fig. S24. 13C NMR spectrum of compound 1 
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Fig. S25. HR-MS of compound 1 

 

 

Fig. S26. 1H NMR spectrum of compound 2 
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Fig. S27. 13C NMR spectrum of compound 2 

 

 

 

Fig. S28. HR-MS of compound 2 
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Fig. S29. 1H NMR spectrum of PENA 

 

 

 Fig. S30. 13C NMR spectrum of PENA 
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Fig. S31. HR-MS of PENA 

 

Fig. S32. 1H NMR spectrum of PENA-G 
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Fig. S33. 13C NMR spectrum of PENA-G 

 

 

Fig. S34. HR-MS of PENA-G 
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Fig. S35. 1H-NMR spectrum of GCG.  

 

Fig. S36. 13C-NMR spectrum of GCG. 
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Fig. S37. (+)-ESI-MS spectrum of GCG. 

 

 

Fig. S38.1H-NMR spectrum of EGCG.  

 +Q1: 30 MCA scans from Sample 13 (GCG Q1+) of 20180505 MW.wiff (Turbo Spray) Max. 9.7e6 cps.
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Fig. S39.13C-NMR spectrum of EGCG. 

 

 

Fig. S40. (+)-ESI-MS spectrum of EGCG. 

 +Q1: 30 MCA scans from Sample 13 (GCG Q1+) of 20180505 MW.wiff (Turbo Spray) Max. 9.7e6 cps.
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Fig. S41.1H-NMR spectrum of TGG. 

 

Fig. S42. 13C-NMR spectrum of TGG. 
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Fig. S43. (+)-ESI-MS spectrum of TGG. 

 

 

Fig. S44. 1H-NMR spectrum of ECG. 

 

 +Q1: 50 MCA scans from Sample 3 (LJ-15-2 Q1+) of 20180506.wiff (Turbo Spray) Max. 3.1e7 cps.
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Fig. S45. 13C-NMR spectrum of ECG. 

 

 

Fig. S46. (-)-ESI-MS spectrum of ECG. 

 -Q1: 50 MCA scans from Sample 12 (LJ-16 Q1-) of 20180505 MW.wiff (Turbo Spray) Max. 1.3e8 cps.
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Fig. S47. 1H-NMR spectrum of CG.  

 

 

Fig. S48. 13C-NMR spectrum of CG. 
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Fig. S49. (+)-ESI-MS of CG. 

 

Fig. S50. 1H-NMR spectrum of EGC.  

 

 +Q1: 60 MCA scans from Sample 5 (CG Q1+) of 20180828 MW.wiff (Turbo Spray) Max. 3.1e7 cps.
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Fig. S51. 13C-NMR spectrum of EGC. 

 

 

Fig. S52. (+)-ESI-MS of EGC. 

 +Q1: 60 MCA scans from Sample 16 (EGC Q1+) of 20180828 MW.wiff (Turbo Spray) Max. 1.3e7 cps.
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Fig. S53. 1H-NMR spectrum of CA.  

 

 

Fig. S54. 13C-NMR spectrum of CA. 
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Fig. S55. (+)-ESI-MS of CA. 

 

 

Fig. S56. 1H-NMR spectrum of GC.  

 +Q1: 60 MCA scans from Sample 13 (Catechin Q1+) of 20180828 MW.wiff (Turbo Spray) Max. 8.6e6 cps.
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Fig. S57. 13C-NMR spectrum of GC. 

 

Fig. S58. (+)-ESI-MS of GC. 

 

 +Q1: 60 MCA scans from Sample 3 (GC Q1+) of 20180828 MW.wiff (Turbo Spray) Max. 1.3e7 cps.
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Fig. S59. 1H-NMR spectrum of ECA.  

 

 

Fig. S60. 13C-NMR spectrum of ECA. 
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Fig. S61. (+)-ESI-MS of ECA. 

 

 +Q1: 60 MCA scans from Sample 7 (EC Q1+) of 20180828 MW.wiff (Turbo Spray) Max. 1.8e6 cps.
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