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Experimental section

Materials. Ac-KLVFFAL-NH2 (KL-7) and Ac-RLVFFAL-NH2 (RL-7) were 

purchased from GL Biochem Ltd (Shanghai). The peptide purity was assessed by 

HPLC (>98%) and characterized by electrospray ionization mass spectrometry. The 

other chemicals and solvents were purchased from Sigma and used as provided.

Peptide assembly. Purified lyophilized peptides (3.5 mM) were dissolved in 4:6 

CH3CN/H2O with 0.1% TFA solution and slowly titrated by drop-wise addition of 

200 mM NaOH to pH 7.0. Dissolution was generally assisted by 2 min of continuous 

vortex, followed by 15 min sonication until solution became clear. Peptides were 

allowed to assemble for approximately 24 h at 37 ºC until mature.

Fourier transform infrared spectroscopy (FTIR). The lyophilized powder peptide 

samples were mixed with dehydrated KBr crystals at ratio of 1:10 (w/w), and the 

KBr/peptide pellets were analyzed on a Nicolet iS50 FT-IR spectroscopy (Thermo 

Scientific, USA). For solution sample, a drop of sample was directly mixed with 

dehydrated KBr, and the mixture was analyzed after drying.

Transmission electron microscopy (TEM). Peptide assemblies were allowed to be 

adsorbed on carbon-coated copper grids (from Zhongjingkeyi Technology Co. Ltd, 

China) for 1 min before excess peptide solution was wicked away with filter paper. 

Freshly prepared 2 wt% uranyl acetate solutions were then added, and staining was 

allowed to proceed for 1.5 min, followed by removal of excess solution. Finally, the 

grids were left to dry covered by a Petri dish at room temperature. TEM micrographs 

were collected on a HT7700 transmission electron microscope (Hitachi. Ltd, Japan) 

with 100 kV acceleration voltages.

X-ray powder diffraction (XRD). About 50 mg KL-7 nanotube powder was used, 

and the XRD patterns were measured with D8 ADVANCE X-ray powder 

diffractometer (Bruker, German). 

X-ray photoelectron spectroscopy (XPS). The element contents were measured by 

ESCALab 220-Xi (VG, UK) with 500 µm spot size and 0.050 eV energy step size.

Gas adsorption measurements. Carbon dioxide isotherms were collected on a 

FlowSorb III automatic volumetric gas adsorption analyzer (Micromeritics Instrument 
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Corp, USA). 100 mg of the sample was loaded into a preweighted sample tube, and 

the sample was outgassed to 10−6 Torr, after which the evacuated tube was weighted 

to determine the mass of the degassed sample. The sample was then transferred to the 

analysis port of the adsorption analyzer. Ultrahigh purity-grade nitrogenand carbon 

dioxide gases (99.995% purity) were used throughout the adsorption experiments.

Solid-State NMR. High-resolution solid-state NMR spectra were recorded at ambient 

temperature on a Bruker DSX-600 spectrometer (Bruker, Germany) using a standard 

Bruker magic-angle-spinning (MAS) probe with 4-mm (outside diameter) zirconia 

rotors. The 13C chemical shifts are given relative to tetramethylsilane as 0 ppm, 

calibrated using the methylene carbon signal of adamantane assigned to 37.77 ppm as 

a secondary reference.

Before exposure to 13C carbon dioxide, the sample was outgassed. 13C carbon 

dioxide (Sigma-Aldrich, 99 atom % 13C; <3 atom % 18O) was then injected into the 

sample at 1 bar. The sample was then transferred to zirconia NMR rotors right before 

the NMR measurement.
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Fig. S1. XRD patterns of KL-7 nanotube before and after CO2 uptake.
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Fig. S2. TEM image of lyophilized powder of KL-7 nanotube.
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Fig. S3. Photographic image of the KL-7 nanotube after the CO2 uptake.
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Fig. S4. TEM image of RL-7 nanotube solution.
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Fig. S5. BET surface area plot of solid buffer component (A) and KL-7 nanotube (B).
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Fig. S6. FTIR spectra of KL-7 nanotube before (black) and after (red) carbon dioxide 

adsorption.
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Fig. S7. Temperature dependent CO2 uptake of KL-7 nanotubes at 750 mmHg.
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Fig. S8. The CP/MAS 13C NMR spectrum of KL-7 nanotube after regeneration, the 

peak of carbamate at 162.9 ppm disappeared.
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Fig. S9. TEM image of regenerated KL-7 nanotubes. 
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Table S1. Elemental content of KL-7 nanotubes before and after CO2 uptake by XPS 

measurement.

Samples C (%) O (%) Na (%) N (%) F (%) P (%)

KL-7 nanotubes 47.97 24.14 10.46 8.34 6.12 2.97

KL-7 nanotubes   

after CO2 uptake
46.72 26.31 10.24 8.02 5.90 2.81

KL-7 nanotubes after carbon dioxide uptake, the content of C was decreased and 

the content of O was increased, and the content of other elements barely changed (Na 

and P were from PB buffer, F was from the TFA in peptide assembly solution). Note 

that the elemental content of XPS analysis is the relevant content, therefore, although 

the absolute content of C after carbon dioxide uptake was increased, the relevant 

content of C was decreased actually. Thus, the XPS analysis is consistent with the 

carbon dioxide uptake.



14

Table S2. Comparison of absorbents for carbon dioxide uptake.

Absorbents

CO2 adsorption 

capacities 

(mmol CO2 g-1)

Effect of H2O 

on CO2 uptake Regenerability Notes Ref.

Zeolites 0.18~4.61 (310 

K, 0.1 bar)

Decreased 

CO2 uptake

Good - 1, 2

30% MEA ~3 (303 K, 0.15 

bar)

Almost no 

influence

Significant 

decomposition

 - 3,4

Calcium oxide 1.5~11.6 (723 

K, 0.4 bar)

Almost no 

influence

Capacity loss as a 

function of cycling

- 5,6

Hydrotalcite-

like 

compounds

< 1.0(673 K, 1 

bar)

Increased 

CO2 uptake

Capacity loss as a 

function of cycling

- 7, 8, 9

Amine-grafted 

silica sorbents

0.05~2.56 (298 

K, 0.1 bar )

Almost no 

influence

Good - 10, 11, 

12

Amine-

functionalized 

MOFs

1.1~4.2 (298 K, 

1 bar)

Almost no 

influence Good

Complicated 

synthesis

13, 14, 

15, 16

Nitrogen-Rich 

POPs

1~5.37 (273 K, 

1 bar)

Almost no 

influence

Good Complicated 

synthesis

17, 18, 

19, 20

KL-7 

nanotubes

0.74 (298 K, 1 

bar)

Almost no 

influence

Good - This 

work
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