Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

An Ultrasensitive Ratiometric Fluorescent Thermometer Based on Frustrated Static Excimers in the Physiological Temperature range

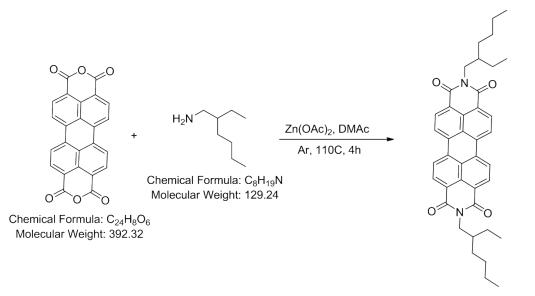
Sen Liang,^{ab} Yuan Wang,^{ab} Xueke Wu,^{ab} Min Chen,^{ab} Lixuan Mu,*^a Guangwei She,^a and Wensheng Shi*^{ab}

^a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^b University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.

EXPERIMENTAL SECTION

Chemicals. The following chemicals were used as received: Perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA, 97%) and 2-ethyl-1-hexylamine (98%) were purchased from Sigma-Aldrich. Zinc acetate (Zn(OAc)₂, 99.9%) and N, N'-Dimethylacetamide (DMAC, 99%) were purchased from Alfa. Methylcyclohexane (MCH, \geq 99.0%) and N, N'-di(2-methyl)-3,4,9,10-perylenetetracarboxylic diimide (DM-PDI, \geq 92.0%) were purchased from Aladdin. All aqueous solutions were prepared with ultrapure water (\geq 18 M Ω cm) and all the reagents were analytical grade.


Apparatus and Characterizations. The ¹H NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer (Bruker Co., Germany). The UV-vis absorption spectra were recorded with a Hitachi U-4100 spectrophotometer (Hitachi Co., Japan). Temperature-sensitive fluorescence spectra were recorded with a Hitachi F-4600 spectrophotometer (Hitachi Co., Japan) and a QNW TC1 temperature controller (Quantum Northwest, inc., USA).

Synthesis of the DEH-PDI and its FSEs. The DEH-PDI was synthesized according to the previous report.^{S1} In a 500 mL round-bottomed flask, 4 g (10 mmol) PTCDA, 2.9 g (22 mmol) 2-ethyl-1-hexylamine and 0.5 g Zn(OAc)₂ in 150 mL DMAc were stirred at 110°C for 4 hours under argon atmosphere. Then 300 mL water was added and the resulting mixture was extracted with CH_2Cl_2 three times. The organic layer was dried over anhydrous sodium sulfate and evaporated. The residue was purified by silica gel column chromatography (CH₂Cl₂ as eluent) and then dried at 120°C to give the desired compound as red solid (6.1g, 93%). To fabricate the FSEs of DEH-PDI, the DEH-PDI was added into MCH to prepare the solution with various concentration $(1.0 \times 10^{-5} \text{ M}, 2.0 \times 10^{-5} \text{ M}, 1.0 \times 10^{-4} \text{ M}, 1.8 \times 10^{-4} \text{ M}, 2.3 \times 10^{-4} \text{ M}, and <math>3.0 \times 10^{-4} \text{ M}$). After ultrasonic dissolving, the FSEs of DEH-PDI were prepared by vibrating its solutions in methylcyclohexane (MCH) at 10°C for 5h.

Calculation of the molecular electron density distribution by DFT methods. The molecular electron density distribution of DEH-PTCDI and DM-PDI was calculated by density functional theory (DFT) methods at the B3LYP/6-31G(d) level. It could be seen that both the HOMO and LUMO are localized on the polyaromatic core, and the side chains are not involved in the π -conjugation. Therefore, the two nitrogen atoms between PDI and the alkyl substitutions (2-ethylhexyl or methyl) are nodes in the π -orbital wave function. Therefore, the electron distribution of PDI would not be altered by adding the side chains.

Thermochromism measurement. The solution of DEH-PDI in MCH ($C = 3 \times 10^{-4}$ M) was poured into three sample bottles. The first one was stored in a refrigerator ($\sim 5^{\circ}$ C). The second one was stored in warm water ($\sim 30^{\circ}$ C). The third one was stored in hot water ($\sim 70^{\circ}$ C). Ten minutes later, photographs of the three sample bottles were taken under visible light or 365 nm UV lamp. Then, all the solutions in sample bottles were poured into a test tube. After three cooling-heating cycles, the test tube was moved to a beaker with hot water. A video of the thermochromism performance in the test tube was taken.

Preparation of the microthermometer. Firstly, the micropipette was fabricated from the glass capillary (BF150-110-10) using a micropipette puller (P97, Sutter Instrument Co.). Pull parameters were heat=544, pull=0, vel=65, time=250 and pressure=500. The diameter of the tip of the micropipette is about 1.6 μ m. Secondly, after the solution of DEH-PDI in MCH (C=2×10⁻⁴ M) was injected in the micropipette with a small syringe, the tip and end of the micropipette were sealed with epoxy.

Chemical Formula: C₄₀H₄₂N₂O₄ Molecular Weight: 614.77

Figure S1. The synthesis of DEH-PDI.

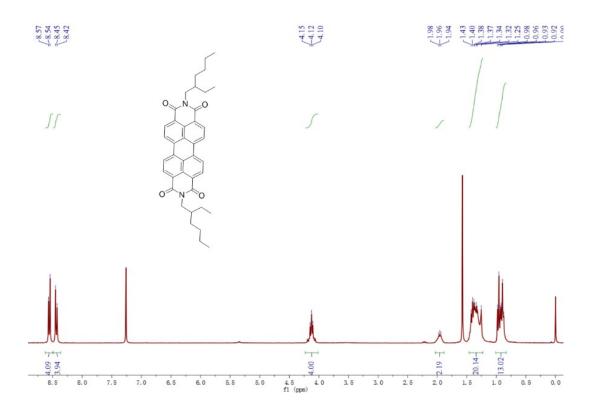


Figure S2. The ¹H NMR of DEH-PDI.

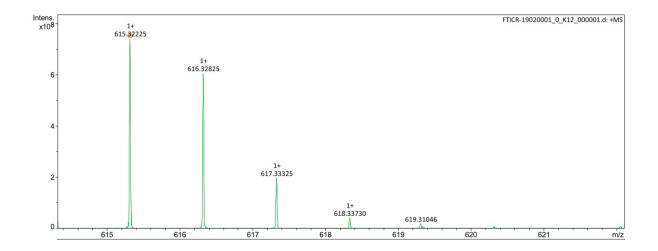


Figure S3. The MS of DEH-PDI.

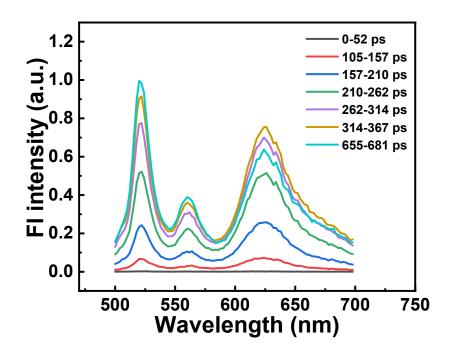


Figure S4. The time-resolved fluorescence spectra of DEH-PDI in MCH (excited at 405 nm, $C=2\times10^{-4}$ M).

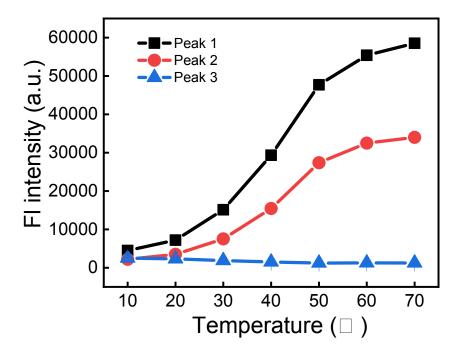


Figure S5. The fluorescence intensity of three emission peaks of DEH-PDI in MCH (C = 2×10^{-5} M, excited at 400 nm) changed with temperature.

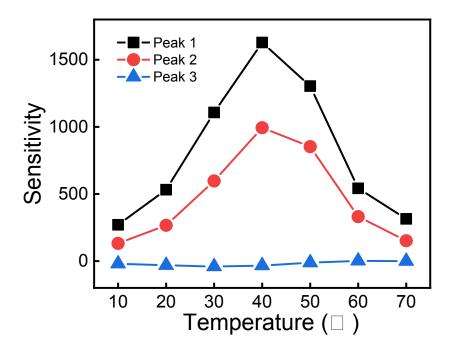


Figure S6. The sensitivities of fluorescence intensity of three emission peaks of DEH-PDI in MCH (C = 2×10^{-5} M, excited at 400 nm).

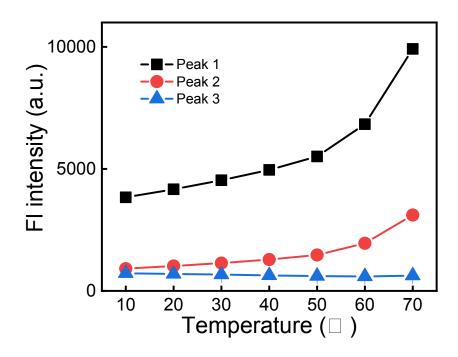


Figure S7. The fluorescence intensity of three emission peaks of DM-PDI in MCH (C = 2×10^{-5} M, excited at 400 nm) changed with temperature.

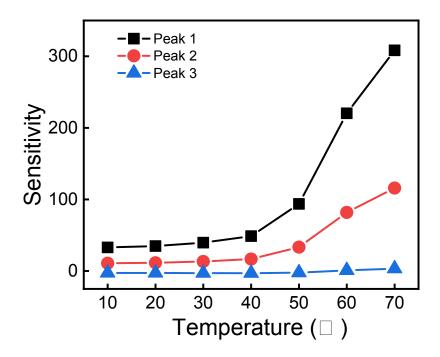


Figure S8. The sensitivities of fluorescence intensity of three emission peaks of DEH-PDI in MCH (C = 2×10^{-5} M, excited at 400 nm).

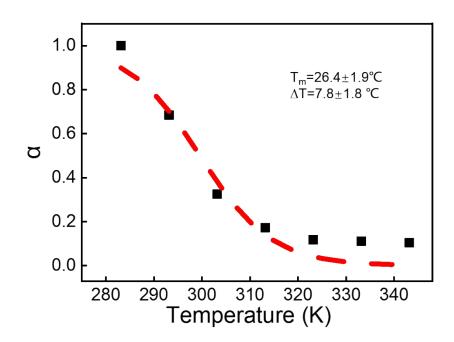


Figure S9. Normalized FSE/monomer ratio versus the temperature of DEH-PDI in MCH (C = 2×10^{-5} M, excited at 400 nm) and the fitting of T_m of DEH-PDI FSE.

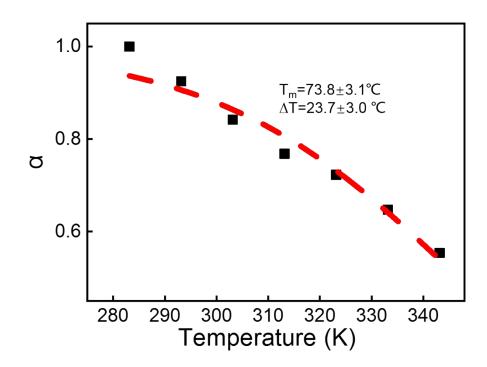


Figure S10. Normalized USE/monomer ratio versus the temperature of DM-PDI in MCH (C = 2×10^{-5} M, excited at 400 nm) and the fitting of T_m of DM-PDI USE.

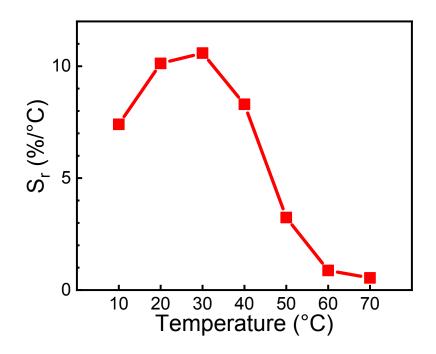


Figure S11. The relative sensitivities of the RFT based on DEH-PDI FSEs.

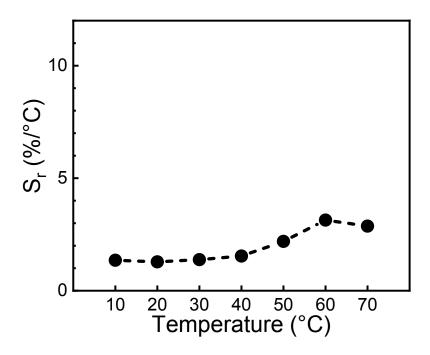


Figure S12. The relative sensitivities of the RFT based on DM-PDI USEs.

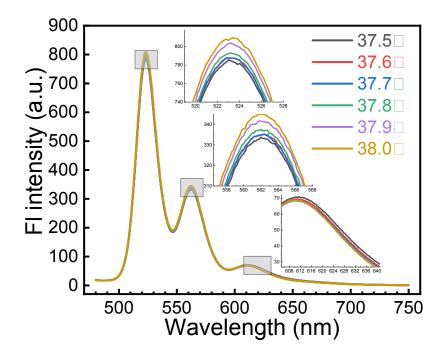


Figure S13. The fluorescence spectra of DEH-PDI in MCH (C = 2×10^{-5} M, excited at 400 nm) in the temperature range of $37.5-38.0^{\circ}$ C.

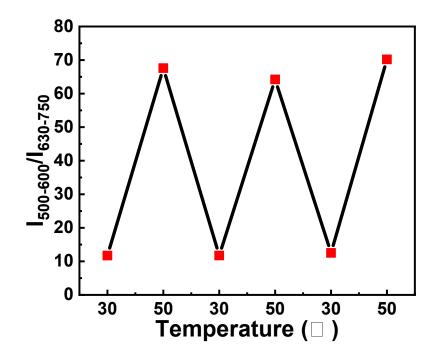


Figure S14. The reversibility test of the RFT based on DEH-PDI FSEs (C = 2×10^{-5} M, excited at 400 nm).

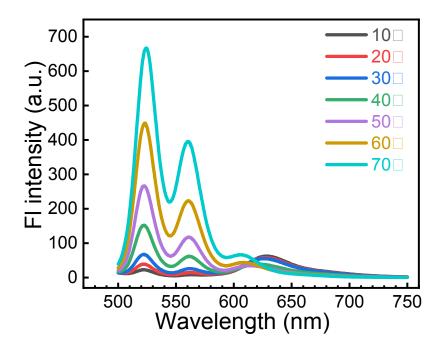


Figure S15. Fluorescence spectra of DEH-PDI in MCH (C = 3×10^{-4} M, excited at 400 nm) at different temperatures ranging from 10.00° C to 70.00° C.

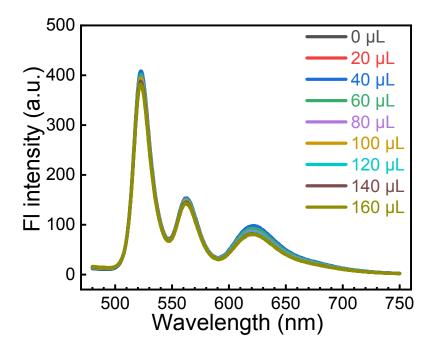


Figure S16. The influence of viscosity on the fluorescence spectra of RFT based on DEH-PDI FSEs in MCH (1mL, $C = 3 \times 10^{-4}$ M, excited at 400 nm) by adding viscous Tween 80.

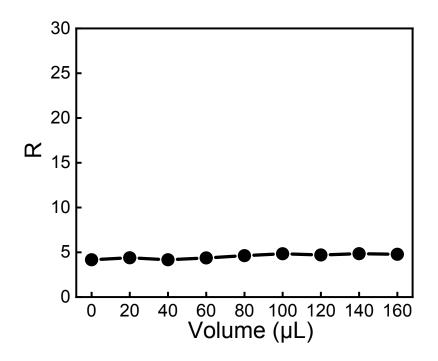


Figure S17. The influence of viscosity on the ratio values R of RFT based on DEH-PDI FSEs in MCH (1mL, $C = 3 \times 10^{-4}$ M, excited at 400 nm) by adding viscous Tween 80.

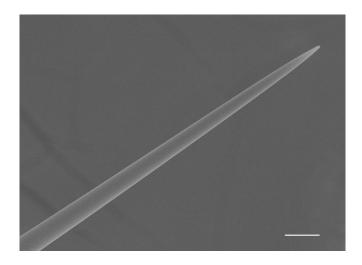


Figure S18. The scanning electron micrograph of the micropipette (scale bar is 20 µm).

Figure S19. (a-c) Fluorescence images of the microthermometer in PBS buffer solution at 25°C: (a) merge emission (500-550 nm & 663-738 nm) (b) green emission (500-550 nm); (c) red emission (663-738 nm); (d-f) fluorescence images of the microthermometer in PBS buffer solution at 40°C: (d) merge emission (500-550 nm & 663-738 nm); (e) green emission (500-550 nm); (f) red emission (663-738 nm); λ_{ex} =405 nm, 10 mM PBS buffer solution.

Material	Signal types	Temperature	Absolute sensitivity	Ref.
		sensing range (°C)	(%/°C)	
ZnO:Er ³⁺ nanocrystals	Fluorescence ratio	10 - 180	0.0062	[S2]
Nanocrystals	Fluorescence ratio	22 - 97	0.83	[S3]
Core-Shell nanocrystals	Fluorescence ratio	20 - 50	4.0	[S4]
Triarylboron	Fluorescence ratio	-30 - +140	1.1 – 5.9	[85]
Compounds				
N, N-dimethyl-4-((2-	Fluorescence ratio	25 - 65	3.75	[S6]
methylquinolin-				
6-yl)ethynyl)aniline				
PNIPAM	Fluorescence ratio	20 - 44	30	[S7]
Coumarin 545	Fluorescence ratio	10 - 50	0.025	[S8]
Europium MOFs	Fluorescence ratio	10 - 150	1.37	[89]
Triarylphosphine oxide	Fluorescence ratio	-50 - +100	1.2 - 2.4	[S10]
organic films	Fluorescence ratio	-80 - +80	0.2	[S11]
FSE	Fluorescence ratio	10 - 70	46.85 - 249.7	This work

Table S1 A comparison of the absolute sensitivity between our RFT and the reported ones

Table S2 A comparison of the relative sensitivity between our RFT and the reported fluorescent thermometers

Material	Signal types	Temperature	Relative sensitivity	Ref.
		sensing range	(%/°C)	
		(°C)		
Perylene exciplex	Fluorescence ratio	25 - 85	~1	[S12]
Semiconducting polymer dots	Fluorescence ratio	10 - 70	~ 1	[S13]
Quantum dot/quantum rod	Fluorescence ratio	20 - 40	~ 2.4	[S14]
Lanthanide silicate	Fluorescence ratio	-261 - +177	0.1 -2.0	[S15]
MOF⊃dye	Fluorescence ratio	20 - 80	maximally up to 1.28	[S16]
Lanthanide-doped self-assembled	Fluorescence ratio	23 - 65	maximally up to 1.43	[S17]
polymer monolayers				
Conjugated polyelectrolytes	Fluorescence ratio	20 -70	0.99 - 2.06	[S18]
Carbon dot	Lifetime	10 - 45	1.79	[S19]
Organoplatinum metallacycles	Fluorescence ratio	-20 to 70	0.76	[S20]
Triplet sensitized upconversion	Fluorescence ratio	10 - 50	0.8 - 7.1	[S21]
FSE	Fluorescence ratio	10 - 70	3.240 - 10.58	This worl

Material	Signal types	Temperature	Precision	Ref.	
		sensing range (°C)	(°C)		
Nanocrystals	Fluorescence ratio	22 – 97	0.14	[S3]	
Perylene exciplex	Fluorescence ratio	25 - 85	1	[S12]	
Quantum Dot/Quantum	Fluorescence ratio	20 - 40	≤ 0.2	[S14]	
rod					
Lanthanide-doped self-	Fluorescence ratio	23 - 65	≤ 0.3	[S17]	
assembled polymer					
monolayers					
Triplet sensitized	Fluorescence ratio	10 - 50	0.1	[S21]	
upconversion					
Nanogel	Fluorescence intensity	25 - 42	0.29 - 0.50	[S22]	
Triarylboron	Max emission wavelength	-50 - +100	1	[\$23]	
Fluorescent polymer	Fluorescence lifetime	20 - 50	0.18 - 0.58	[S24]	
Gold nanoclusters	Fluorescence lifetime and	15 - 45	0.1 - 0.3	[825]	
	intensity				
Fluorescent nanogel	Fluorescence lifetime and	20 - 40	0.02 - 0.84	[S26]	
	intensity				
FSE	Fluorescence ratio	10 - 70	0.04 - 0.06	This work	

Table S3 A comparison of the precision between our RFT and the reported fluorescent thermometers

References.

- S1. S. Chen, Y. Liu, W. Qiu, X. Sun, Y. Ma and D. Zhu, Chem Mater, 2005, 17, 2208-2215.
- S2. X. Wang, X. Kong, Y. Yu, Y. Sun and H. Zhang, *The Journal of Physical Chemistry C*, 2007, **111**, 15119-15124.
- S3. E. J. McLaurin, V. A. Vlaskin and D. R. Gamelin, J Am Chem Soc, 2011, 133, 14978-14980.
- S4. C.-H. Hsia, A. Wuttig and H. Yang, ACS Nano, 2011, 5, 9511-9522.
- J. Feng, L. Xiong, S. Q. Wang, S. Y. Li, Y. Li and G. Q. Yang, *Adv Funct Mater*, 2013, 23, 340-345.
- C. Cao, X. Liu, Q. Qiao, M. Zhao, W. Yin, D. Mao, H. Zhang and Z. Xu, *Chem Commun*, 2014, 50, 15811-15814.
- S7. X. Hu, Y. Li, T. Liu, G. Zhang and S. Liu, ACS Applied Materials & Interfaces, 2015, 7, 15551-15560.
- D. Mao, X. Liu, Q. Qiao, W. Yin, M. Zhao, J. M. Cole, J. Cui and Z. Xu, *Analyst*, 2015, 140, 1008-1013.
- S9. D. Wang, Q. Tan, J. Liu and Z. Liu, Dalton Transactions, 2016, 45, 18450-18454.
- S10. Q. Fang, J. Li, S. Li, R. Duan, S. Wang, Y. Yi, X. Guo, Y. Qian, W. Huang and G. Yang, Chem Commun, 2017, 53, 5702-5705.
- S11. Q. Fang, Y. Li, Y. Wang, F. Yao, S. Wang, Y. Qian, G. Yang and W. Huang, *Journal of Materials Chemistry C*, 2018, 6, 8115-8121.
- S12. N. Chandrasekharan and L. A. Kelly, J Am Chem Soc, 2001, 123, 9898-9899.
- S13. F. Ye, C. Wu, Y. Jin, Y.-H. Chan, X. Zhang and D. T. Chiu, J Am Chem Soc, 2011, 133, 8146-8149.
- S14. A. E. Albers, E. M. Chan, P. M. McBride, C. M. Ajo-Franklin, B. E. Cohen and B. A. Helms, J Am Chem Soc, 2012, 134, 9565-9568.
- S15. D. Ananias, F. A. A. Paz, D. S. Yufit, L. D. Carlos and J. Rocha, J Am Chem Soc, 2015, 137, 3051-3058.
- S16. Y. J. Cui, R. J. Song, J. C. Yu, M. Liu, Z. Q. Wang, C. D. Wu, Y. Yang, Z. Y. Wang, B. L. Chen and G. D. Qian, *Adv Mater*, 2015, 27, 1420-1425.
- S17. M. Rodrigues, R. Pinol, G. Antorrena, C. D. S. Brites, N. J. O. Silva, J. L. Murillo, R. Cases, I. Diez, F. Palacio, N. Torras, J. A. Plaza, L. Perez-Garcia, L. D. Carlos and A. Millan, *Adv Funct Mater*, 2016, 26, 200-209.
- S18. G. H. Darwish, A. Koubeissi, T. Shoker, S. Abou Shaheen and P. Karam, *Chem Commun*, 2016, 52, 823-826.
- S19. S. Kalytchuk, K. Poláková, Y. Wang, J. P. Froning, K. Cepe, A. L. Rogach and R. Zbořil, ACS Nano, 2017, 11, 1432-1442.
- S20. J.-H. Tang, Y. Sun, Z.-L. Gong, Z.-Y. Li, Z. Zhou, H. Wang, X. Li, M. L. Saha, Y.-W. Zhong and P. J. Stang, J Am Chem Soc, 2018, 140, 7723-7729.
- S21. M. Xu, X. M. Zou, Q. Q. Su, W. Yuan, C. Cao, Q. H. Wang, X. J. Zhu, W. Feng and F. Y. Li, *Nature Communications*, 2018, 9, 7.
- S22. C. Gota, K. Okabe, T. Funatsu, Y. Harada and S. Uchiyama, J Am Chem Soc, 2009, 131, 2766-2767.
- S23. J. Feng, K. J. Tian, D. H. Hu, S. Q. Wang, S. Y. Li, Y. Zeng, Y. Li and G. Q. Yang, Angew Chem Int Edit, 2011, 50, 8072-8076.

- S24. K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu and S. Uchiyama, *Nature Communications*, 2012, **3**, 705.
- S25. L. Shang, F. Stockmar, N. Azadfar and G. U. Nienhaus, *Angew Chem Int Edit*, 2013, **52**, 11154-11157.
- S26. S. Uchiyama, T. Tsuji, K. Kawamoto, K. Okano, E. Fukatsu, T. Noro, K. Ikado, S. Yamada, Y. Shibata, T. Hayashi, N. Inada, M. Kato, H. Koizumi and H. Tokuyama, *Angew Chem Int Edit*, 2018, 57, 5413-5417.