Supplementary Material for

Diphosphination of CO₂ and CS₂ mediated by frustrated Lewis pairs – catalytic route to phosphanyl derivatives of formic and dithioformic acid

Natalia Szynkiewicz, Łukasz Ponikiewski, Rafał Grubba*

*Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12. PL-80-233, Gdansk, Poland.

CONTENTS:

Experimental section	4
Preparation of 1a	4
Preparation of 1b	5
Preparation of 2	6
Preparation of 2a	6
Preparation of 2b	7
Preparation of 3b	8
Preparation of 4	8
X-ray structures analysis	10
Single X-ray structure analysis of 1a	11
Single X-ray structure analysis of 1b	12
Single X-ray structure analysis of 2b	13
Single X-ray structure analysis of 4	14
Spectroscopic data	15
NMR spectra of isolated compounds	15
NMR spectra of 2	15
NMR spectra of 1a	18
NMR spectra of 1b	23
NMR spectra of 2a	27
NMR spectra of 2b	31
NMR spectra of 3b	36
NMR spectra of 4	40
IR spectra of isolated compounds	46
Vis spectra of isolated compounds	48
NMR study of formation and stability of obtained compounds	49
Reversible formation of 2a	49
Formation of 1b	50
Experiment A – excess of CS ₂	50
Experiment B – equimolar amount of CS ₂	51
DFT calculations	53
General methods	53
Optimized structures, Hirshfeld atomic charges and Cartesian coordinates	55

References

Experimental section

All manipulations were carried out under a dry argon atmosphere by using of flamedried Schlenk-type glassware on a vacuum line or in a glove-box. Solvents were dried by standard procedures over Na(K)/K/Na /benzophenone and distilled under argon. 1D (${}^{31}P$, ${}^{13}C$, ${}^{11}B$ and ${}^{1}H$) and 2D NMR spectra in C₆D₆ solution were recorded on a Bruker AV400 MHz spectrometer (external standard TMS for ${}^{1}H$ and ${}^{13}C$; 85% H₃PO₄ for ${}^{31}P$) at ambient temperature. Low-temperature ${}^{31}P$, ${}^{31}P{}^{1}H$ } and ${}^{1}H$ NMR experiments were performed for toluene-*d*₈ solutions of **1**, **2** and **3** under CO₂ atmosphere with data collected at 298 K, 273 K, 248 K and 223 K. Synthesis and specification of diphosphanes **1** and **3** was described in [1]. Diphosphane **2** was synthezied via method described for **1** and **3**. BPh₃ and CS₂ were purchased from Aldrich. CS₂ was dried over P₂O₅ and distilled prior to use. Reaction progress was monitored by ${}^{31}P{}^{1}H$ NMR spectra of reaction mixtures.

Preparation of 1a

(a) A solution of BPh₃ (6 mg, 0.025 mmol, 5%mol) and **1** (188 mg, 0.5 mmol) in toluene (4 mL) was slowly frozen in a liquid nitrogen bath, evacuated to 0.01 Torr and backfilled with CO₂ (1 atm). The solution was allowed to warm to room temperature and stirred for 2 days. ³¹P{¹H} of the colourless reaction mixture revealed complete conversion of **1** into **1a**. The volume of the reaction mixture was reduced to 1 ml under reduced pressure. The solution was left at -20°C overnight to afford colorless X-ray quality crystals of **1a**, which were dried in vacuum. Yield 90% (190 mg, 0.452 mmol). Product 1a was also obtained in the reaction of **1** (188 mg, 0.5 mmol) with (b) 25%mol (30 mg, 0.125 mmol) and (c) 100%mol (121 mg, 0.5 mmol) of BPh₃. In the case of (c) complete conversion into **1a** proceeded after 24 hours at room temperature. Crystals obtained from reactions (b) and (c) were contaminated with BPh₃ that co-crystalize with **1a** (~10%mol).Yield (b) 71% (150 mg, 0.357 mmol), (c) 55% (115 mg, 0.273 mmol).

NMR:

³¹**P**{¹**H**} **NMR** (C₆D₆): δ = 113.4 (d, ³J_{PP} = 14.5 Hz, P(*i*Pr₂N)₂), 47.4 (d, ³J_{PP} = 14.5 Hz, P*t*Bu₂).

¹**H NMR** (C₆D₆): δ 3.48 (two overlapped signals, 4H, *CH*CH₃), 1.38 (d, ³J_{PH} = 11.4 Hz, 18H, C(*CH*₃)₃), 1.31 (d, ³J_{HH} = 6.6 Hz, 12H, CH*CH*₃), 1.35 (d, ³J_{HH} = 6.7 Hz, 12H, CH*CH*₃).

¹³C{¹H} NMR (C₆D₆): δ 178.2 (dd, ¹J_{PC} = 29.4 Hz, ²J_{PC} = 4.4 Hz, *C*=O), 45.9 (d, ²J_{PC} = 14.2 Hz, *C*HCH₃), 32.8 (d, ¹J_{PC} = 21.8 Hz, *C*(CH₃)₃), 30.1 (d, ²J_{PC} = 13.1 Hz, *C*(*CH*₃)₃), 24.1 (d, ³J_{PC} = 6.5 Hz, CH*CH*₃), 23.5 (d, ³J_{PC} = 9.8 Hz, CH*CH*₃).

Elemental analysis: calcd. for C₂₁H₄₆N₂O₂P₂: C, 59.98; H, 11.02; N, 6.66. Found: C, 59.99; H, 10.91; N, 6.57.

IR (solid): \tilde{v} = 2969, 2938, 2866, 1667 (C=O), 1461,1392, 1363, 1183, 1105 1022, 957, 872, 814, 631, 594, 515 cm⁻¹

Preparation of 1b

(a) To a stirred solution of BPh₃ (6 mg, 0.025 mmol, 5%mol) and **1** (188 mg, 0.5 mmol) in toluene (4 ml), 0.1 ml of CS₂ (126 mg, 1.65 mmol) was added dropwise at room temperature. The solution was allowed to stirred for 3 days. ${}^{31}P{}^{1H}$ NMR of deep green reaction mixture revealed complete conversion of **1** into **1b**. The volume of the reaction mixture was reduced to 1 ml under reduced pressure. The solution was left at -20°C overnight to afford deep red X-ray quality crystals of **1b**, which were dried in vacuum. Yield 84% (190 mg, 0.42 mmol). Product **1b** was also obtained in the reaction of **1** (188 mg, 0.5 mmol) with (b) 25%mol (30 mg, 0.125 mmol) and (c) 100%mol (121 mg, 0.5 mmol) of BPh₃. In the case of (c) complete conversion into **1b** proceeded after 24 hours at room temperature. Crystals obtained from reactions (b) and (c) were contaminated with BPh₃ that co-crystalize with **1b** (~10%mol). Yield (b) 81% (183 mg, 0.404 mmol), (c) 76% (172mg, 0.380 mmol).

NMR:

³¹**P**{¹**H**} **NMR (C₆D₆):** δ = 106.6 (d, ³J_{PP} = 14.5 Hz, P(*i*Pr₂N)₂), 75.0 (d, ³J_{PP} = 14.5 Hz, P*t*Bu₂).

¹**H NMR (C₆D₆):** δ 3.40 (m, 4H, *CH*CH₃), 1.39 (d, ³J_{PH} = 11.6 Hz, 18H, C(*CH*₃)₃), 1.24 (d, ³J_{HH} = 6.7 Hz, 12H, CH*CH*₃), 1.07 (d, ³J_{HH} = 6.7 Hz, 12H, CH*CH*₃).

¹³C{¹H} NMR (C₆D₆): δ 250.8 (dd, ¹J_{PC} = 64.5 Hz, ²J_{PC} = 20.9 Hz, *C*=S), 49.1 (d, ²J_{PC} = 11.8 Hz, *CHCH*₃), 34.9 (d, ¹J_{PC} = 30.9 Hz, *C*(CH₃)₃), 29.8 (d, ²J_{PC} = 14.5 Hz, *C*(*CH*₃)₃), 23.8 (d, ³J_{PC} = 4.5 Hz, CH*CH*₃), 23.5 (d, ³J_{PC} = 9.1 Hz, CH*CH*₃).

Elemental analysis: calcd. for C₂₁H₄₆N₂S₂P₂: C, 55.72; H, 10.24; N, 6.19; S, 14.17. Found: C ,55.72; H, 10.27; N, 6.19; S, 13.97.

IR (solid): \tilde{v} = 2962, 2941, 2860, 1456, 1388, 1363, 1196, 1174, 1113, 1045 (C=S), 1016, 951, 867, 796, 510 cm⁻¹

Preparation of 2

To a solution of tBu_2PLi (1.173 g, 7.710 mmol) in 40 cm³ of THF cooled to -50°C, (Et₂N)(*i*Pr₂N)PCl (1.841 g, 7.71 mmol) was added dropwise. The reaction mixture was stirred at -50°C for 30 minutes and then allowed to warm to room temperature for further 30 minutes. The solvent was evaporated and the residue was dried under vacuum (0.01 Torr) for 30 minutes at 50°C to remove all volatiles. The crude product was dissolved in 10 cm³ of petroleum ether and filtered. Removal of the solvent under vacuum afforded 2.517 g (7.223 mmol) of **2** as a yellowish oil in 94% yield.

NMR :

³¹**P**{¹**H**} **NMR** (C₆**D**₆): δ 98.9 (d, ¹J_{PP} = 247.0 Hz, P(Et₂N)(*i*Pr₂N)), 35.3 (d, ¹J_{PP} = 247.0 Hz, P*t*Bu₂).

¹**H NMR (C₆D₆):** δ 3.59 (m, 2H, *CH*), 3.29 (m, 2H, *CH*₂), 3.07 (m, 2H, *CH*₂), 1.42 (d, ³J_{PH} = 10.8, 9H, C(*CH*₃)₃), 1.40 (d, ³J_{PH} = 10.3, 9H, C(*CH*₃)₃), 1.21 (d, ³J_{HH} = 6.1 Hz, 6H, CHC*H*₃), 1.20 (d, ³J_{HH} = 6.1 Hz, 6H, CHC*H*₃), 1.07 (t, ³J_{HH} = 7.0 Hz, 6H, CH₂C*H*₃).

¹³C{¹H} NMR (C₆D₆): δ 50.3 (br, *CH*CH₃), 45.6 (dd, ²J_{PC} = 17.6 Hz, ³J_{PC} = 6.6 Hz, *CH*₂CH₃), 34.2 (dd, ²J_{PC} = 32.3 Hz, ³J_{PC} = 11.7 Hz, *C*(CH₃)₃), 33.6 (dd, ²J_{PC} = 30.8 Hz, ³J_{PC} = 13.2 Hz, *C*(CH₃)₃), 32.0 (dd, ²J_{PC} = 13.2 Hz, ³J_{PC} = 5.9 Hz, *C*(*CH*₃)₃), 31.8 (dd, ²J_{PC} = 13.2 Hz, ³J_{PC} = 5.9 Hz, *C*(*CH*₃)₃), 24.2 (d, ³J_{PC} = 8.8 Hz, CH*CH*₃), 23.8 (d, ³J_{PC} = 6.6 Hz, CH*CH*₃), 14.4 (br, CH₂*CH*₃).

Preparation of 2a

A solution of BPh₃ (6 mg, 0.025 mmol, 5%mol) and **2** (174 mg, 0.5 mmol) in toluene (4 mL) was slowly frozen in a liquid nitrogen bath, evacuated to 0.01 Torr and backfilled with CO₂ (1 atm). The solution was allowed to warm to room temperature and stirred for 24 hours. ³¹P{¹H} NMR spectra of the colourless reaction mixture revealed complete conversion of **2** into **2a**. Pure product was not isolated as the formation of **2a** turned out to be reversible in absence of CO₂ – ³¹P NMR spectra of crude oil, after evaporation of solvent, revealed presence of **2** (9mol% of **2** and 91mol% of **2a** based on ¹H NMR spectra). Product **2a** was also obtained in the reaction of **2** (174 mg, 0.5 mmol) with (b) 25%mol (30 mg, 0.125 mmol) and (c) 100%mol (121 mg, 0.5 mmol) of BPh₃ in quantitative yield based on ³¹P NMR spectra. In each attempt (a-c) complete conversion into **2a** proceeded after 24 hours at room temperature.

NMR:

³¹**P**{¹**H**} **NMR** (C₆D₆): δ 119.4 (d, ³J_{PP} = 14.5 Hz, P(Et₂N)(*i*Pr₂N)), 46.1 (d, ³J_{PP} = 14.5 Hz, PtBu₂).

¹**H NMR (C₆D₆):** δ 3.51 (m, 2H, *CH*), 3.14 (m, 2H, *CH*₂), 3.03 (m, 2H, *CH*₂), 1.35 (d, ³J_{PH} = 11.6 Hz, 9H, C(*CH*₃)₃), 1.36 (d, ³J_{PH} = 11.6 Hz, 9H, C(*CH*₃)₃), 1.27 (d, ³J_{HH} = 6.7 Hz, 6H, CHC*H*₃), 1.14 (d, ³J_{HH} = 6.8 Hz, 6H, CHC*H*₃), 1.06 (t, ³J_{HH} = 7.2 Hz, 6H, CH₂C*H*₃).

¹³C{¹H} NMR (C₆D₆): δ 178.6 (dd, ¹J_{PC} = 29.1.4 Hz, ²J_{PC} = 4.5 Hz, *C*=O), 45.2 (d, ²J_{PC} = 14.5 Hz, *C*HCH₃), 40.2 (d, ²J_{PC} = 19.1 Hz, *CH*₂CH₃), 32.8 (d, ¹J_{PC} = 21.8 Hz, *C*(CH₃)₃), 32.7 (d, ¹J_{PC} = 22.7 Hz, *C*(CH₃)₃), 30.0 (d, ²J_{PC} = 12.7 Hz, C(*CH*₃)₃), 29.9 (d, ²J_{PC} = 12.7 Hz, C(*CH*₃)₃), 24.1 (d, ³J_{PC} = 7.3 Hz, CH*CH*₃), 23.5 (d, ³J_{PC} = 9.1 Hz, CH*CH*₃), 14.4 (bd, ³J_{PC} = 3.6 Hz CH₂*CH*₃).

Preparation of 2b

To a stirred solution of **2** (174 mg, 0.5 mmol) in toluene (4 ml), 0.2 ml of CS₂ (252 mg, 3.33 mmol) was added dropwise at room temperature. The solution was allowed to stirred for 1 hour. ³¹P{¹H} NMR of deep green reaction mixture revealed complete conversion of **2** into **2b**. The solution was removed in vacuo and 1 cm³ of pentane was added to deep green oily residue. The solution was left at -80°C overnight to afford deep green X-ray quality crystals of **2b**, which were dried in vacuum at -10°C. Elemental analysis was not performed as crystals of **2b** slowly melt at room temperature. Yield 89% (190 mg, 0.447 mmol).

NMR:

³¹**P**{¹**H**} **NMR** (C₆D₆): δ 112.6 (d, ³J_{PP} = 10.5 Hz, P(Et₂N)(*i*Pr₂N)), 74.9 (d, ³J_{PP} = 10.5 Hz, P*t*Bu₂).

¹**H NMR (C₆D₆):** δ 3.11 (m, 2H, CH), 2.85 (m, 4H, CH₂), 1.21 (d, ³J_{PH} = 11.7 Hz, 9H, C(CH₃)₃), 1.20 (d, ³J_{PH} = 11.7 Hz, 9H, C(CH₃)₃), 0.96 (d, ³J_{HH} = 6.7 Hz, 6H, CHCH₃), 0.88 (d, ³J_{HH} = 6.7 Hz, 6H, CHCH₃), 0.79 (t, ³J_{HH} = 7.0 Hz, 6H, CH₂CH₃).

¹³C{¹H} NMR (C₆D₆): δ 253.2 (dd, ¹J_{PC} = 65.4 Hz, ²J_{PC} = 20.0 Hz, *C*=S), 48.7 (d, ²J_{PC} = 12.7 Hz, *C*HCH₃), 44.0 (d, ²J_{PC} = 19.1 Hz, *CH*₂CH₃), 34.9 (d, ¹J_{PC} = 30.9 Hz, *C*(CH₃)₃), 34.4 (dd, ¹J_{PC} = 30.0 Hz, ²J_{PC} = 2.7 Hz, *C*(CH₃)₃), 29.9 (d, ²J_{PC} = 13.6 Hz, *C*(*CH*₃)₃), 29.7 (d, ²J_{PC} = 13.6 Hz, *C*(*CH*₃)₃), 23.6 (d, ³J_{PC} = 5.4 Hz, CH*CH*₃), 23.5 (d, ³J_{PC} = 8.2 Hz, CH*CH*₃), 14.7 (bs, CH₂*CH*₃).

IR (solid): \tilde{v} = 2962, 2925, 2860, 1454, 1386, 1361, 1195, 1195, 1176, 1117, 1050 (C=S), 1016, 956, 928, 802, 506 cm⁻¹

Preparation of 3b

To a stirred solution of **3** (160 mg, 0.5 mmol) in toluene (4 ml), 0.2 ml of CS₂ (252 mg, 3.33 mmol) was added dropwise at room temperature. The solution was allowed to stirred for 30 minutes. ³¹P{¹H} NMR of deep green reaction mixture revealed complete conversion of **3** into **3b**. Product was not isolated as the formation of **3b** turned out to be reversible in absence of $CS_2 - {}^{31}P$ NMR spectra of crude green oil, after evaporation of solvent, revealed presence of **3** (84 mol% of **3b** and 16mol% **3** based on ¹H NMR spectra). Complete conversion into **3b** proceeded after 30 minutes at room temperature and further stirring and/or storing reaction mixture caused formation of further rearrangement products.

NMR:

³¹**P**{¹**H**} **NMR** (C₆D₆): δ 128.9 (d, ³J_{PP} = 14.5 Hz, P(Et₂N)₂), 75.9 (d, ³J_{PP} = 14.5 Hz, PtBu₂).

¹**H NMR (C₆D₆):** δ 3.12 (m, 4H, CH₂), 2.94 (m, 4H, CH₂), 1.39 (d, ³J_{PH} = 11.6 Hz, 18H, C(CH₃)₃), 1.02 (t, ³J_{HH} = 7.2 Hz, 12H, CH₂CH₃).

¹³C{¹H} NMR (C₆D₆): δ 254.56 (dd, ¹J_{PC} = 66.3 Hz, ²J_{PC} = 18.2 Hz, *C=S*), 43.5 (d, ²J_{PC} = 18.2 Hz, *CH*₂CH₃), 34.6 (d, ¹J_{PC} = 30.9 Hz, *C*(CH₃)₃), 29.8 (d, ²J_{PC} = 14.5 Hz, C(*CH*₃)₃), 14.4 (d, ³J_{PC} = 3.6 Hz, CH₂CH₃).

Preparation of 4

A solution of **1a** (110 mg, 0.262 mmol) and (1,5-COD)PtMe₂ (87 mg, 0.262 mmol) in toluene (4 mL) was stirred at 50°C. After six days ${}^{31}P{}^{1}H$ NMR spectra revealed complete conversion of substrates into **1a**. The solvent was evaporated and oily residue was dried *in vacuo* at 50°C to remove all volatiles (crude oily product solidifies). **4** was obtained as crystalline yellowish solid in 98% yield (166 mg, 0.257 mmol). X-ray quality crystals of **4** were obtained by slow evaporation of toluene solution under reduced pressure.

NMR:

³¹**P**{¹**H**} **NMR (C₆D₆):** δ = 135.1 (d, ²J_{PP} = 21.8 Hz, ¹J_{PPt} = 2688.4 Hz, P(*i*Pr₂N)₂), 86.2 (d, ²J_{PP} = 21.8 Hz, ¹J_{PPt} = 1707.5 Hz, PtBu₂).

¹**H NMR (C₆D₆):** δ 4.25 (m, 4H, *CH*CH₃), 1.36 (d, ³J_{PH} = 13.8 Hz, 18H, C(*CH*₃)₃), 1.29-1.12 (two overlapped m, 6H, PtC*H*₃), 1.22 (d, ³J_{HH} = 6.8 Hz, 12H, CH*CH*₃), 1.15 (d, ³J_{HH} = 7.0 Hz, 12H, CH*CH*₃).

¹³C{¹H} NMR (C₆D₆): δ 175.9 (dd, ¹J_{PC} = 33.6 Hz, ²J_{PC} = 22.4 Hz, *C*=O), 47.6 (d, ²J_{PC} = 12.4 Hz, ³J_{CPt} = 12.4 Hz, ³J_{CPt} = 12.4 Hz, ³C(H₃), 37.2 (dd, ¹J_{PC} = 9.9 Hz, ³J_{PC} = 2.5 Hz, ²J_{CPt} = 24.9 Hz, *C*(CH₃)₃), 29.7 (d, ²J_{PC} = 6.2 Hz, ³J_{CPt} = 10.0 Hz C(*CH₃*)₃), 25.1 (d, ³J_{PC} = 2.5 Hz, CH*CH₃*), 23.9 (d, ³J_{PC} = 5.0 Hz, CH*CH₃*), 3.5 (dd, ²J_{PC} = 95.8 Hz, ²J_{PC} = 7.5 Hz, ¹J_{CPt} = 609.5 Hz, Pt*C*H₃), -0.8 (dd, ²J_{PC} = 134.3 Hz, ¹J_{PC} = 7.5 Hz, ²J_{CPt} = 577.2 Hz, Pt*C*H₃).

Elemental analysis: calcd. for $C_{23}H_{52}N_2O_2P_2Pt$: C, 42.78; H, 8.12; N, 4.34. Found: C, 42.77; H, 8.01; N, 4.09.

IR (solid): \tilde{v} = 2969, 2933, 2872, 1712 (**C=O**), 1471, 1457, 1362, 1184, 1124, 1078, 986, 972, 869, 844, 809, 641, 611, 590, 553, 476.

X-ray structures analysis

Diffraction data of compounds **1a**, **1b**, **2b** and **4** were collected on diffractometer equipped with a STOE image plate detector system IPDS2T using MoK α ($\lambda = 0.71073$ Å) radiation with graphite monochromatization ($\lambda = 0.71073$ Å). Good quality single-crystal specimens were selected for the X-ray diffraction experiments at 120 K. The structures were solved by direct methods and refined against F2 using the Shelxs-97 and Shelxl-97² programs run under WinGX³. Non-hydrogen atoms were refined with anisotropic displacement parameters; hydrogen atoms were usually refined using the isotropic model with $U_{iso}(H)$ values fixed to be 1.5 times U_{eq} of C atoms for $-CH_3$ or 1.2 times U_{eq} for -CH, $-CH_2$ groups and aromatic H.

Crystallographic data for structures of **1a**, **1b**, **2b** and **4** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-1857357 (**1a**), CCDC- 1857359 (**1b**), CCDC- 1857358 (**2b**) CCDC- 1857360 (**4**). Copies of the data can be obtained free of charge on *via* www.ccdc.cam.uk/data_request/cif (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

	1 a	1b	2b	4
Empirical formula	$C_{21}H_{46}N_2O_2P_2\\$	$C_{21}H_{46}N_2P_2S_2\\$	$C_{19}H_{42}N_2P_2S_2$	$C_{23}H_{52}N_2O_2P_2Pt$
M _r [g mol ⁻¹]	420.54	452.66	424.6	645.69
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	P21	P21	P-1	P21/c
a [Å]	10.3569(7)	10.7172(5)	12.6968(4)	18.1821(10)
<i>b</i> [Å]	11.0026(4)	10.5593(6)	13.8758(6)	17.6525(7)
<i>c</i> [Å]	12.2025(7)	12.6782(6)	14.6351(5)	17.7026(10)
α [°]	90	90	94.762(3)	90
β [°]	114.816(4)	113.193(3)	100.840(3)	97.794(4)
γ [°]	90	90	90.497(3)	90
<i>V</i> [Å ³]	1262.11(13)	1318.8(12)	2522.86(16)	5629.3(5)
Z	2	2	4	8
Calculated density [g cm ⁻³]	1.107	1.14	1.118	1.524
T [K]	120	120	120	120
μ [mm ⁻¹]	0.19	0.33	0.34	5.119
Crystal size/mm ³	$0.22\times0.22\times0.1$	$0.22\times0.21\times0.17$	$0.23\times0.21\times0.20$	$0.22\times0.21\times0.21$
F(000)	464	496	928	2624
λ [Å] (ΜοΚα)	0.71073	0.71073	0.71073	0.71073
Final R indices	$R_1 = 0.0338$	$R_1 = 0.0443$	$R_1 = 0.0445$	$R_1 = 0.0516$
[<i>l>2σ(l)</i>]	$wR_2 = 0.0828$	$wR_2 = 0.0922$	$wR_2 = 0.1139$	$wR_2 = 0.1312$
R indices (all data)	$R_1 = 0.0.0407$	$R_1 = 0.0674$	$R_1 = 0.0679$	$R_1 = 0.0641$
	$wR_2 = 0.0889$	$wR_2 = 0.1018$	$wR_2 = 0.1230$	$wR_2 = 0.0.1383$
Largest diff. peak/hole/ e Å ⁻³	0.32/-0.18	0.42/-0.26	0.39/-0.33	3.234/ -4.021
CCDC	1857357	1857359	1857358	1857360

TARIE S1	CRYSTALLOGRAPHI	C PARAMETERS	OF DETERMINED	STRUCTES 14	1B 2B AND 4
TADLE JI.	CHISTALLOUNAFIII	C FANAMETENS		JINUCILJ IA,	10, 20 AND 4

Single X-ray structure analysis of 1a

FIG. S1. SINGLE CRYSTAL X-RAY STRUCTURE 1A

Bond lengths [Å]		Bond angles [°]		Dihedrals [°]	
P1-C9	1.870(2)	P1-C9-02	109.3(2)	P1-C9-01-P2	-176.0(1)
C9-02	1.205(3)	02-C9-01	123.0(2)	02-C9-01-P2	5.9(3)
C9-01	1.348(3)	C9-01-P2	118.3(2)		
P2-01	1.736(2)	N1-P2-N2	108.9(1)		
P2-N1	1.667(2)	C1-P1-C5	110.9(1)		
P2-N2	1.674(2)				
P1-C1	1.877(2)				
P1-C5	1.892(3)				

Single X-ray structure analysis of 1b

FIG. S2. SINGLE CRYSTAL X-RAY STRUCTURE OF **1B**

	TABLE S3. SELI	ECTED STRUC	TURAL PARA	METERS OF 1B
--	----------------	-------------	------------	--------------

Bond length	s [Å]	Bond angles	[°]	Dihedrals [°]	
P1-C9	1.851(4)	P1-C9-S2	129.3(3)	P1-C9-S1-P2	-164.8(1)
C9-S2	1.640(4)	S2-C9-S1	123.6(3)	S2-C9-S1-P2	16.2(3)
C9-S1	1.730(4)	C9-S1-P2	105.2(1)		
P2-S1	2.193(1)	N1-P2-N2	108.6(2)		
P2-N1	1.680(3)	C1-P1-C5	110.5(2)		
P2-N2	1.673(4)				
P1-C1	1.886(4)				
P1-C5	1.911(5)				

Single X-ray structure analysis of 2b

FIG. S3. SINGLE CRYSTAL X-RAY STRUCTURE OF **2B**

TABLE S4. SELECTED STRUCTURAL PARAMETERS OF 2B (A)

Bond leng	ths [Å]	Bond angles	[°]	Dihedrals [°]	
P1-C9	1.859(2)	P1-C9-S2	129.7(1)	P1-C9-S1-P2	-158.77(8)
C9-S2	1.636(2)	S2-C9-S1	123.8(1)	S2-C9-S1-P2	20.2(1)
C9-S1	1.745(2)	C9-S1-P2	101.27(7)		
P2-S1	2.1735(8)	N1-P2-N2	110.04(9)		
P2-N1	1.668(2)	C1-P1-C5	111.6(1)		
P2-N2	1.684(2)				
P1-C1	1.908(2)				
P1-C5	1.884(2)				

TABLE S5. SELECTED STRUCTURAL PARAMETERS OF **2B** (B)

Bond lengths [Å]		Bond angles	Bond angles [°]		
P3-C28	1.857(2)	P3-C28-S4	129.3(1)	P3-C28-S3-P4	158.83(7)
C28-S4	1.641(2)	S4-C28-S3	124.3(1)	S4-C28-S3-P4	-20.0(1)
C28-S3	1.741(2)	C28-S3-P4	101.72(7)		
P4-S3	2.1756(7)	N3-P4-N4	110.03(9)		
P4-N3	1.668(2)	C20-P3-C24	111.5(1)		
P4-N4	1.681(2)				
P3-C20	1.886(3)				
P3-C24	1.899(2)				

Single X-ray structure analysis of 4

FIG. S4. SINGLE CRYSTAL X-RAY STRUCTURE OF 4

Bond lengt	hs [Å]	Bond angles [°]		Dihedrals [°]	
Pt1-P1	2.275(2)	P1-Pt1-P2	86.06(5)	P1-Pt1-P2-01	1.5(2)
Pt1-P2	2.260(2)	Pt1-P1-C9	105.6(2)	P1-C9-01-P2	13.9(6)
Pt1-C22	2.131(6)	Pt1-P2-01	109.7(2)	02-C9-01-P2	-167.2(5)
Pt1-C23	2.116(6)	C22-Pt1-C23	81.4(2)		
P1-C9	1.896(6)	P1-C9-01	115.1(4)		
C9-01	1.354(6)	02-C9-01	119.8(6)		
C9-02	1.202(9)	C9-01-P2	122.3(4)		
P2-01	1.687(6)	N1-P2-N2	105.9(3)		
P2-N1	1.661(5)	C1-P1-C5	113.1(2)		
P2-N2	1.676(5)				
P1-C1	1.887(5)				
P1-C5	1.886(5)				

TABLE S6. SELECTED STRUCTURAL PARAMETERS OF 4(A)

TABLE S7. SELECTED STRUCTURAL PARAMETERS OF **4**(B)

Bond length	ıs [Å]	Bond angles [°]		Dihedrals [°]	
Pt2-P3	2.272(1)	P3-Pt2-P4	85.49(5)	P3-Pt2-P4-03	7.8(1)
Pt2-P4	2.268(1)	Pt2-P3-C32	106.1(2)	P3-C32-O3-P4	15.2(5)
Pt2-C45	2.110(6)	Pt2-P4-03	109.7(1)	04-C32-O3-P4	-165.1(4)
Pt2-C46	2.141(5)	C45-Pt2-C46	82.0(2)		
P3-C32	1.901(6)	P3-C32-O3	114.4(4)		
C32-O3	1.354(7)	04-C32-O3	120.2(5)		
C32-04	1.199(7)	C32-O3-P4	122.5(3)		
P4-03	1.672(4)	N3-P4-N4	112.0(3)		
P4-N3	1.661(5)	C24-P3-C28	106.2(3)		
P4-N4	1.674(5)				
P3-C24	1.904(7)				
P3-C28	1.883(7)				

Spectroscopic data

NMR spectra of isolated compounds

NMR spectra of 2

FIG. S5. ¹H NMR (C₆D₆) SPECTRUM OF **2.**(* - IMPURITIES)

FIG. S7. 31 P NMR (C₆D₆) SPECTRUM OF **2.** (* - IMPURITIES)

FIG. S8. $^{31}P^{-1}H$ 2D NMR (C₆D₆) SPECTRUM OF **2**

FIG. S9. ¹H NMR (C₆D₆) SPECTRUM OF **1A**

FIG. S10. $^{13}\text{C}\{^1\text{H}\}$ NMR (C_6D_6) SPECTRUM OF 1A

FIG. S11. ${}^{31}P{}^{1}H{}$ NMR (C₆D₆) SPECTRUM OF **1A**

FIG. S12. 31 P NMR (C₆D₆) SPECTRUM OF **1A**

FIG. S13. ¹³C(DEPT) NMR (C₆D₆) SPECTRUM OF **1A**

FIG. S14. ${}^{31}P{}^{-1}H$ HMBC NMR (C₆D₆) SPECTRUM OF **1A**

FIG. S15. COSY NMR (C₆D₆) SPECTRUM OF **1A**

FIG. S16. ¹³C-¹H HMQC NMR (C₆D₆) SPECTRUM OF **1A**

FIG. S17. ¹³C-¹H HMBC NMR (C₆D₆) SPECTRUM OF **1A**

FIG. S18. ¹H NMR (C₆D₆) SPECTRA OF **1B**

^{275.0 250.0 225.0 200.0 175.0 150.0 125.0 100.0 75.0 50.0 25.0} ppm

FIG. S19. $^{13}C{^{1}H}$ NMR (C₆D₆) SPECTRA OF **1B**

FIG. S20. $^{31}P{^{1}H}$ NMR (C₆D₆) SPECTRA OF **1B**

FIG. S22. ¹³C(DEPT) NMR (C₆D₆) SPECTRA OF **1B**

FIG. S23. COSY NMR (C₆D₆) SPECTRA OF **1B**

FIG. S24. ¹³C-¹H HMQC NMR (C₆D₆) SPECTRA OF **1B**

FIG. S25. ¹³C-¹H HMBC NMR (C₆D₆) SPECTRA OF **1B**

FIG. S26. ¹H NMR (C₆D₆) SPECTRA OF **2A**

FIG. S27.¹³C ${^{1}H}$ NMR (C₆D₆) SPECTRA OF **2A**

FIG. S28. ¹³C(DEPT) NMR (C₆D₆) SPECTRA OF **2A**

FIG. S30. COSY NMR (C₆D₆) SPECTRA OF **2A**

FIG. S31. ¹³C-¹H HMQC NMR (C₆D₆) SPECTRA OF **2A**

FIG. S32. ¹³C-¹H HMBC NMR (C₆D₆) SPECTRA OF **2A**

FIG. S33. ¹H NMR (C₆D₆) SPECTRA OF **2B**

FIG. S34. $^{13}C{^{1}H}$ NMR (C_6D_6) SPECTRA OF **2B**

FIG. S35. $^{13}\text{C}(\text{DEPT})$ NMR (C_6D_6) SPECTRA OF 2B

FIG. S37. ³¹P NMR (C₆D₆) SPECTRA OF **2B**

FIG. S38. ${}^{31}P{}^{-1}H$ NMR (C₆D₆) SPECTRA OF **2B**

FIG. S39. COSY NMR (C₆D₆) SPECTRA OF **2B**

FIG. S40. ¹³C-¹H HMQC NMR (C₆D₆) SPECTRA OF **2B**

FIG. S41. ¹³C-¹H HMBC NMR (C₆D₆) SPECTRA OF **2B**

FIG. S43. $^{13}C{^{1}H}$ NMR (C₆D₆) SPECTRA OF **3B**

FIG. S45. 31 P NMR (C₆D₆) SPECTRA OF **3B**

FIG. S47. COSY NMR (C_6D_6) SPECTRA OF **3B**

FIG. S48. ¹³C-¹H HMQC NMR (C₆D₆) SPECTRA OF **3B**

FIG. S49. ¹³C-¹H HMBC NMR (C₆D₆) SPECTRA OF **3B**

NMR spectra of 4

FIG. S50. ¹H NMR (C₆D₆) SPECTRA OF **4**

FIG. S51. $^{13}\text{C}\{^1\text{H}\}$ NMR (C₆D₆) SPECTRA OF 4

FIG. S52. $^{31}P{^{1}H}$ NMR (C₆D₆) SPECTRA OF **4**

FIG. S53. 31 P NMR (C₆D₆) SPECTRA OF **4**

FIG. S54. 13 C(DEPT) NMR (C₆D₆) SPECTRA OF **4**

FIG. S55. ³¹P-¹H HMBC NMR (C₆D₆) SPECTRA OF **4**

FIG. S56. COSY NMR (C₆D₆) SPECTRA OF **4**

FIG. S57. ¹³C-¹H HMQC NMR (C₆D₆) SPECTRA OF **4**

FIG. S58. 13 C- 1 H HMBC NMR (C₆D₆) SPECTRA OF **4**

IR spectra of isolated compounds

FIG. S59. IR SPECTRA OF SOLID 1A

FIG. S60. IR SPECTRA OF SOLID 1B

FIG. S61. IR SPECTRA OF SOLID 2B

FIG. S62. IR SPECTRA OF SOLID 4

Vis spectra of isolated compounds

NMR study of formation and stability of obtained compounds

Reversible formation of 2a

A solution of **2** (87 mg, 0.25 mmol) and BPh₃ (3 mg, 0.0125 mmol, 5%mol) in toluene-d₈ (2 mL) was slowly frozen, evacuated to 0.01 Torr and backfilled with CO_2 (1 atm). The solution was allowed to warm to room temperature and stirred for 24 hours. ³¹P{1H} NMR spectra of the colourless reaction mixture revealed complete conversion of **2** into **2a**. Then, reaction mixture was cooled to 0°C, subjected to three pump-thaw cycles to remove CO_2 and backfilled with argon. An equilibrium between **2** and **2a** in stirred reaction mixture was controlled by ¹H and ³¹P NMR spectra that was recorded after: 3 and 24 h at 0°C; 3 h at 10°C; 3, 24, 48 and 96 h at RT; 3 and 24 h at 35°C; 3 and 24 h at 45°C. Composition of the reaction mixture (including only phosphorus reagents) in each attempt was determined based on ¹H NMR spectra.

FIG. S65. EQUILIBRIUM BETWEEN 2 AND 2A MEASURED AT SELECTED TIME INTERVALS

Tomporatura [%]	Time [h]	Composition of the rea	action mixture [%mol]
Temperature [C]	i inte [n]	2	2a
0	3	7.79	92.21
0	24	8.86	91.14
10	3	9.27	90.73
RT	3	9.5	90.5
RT	24	38.66	61.34
RT	48	51.83	48.17
RT	96	66.16	33.84
35	3	66.31	33.69
35	24	69.74	30.26
35	48	71.08	28.92
45	3	72.37	27.63
45	24	78.73	21.27

TABLE S8.	COMPOSITION	OF THE REACTION	MIXTURE AT	SELECTED	TIME INTERVALS
-----------	-------------	-----------------	------------	----------	----------------

Formation of 1b

To a stirred solution of **1** (94 mg, 0.25 mmol) and BPh₃ (3 mg, 0.0125 mmol, 5%mol) in 2 cm³ of C_6D_6 0.1 ml (1.65 mmol) (**A**); 0.015 ml (0.25 mmol) (**B**) of CS_2 was added dropwise at room temperature and stirred for 48 hours at RT, 48 hours at 35°C and 72 hours at 45°C. Reaction progress was controlled by ¹H and ³¹P NMR spectra that was recorded after 0.5 h, 1.5 h, 4.5 h, 24 h and 48 h at room temperature, 3 h, 24 h and 48 h at 35°C and 3 h, 24 h and 72 h at 45°C. Composition of the reaction mixture (including only phosphorus reagents) in each attempt was determined based on ¹H NMR spectra.

Experiment A – excess of CS₂

FIG. S66. DEGREE OF CONVERSION OF 1 INTO 1B MEASURED AT SELECTED TIME INTERVALS (A)

Temperature	Time [h]	Composition of the reaction mixture [mol		
[°C]	i inte [n]	1	1b	
RT	0.5	94.0	6.0	
RT	1.5	87.3	12.7	
RT	4.5	77.1	22.9	
RT	24	30.4	69.6	
RT	48	6.4	93.6	
35	3	0.0	100.0	
35	24	0.0	100.0	
35	48	0.0	100.0	
45	3	0.0	100.0	
45	24	0.0	100.0	
45	72	0.0	100.0	

TABEL S9. COMPOSITION OF THE REACTION MIXTURE (A) AT SELECTED TIME INTERVALS

Experiment B - equimolar amount of CS₂

FIG. S67. DEGREE OF CONVERSION OF 1 INTO 1B MEASURED AT SELECTED TIME INTERVALS (B)

Temperature	Time [h]	Composition of the reaction mixture [%m		
[°C]	rime [n]	1	1b	
RT	0.5	96.9	3.1	
RT	1.5	94.4	5.6	
RT	4.5	89.2	10.8	
RT	24	64.5	35.5	
RT	48	43.4	56.6	
35	3	42.8	57.2	
35	24	19.9	80.1	
35	48	14.6	85.4	
45	3	6.0	94.0	
45	24	0.0	100.0	

TABLE S10. COMPOSITION OF THE REACTION MIXTURE (**B**) AT SELECTED TIME INTERVALS

DFT calculations

General methods

All calculations presented in the paper were performed using the Gaussian 09⁴ program package. Molecular geometries of all compounds were optimized using density functional theory at the ω B97XD functional by Head-Gordon^{5,6} with 6-31+G(d,p) basis set. The ω B97XD exchangecorrelation functional has been chosen, as it has good overall performance for the description of main-group element compounds, and it also accounts well for long-range and dispersion interactions. Molecular geometries were energy optimized and the most stable (the lowest energy) conformer was identified during the potential energy surface scanning. Nature of the final gas phase geometries as a local minima (no imaginary frequencies) on the potential energy surface was then validated by harmonic frequency calculations at the same level of theory. Values of calculated energies, enthalpies and free energies derived from thermochemical calculations were corrected for the zero-point energy (ZPE).

Condensed Fukui functions⁷ and dual descriptors^{7,8} were determined using optimized structures to single point calculations on diphosphanes **1-3** and products **1a**, **1b**, **2a**, **2b**, **2c**, **3a**, **3b** for *N*, *N-1* and *N+1* electron states at ω B97XD/6-31G+(d,p) level of theory. Condensed to atom parameters were calculated using partial charges derived *via* Hirshfeld population analysis.

Compound	E _{electr} [A.U.]	ϵ_0 + E _{ZPE} [A.U.]	ϵ_0 + E _{therm} [A.U.]	ε ₀ + Η [A.U.]	ε ₀ + G [A.U.]
1	-1581.854588	-1581.206485	-1581.174174	-1581.173229	-1581.263890
1a	-1770.402377	-1769.742215	-1769.706130	-1769.705185	-1769.806963
1b	-2416.301937	-2415.646561	-2415.609587	-2415.608643	-2415.713090
2	-1503.244179	-1502.653508	-1502.623530	-1502.622586	-1502.709932
2a	-1691.783538	-1691.179743	-1691.146279	-1691.145335	-1691.243146
2b	-2337.685609	-2337.087199	-2337.052603	-2337.051658	-2337.152913
3	-1424.631215	-1424.097280	-1424.069799	-1424.068855	-1424.152057
3a	-1613.168165	-1612.620794	-1612.590090	-1612.589146	-1612.682537
3b	-2259.067648	-2258.524974	-2258.493460	-2258.492516	-2258.585839
CO ₂	-188.526945	-188.515158	-188.515158	-188.511588	-188.535860
CS_2	-834.426915	-834.419915	-834.416831	-834.415887	-834.442831

TABLE S11. Selected computational parameters obtained for systems involved in mechanism supported by BPh₃ (in atomic units A.U.): ϵ_0 - electronic energy; $\epsilon_0 + ...$ - sum of electronic and: E_{zpe} - zero-point energies, E_{therm} - thermal energies, H - thermal enthalpies, G - thermal free energies calculated in the gas phase at ω B97XD//6-31+G(d,p) level of theory

Nucleophicility of phosphorus centers

TABLE S12	2. VALUES	OF NUCI	EOPHILIC	$(f_N),$	ELECTROP	HILIC	$(f_{\rm E})$	FUKUI	FUNCTION	NS A	ND	DUAL
DESCRIPTO	R (<i>Δf</i>) CALC	CULATED	USING PAR	TIAL	CHARGES	DERIV	/ED	VIA HI	RSHFELD	ΡΟΡ	ULA	TION
ANALYSIS												

Compound		P (RR'N) ₂			$\mathbf{P}t\mathbf{B}u_2$		
compound	f_N	f_E	Δf	f_N	f_E	Δf	
1	0.130	-0.002	-0.132	0.152	-0.009	-0.162	
1a	0.099	-0.010	-0.110	0.013	-0.035	-0.048	
1b	0.017	-0.027	-0.045	0.108	-0.051	-0.159	
2	0.134	0.000	-0.134	0.156	-0.010	-0.166	
2a	0.111	-0.013	-0.123	0.014	-0.030	-0.044	
2b	0.022	-0.031	-0.052	0.110	-0.050	-0.160	
2c	0.012	-0.021	-0.033	0.098	-0.040	-0.138	
3	0.159	-0.024	-0.183	0.203	-0.070	-0.273	
3a	0.062	-0.039	-0.101	0.021	-0.112	-0.133	
3b	0.035	-0.039	-0.074	0.108	-0.051	-0.159	

Optimized structures, Hirshfeld atomic charges and Cartesian coordinates

Hirshfeld atomic charges for all optimized structures of substrates, intermediates, transition states and products were presented in Figures S77-S114 . Hydrogen atoms are omitted for clarity.

FIG. S68. OPTIMIZED STRUCTURE 1

2.72462200	-0.94449200	-1.07981200
1.96812500	-1.88742600	-2.03126200
1.54535300	-2.74459700	-1.49735800
2.67150400	-2.27512300	-2.77868200
1.15645800	-1.38007400	-2.55679200
3.93334900	-1.74045500	-0.54667000
3.60877600	-2.64071200	-0.01584500
4.56337900	-1.15982900	0.12876600
4.56008900	-2.05262100	-1.39227700
3.22300000	0.26337300	-1.88071600
3.92144400	0.87560300	-1.30433400
2.39903200	0.90132200	-2.20926200
3.75697700	-0.08416500	-2.77472700
2.24784500	0.96438200	1.33156600
3.71014000	0.72547000	1.74473400
3.84425300	-0.24103400	2.24183900
4.01367500	1.51111600	2.44835000
4.39198100	0.77579300	0.89242800
1.42366100	1.05044100	2.62917300
1.49945600	0.12563600	3.21041600
0.36772300	1.24750400	2.43607600
1.79907700	1.87404400	3.24940700
2.15617500	2.29981200	0.58431600
2.84935500	2.34782900	-0.25713300
2.41118400	3.12152400	1.26741900
1.14939600	2.46407100	0.20431200
-1.27721000	2.19992400	-1.60081700
-1.67195900	3.15910300	-1.25043800
-0.01009900	2.51005500	-2.40091300
0.74338700	3.01102500	-1.78986800
-0.25284900	3.15876300	-3.24923200
	2.72462200 1.96812500 1.54535300 2.67150400 1.15645800 3.93334900 3.60877600 4.56337900 4.56008900 3.22300000 3.92144400 2.39903200 3.75697700 2.24784500 3.71014000 3.84425300 4.01367500 1.49945600 0.36772300 1.79907700 2.15617500 2.84935500 2.41118400 1.14939600 -1.27721000 -1.67195900 -0.01009900 0.74338700 -0.25284900	2.72462200-0.944492001.96812500-1.887426001.54535300-2.744597002.67150400-2.275123001.15645800-1.380074003.93334900-1.740455003.60877600-2.640712004.56337900-1.159829004.56008900-2.052621003.223000000.263373003.921444000.875603002.399032000.901322003.75697700-0.084165002.247845000.964382003.710140000.725470003.84425300-0.241034004.391981000.775793001.423661001.050441001.499456000.125636000.367723001.247504001.799077001.874044002.156175002.299812002.849355002.347829002.411184003.121524001.49396002.46407100-1.277210002.19992400-1.671959003.15910300-0.010099002.510055000.743387003.01102500-0.252849003.15876300

Н	0.42263500	1.58797700	-2.80245100
С	-2.33060200	1.59116800	-2.53689600
Н	-3.24264300	1.31798000	-2.00284300
Н	-1.93671500	0.69570800	-3.02702700
Н	-2.59302000	2.31302200	-3.31790600
С	-1.71571100	1.86098800	0.83668400
Н	-1.45654900	1.14353100	1.61698400
С	-1.28461000	3.24727300	1.33516100
Н	-0.21128300	3.30035100	1.52016600
Н	-1.80206400	3.47474300	2.27311600
Н	-1.54623200	4.03569500	0.62192000
С	-3.24246800	1.81949900	0.68530000
Н	-3.56732100	0.83592500	0.34110500
Н	-3.59430000	2.57277000	-0.02754900
Н	-3.72347600	2.02814100	1.64705000
С	-2.18920900	-2.27107500	-0.42043400
Н	-2.68776200	-2.86291100	0.35320000
С	-1.33896800	-3.24218000	-1.24556700
Н	-0.54615600	-3.68088100	-0.63373200
Н	-0.87541900	-2.73065000	-2.09419900
Н	-1.96264700	-4.05287300	-1.63798600
С	-3.29916600	-1.66235900	-1.27595700
Н	-3.93963200	-1.00833700	-0.67808000
Н	-3.92237600	-2.45470700	-1.70436300
Н	-2.88312800	-1.08051400	-2.10154800
С	-1.27740800	-1.48777900	1.76074500
Н	-0.57366700	-0.73783700	2.12910000
С	-0.67627100	-2.85467800	2.11546300
Н	0.28890400	-2.98398700	1.62163300
Н	-1.33877700	-3.67926400	1.83084400
Н	-0.52004300	-2.92061400	3.19752800
С	-2.60672500	-1.27892300	2.49736100
Н	-3.01950900	-0.28616900	2.30898000
Н	-2.45879700	-1.39345900	3.57633900
Н	-3.35590100	-2.01713500	2.19129200
Ν	-1.39564600	-1.25806400	0.30879700
Ν	-0.99956300	1.41877000	-0.37149500
Р	1.59003200	-0.57944900	0.42241000
Р	-0.41311000	-0.18820000	-0.60737800

FIG. S69. OPTIMIZED STRUCTURE 1A

С	-3.99634000	-1.08963200	0.00922000
С	-3.48893800	-2.52247900	0.27435300
Н	-3.18277400	-2.65616500	1.31833400
Н	-4.30239700	-3.23069800	0.07493700
Н	-2.65043700	-2.77885400	-0.37511900
С	-4 33402300	-0.93930100	-1 47900300
ч	-3 44182400	-1 04178400	-2 10074500
11	-5.44102400	1 72422100	1 76012700
11	-3.04413200	-1.72423100	1.025(500
П	-4.81090400	0.02149000	-1.69356500
C	-5.26856300	-0.89332900	0.85645400
Н	-5.06348500	-1.02036800	1.92466500
Н	-5.72859400	0.08653500	0.71274900
Н	-6.00941200	-1.64790800	0.56540800
С	-2.87324100	1.83832900	0.03101100
С	-4.31555700	2.31162900	0.26433500
Н	-4.63718300	2.14975200	1.29863300
Н	-4.37477100	3.38812400	0.06282100
н	-5.02538300	1 81593300	-0 40262300
C C	-2 50710200	2 01486700	-1.45006300
с u	1 45102700	1 70259700	1 62244200
п	-1.45165700	1.79256700	-1.03344200
н	-3.10565300	1.38139500	-2.10689100
H	-2.67619300	3.05942700	-1.74125500
С	-1.93542100	2.71611400	0.87888100
Н	-2.18607900	2.66245100	1.94309700
Н	-0.89491200	2.40888500	0.75448100
Н	-2.02459200	3.76116100	0.55598600
С	-1.16733300	-0.41714500	-0.31067100
С	2.66967300	2.38708200	-0.79813000
Н	3,24154100	3.04846500	-0.14015200
C	1 45547600	3 17833000	-1 29420800
ч	177354600	4 08742000	-1 81569400
11	0.96107200	2 57072200	1 00296200
п	0.00197200	2.57972500	-1.99386300
H	0.81000300	3.46459000	-0.45928800
L	3.6019/900	2.00002600	-1.949/1800
Н	3.95551000	2.89662900	-2.46959100
Н	4.46906300	1.45244800	-1.56910100
Н	3.08657700	1.36747200	-2.67891200
С	2.59813300	1.29819400	1.46744200
Н	2.17944800	0.39685300	1.91415400
С	1.92619800	2.48294400	2.16856000
Н	2.13462400	2.44861300	3.24279700
н	2 29246400	3 44458500	1 79333000
н	0.84367500	2 44474100	2 02852300
C C	4 10069000	1 26510100	1 71221400
с п	4.2220(200	1.20310100	2.70(0(100
н	4.32286300	1.212/4/00	2.78606100
Н	4.55108/00	0.39122800	1.22556800
Н	4.60388200	2.16075700	1.32121300
С	2.58696100	-2.44956600	-0.84403400
Н	2.79943800	-3.31211800	-0.20512000
С	3.93925400	-1.91241400	-1.32159500
Н	4.49507000	-2.69272000	-1.85214700
Н	3.80999400	-1.06964100	-2.00907100
Н	4.53787300	-1.57067300	-0.47189800
С	1.44892000	-1.95482800	1.34364700
ч	0.89154000	-1 13255600	1 79906000
C C	1 72000200	-2 94780900	-2 01140300
с п	1.72909200	2.74700900	2.01140300
н	2.25433000	-3.74249200	-2.55262900
п	0.77423800	-3.33643600	-1.650/4800
H	1.51104900	-2.13971100	-2.71579100
С	2.63556400	-2.28740000	2.25673100
Н	2.28129200	-2.52192700	3.26584000
Н	3.18906600	-3.15976800	1.89335000
Н	3.33473600	-1.44946200	2.31974500
С	0.47995600	-3.14069900	1.25180900
Н	0.08742200	-3.38009800	2.24532500

Н	-0.35938300	-2.90737600	0.59350900
Н	0.97486300	-4.03879000	0.86651000
0	-0.08012100	0.21889000	0.14159100
0	-1.13578600	-1.20872700	-1.23033700
Р	-2.66608900	0.06456800	0.70976100
Р	1.44125800	-0.01916400	-0.71729400
Ν	2.29103200	1.22594000	0.03367400
Ν	1.88557800	-1.47746600	0.02099000

FIG. 70. OPTIMIZED STRUCTURE 1B

S	0.09924600	0.27290700	-0.79658200
Р	-1.63290800	0.10168200	0.55845500
Р	3.01407700	0.21867800	-0.74683500
S	1.30346800	-1.30631000	1.44625400
Ν	-2.26392200	-1.40743600	0.11525200
Ν	-2.60549500	1.29305600	-0.16270400
С	-2.10659200	-2.09774100	-1.17536900
Н	-1.62285200	-1.38850600	-1.85129200
С	-2.97589000	-2.15497100	1.17791100
Н	-3.24828500	-3.11278100	0.72602500
С	3.41466500	1.76660700	0.30713000
С	-3.44799400	-2.48689900	-1.80877500
Н	-3.95542800	-3.27729500	-1.24602300
Н	-3.28365000	-2.86548400	-2.82262700
Н	-4.12317700	-1.62803700	-1.86541500
С	3.65419500	-2.46557900	-0.92287400
Н	2.90541700	-2.82791500	-0.21642100
Н	4.43215200	-3.23342400	-1.01174500
Н	3.18140700	-2.35521400	-1.90557000
С	2.48580000	2.88400700	-0.20176600
Н	2.61398200	3.05696000	-1.27480600
Н	2.72280800	3.81566400	0.32715300
Н	1.43285300	2.65668200	-0.01906200
С	-2.74205200	2.57569200	0.55916100
Н	-3.38275400	3.20375700	-0.06755500
С	4.30260000	-1.14817300	-0.45276000
С	-1.16193300	-3.29765300	-1.05704300
Н	-0.19615100	-2.97680300	-0.65709400
Н	-1.00340300	-3.75871800	-2.03748500
Н	-1.56816900	-4.06536400	-0.38923500
С	-3.17023000	1.22130000	-1.51563800

Н	-2.91030100	0.23390400	-1.90030900
С	4.86249800	2.18900100	0.00632000
Н	5.59457500	1.50352400	0.43969400
Н	5.03986100	3.17713100	0.44782800
Н	5.05047700	2.26818100	-1.06967900
С	-2.56812500	2.25061500	-2.47997100
Н	-2.81223100	3.27701400	-2.18595100
Н	-2.96609800	2.09508300	-3.48797300
Н	-1.47967400	2.15545800	-2.52157700
С	3.22444300	1.62030200	1.82159600
Н	2.17450500	1.46224200	2.08023300
Н	3.55469100	2.54451500	2.31279700
Н	3.79725500	0.79102900	2.24059600
С	5.45938600	-0.84442500	-1.42844000
Н	5.10045800	-0.75053300	-2.45838300
Н	6.18016700	-1.67047100	-1.39450500
Н	5.99955400	0.06999700	-1.17387200
С	1.44851900	-0.36701500	0.10635000
С	-2.10574400	-2.47716100	2.39450000
Н	-1.19971700	-3.00547200	2.08991100
Н	-2.66810100	-3.10590800	3.09299700
Н	-1.80009700	-1.56858600	2.92142600
С	-3.46096900	2.40313500	1.89950100
Н	-4.43350400	1.92469700	1.75136100
Н	-3.61925000	3.37618400	2.37604400
Н	-2.87098900	1.78386500	2.58268900
С	-4.28033400	-1.46232900	1.58136700
Н	-4.08048400	-0.50526300	2.07438000
Н	-4.84942000	-2.08764000	2.27730500
Н	-4.90005900	-1.26761500	0.70134600
С	-1.40873600	3.31377600	0.72236200
Н	-0.73167700	2.75705400	1.37974700
Н	-1.56936300	4.30211400	1.16571200
Н	-0.91529400	3.44147100	-0.24533300
С	-4.70000600	1.29434300	-1.48423900
Н	-5.10038000	0.52276200	-0.82088700
Н	-5.11275900	1.14385200	-2.48717800
Н	-5.05270100	2.26706900	-1.12476200
С	4.86580300	-1.33016700	0.96180000
Н	5.43575400	-0.45710000	1.29133300
Н	5.55422700	-2.18525700	0.96435600
Н	4.07496100	-1.52709400	1.68819300

FIG. S71. OPTIMIZED STRUCTURE 2

С	-1.92623100	-1.80059200	-0.64044500
С	-1.33547300	-2.26206800	-1.98665500
Н	-1.82243900	-1.75510200	-2.82566200
Н	-1.48613900	-3.34267600	-2.10596700
Н	-0.26366600	-2.07073500	-2.05734400
С	-3.44333900	-2.03443400	-0.71958400
Н	-3.91919900	-1.40603500	-1.47940100
н	-3 93928900	-1 86385000	0 23869900
Н	-3 62130300	-3 08172800	-0.99451000
C	-1 34770200	-2 66069600	0.48713200
u u	-1 71440100	-2 35587600	1 47041100
11	-1.7 1440100	2.55507000	0.40010600
п	-0.20004700	-2.59405400	0.49919600
H	-1.62996100	-3./10/4600	0.33233600
C	-2.64236500	0.88093300	0.//586/00
С	-4.05502300	1.07976500	0.19417200
Н	-4.01573400	1.59678700	-0.77005400
Н	-4.64319000	1.69816700	0.88405500
Н	-4.59676600	0.14386800	0.05574900
С	-2.06837500	2.28744900	1.02781000
Н	-1.92597400	2.84187600	0.09478100
Н	-1.11050500	2.24832000	1.54883500
Н	-2.76758000	2.85225700	1.65672000
С	-2.72476700	0.13808700	2.11491300
н	-3 22139200	-0.83108600	2 01905000
н	-3 30685000	0 73399400	2,83001900
н ц	-1.72026500	-0.02217100	2.53001700
C C	1 02020300	2 60520400	2.34330300
с и	1.93900400	2.00559400	0.00554000
H	2.42232500	3.14162900	-0.75925800
L 	1.33694400	3.61/66000	1.03458200
Н	0.52855900	4.17674600	0.55414400
Н	2.10269600	4.32386700	1.37307200
Н	0.92713800	3.11665200	1.91634800
С	0.86949900	1.74185400	-1.97675800
Н	0.27482500	0.89684100	-2.32846200
С	0.20244100	3.02617500	-2.46158800
Н	-0.82735900	3.06996300	-2.09506600
Н	0.18495000	3.05993000	-3.55607200
Н	0.73018800	3.91771900	-2.10696200
C	2,33056600	-1.34509800	1.44570000
н	3 02394400	-2 11393000	1 09007100
C	1 46799300	-1 99171100	2 5 3 2 5 1 0 0 0
U U	0.00056700	2 00466900	2.33231000
11 11	0.59030700	1 20210000	2.17010900
п	0.68559200	-1.30219900	2.86606800
Н	2.084/0600	-2.25016600	3.39963400
C	3.18496000	-0.21915600	2.04514300
Н	3.83506900	0.23148600	1.29101900
Н	3.81920300	-0.61360000	2.84635400
Н	2.55038700	0.56519100	2.47061200
С	2.10364200	-1.29645600	-1.04994900
Н	1.39694700	-0.91357700	-1.79156100
С	2.20967100	-2.81315400	-1.26077200
Н	1.27747800	-3.31752700	-0.99652900
Н	3.01636000	-3.25366000	-0.66599300
н	2 42980700	-3 02674400	-2 31199000
C	3 45503900	-0.62481100	-1 33054700
u u	3 30031800	0.02101100	-1 18486000
и И	276745500	-0.81762700	_2 26221200
11 11	3.70743300	1.01540000	-2.30221300
п	4.23038300	-1.01540000	-0.00956500
N	1.53351900	-0.94496000	0.25918700
N	0.96551300	1.67685300	-0.51939700
Р	-1.54483600	0.06717200	-0.56601800
Р	0.45661300	0.37907100	0.48659800
Н	2.74493000	2.05599400	0.57117100
Н	1.86944300	1.64375500	-2.43007700

C 3.85613200 -2.56194700 H 4.60552500 -2.10536800 H 3.78326800 -3.62091700 H 4.21580300 -2.51276600 C 2.06500200 -1.92988000 H 2.71255100 -1.30774100 H 1.03445400 -1.58998000 H 2.12210400 -2.95840900 H 2.12210400 -2.95840900 C 1.45683100 -2.73975000 H 0.45866600 -2.30065200 H 1.40821800 -3.75474100 C 3.94046800 0.85817600 C 5.18985300 0.44797200 H 5.01008300 0.50631700 H 6.00900500 1.13623000 H 5.53236900 -0.56206500 G 3.60996900 2.31605600	0.06068000 -0.59086500 -0.21504900 -1.57935400 -2.19993500 -1.71848000 -1.95787800 0.70654200 0.64868000 1.76098400 0.29191100 0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
H 4.60552500 -2.10536800 H 3.78326800 -3.62091700 H 4.21580300 -2.51276600 C 2.06500200 -1.92988000 H 2.71255100 -1.30774100 H 1.03445400 -1.58998000 H 2.71225100 -2.73975000 H 2.12210400 -2.95840900 C 1.45683100 -2.73975000 H 0.45866600 -2.30065200 H 1.74173900 -2.81274200 H 1.40821800 -3.75474100 C 3.94046800 0.85817600 C 5.18985300 0.44797200 H 5.01008300 0.50631700 H 6.09900500 1.13623000 H 5.53236900 -0.56206500 G 3.60996900 2.31605600	-0.59086500 -0.21504900 1.09396600 -1.57935400 -2.19993500 -1.71848000 -1.95787800 0.70654200 0.64868000 1.76098400 0.29191100 0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
H3.78326800-3.62091700H4.21580300-2.51276600C2.06500200-1.92988000H2.71255100-1.30774100H1.03445400-1.58998000H2.12210400-2.95840900C1.45683100-2.73975000H0.4586600-2.30065200H1.74173900-2.81274200H1.40821800-3.75474100C3.940468000.85817600C5.189853000.44797200H5.010083000.50631700H6.00905001.13623000H5.53236900-0.56206500C3.609969002.31605600	-0.21504900 1.09396600 -1.57935400 -2.19993500 -1.71848000 -1.95787800 0.70654200 0.64868000 1.76098400 0.29191100 0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
H4.21580300-2.51276600C2.06500200-1.92988000H2.71255100-1.30774100H1.03445400-1.58998000H2.12210400-2.95840900C1.45683100-2.73975000H0.45866600-2.30065200H1.74173900-2.81274200H1.40821800-3.75474100C5.189853000.44797200H5.010083000.50631700H6.00905001.13623000H5.53236900-0.56206500C3.609969002.31605600	1.09396600 -1.57935400 -2.19993500 -1.71848000 -1.95787800 0.70654200 0.64868000 1.76098400 0.29191100 0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
C 2.06500200 -1.92988000 H 2.71255100 -1.30774100 H 1.03445400 -1.58998000 H 2.12210400 -2.95840900 C 1.45683100 -2.73975000 H 0.45866600 -2.3005200 H 1.74173900 -2.81274200 H 1.40821800 -3.75474100 C 3.94046800 0.85817600 C 5.18985300 0.44797200 H 5.01008300 0.50631700 H 6.0990500 1.13623000 H 5.53236900 -0.56206500 C 3.60996900 2.31605600	-1.57935400 -2.19993500 -1.71848000 -1.95787800 0.70654200 0.64868000 1.76098400 0.29191100 0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
H 2.71255100 -1.30774100 H 1.03445400 -1.58998000 H 2.12210400 -2.95840900 C 1.45683100 -2.73975000 H 0.45866600 -2.30065200 H 1.74173900 -2.81274200 H 1.40821800 -3.75474100 C 3.94046800 0.85817600 C 5.18985300 0.44797200 H 5.01008300 0.50631700 H 6.00900500 1.13623000 H 5.53236900 -0.56206500 C 3.60996900 2.31605600	-2.19993500 -1.71848000 -1.95787800 0.70654200 0.64868000 1.76098400 0.29191100 0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
H1.03445400-1.58998000H2.12210400-2.95840900C1.45683100-2.73975000H0.45866600-2.30065200H1.74173900-2.81274200H1.40821800-3.75474100C3.940468000.85817600C5.189853000.44797200H5.010083000.50631700H6.009005001.13623000H5.53236900-0.56206500C3.609969002.31605600	-1.71848000 -1.95787800 0.70654200 0.64868000 1.76098400 0.29191100 0.87576400 1.95440300 0.63437700 0.64163400
H2.12210400-2.95840900C1.45683100-2.73975000H0.45866600-2.30065200H1.74173900-2.81274200H1.40821800-3.75474100C3.940468000.85817600C5.189853000.44797200H5.010083000.50631700H6.009005001.13623000H5.53236900-0.56206500C3.609969002.31605600	-1.95787800 0.70654200 0.64868000 1.76098400 0.29191100 0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
C 1.45683100 -2.73975000 H 0.45866600 -2.30065200 H 1.74173900 -2.81274200 H 1.40821800 -3.75474100 C 3.94046800 0.85817600 C 5.18985300 0.44797200 H 5.01008300 0.50631700 H 6.00900500 1.13623000 H 5.53236900 -0.56206500 C 3.60996900 2.31605600	0.70654200 0.64868000 1.76098400 0.29191100 0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
H0.45866600-2.30065200H1.74173900-2.81274200H1.40821800-3.75474100C3.940468000.85817600C5.189853000.44797200H5.010083000.50631700H6.009005001.13623000H5.53236900-0.56206500C3.609969002.31605600	$\begin{array}{c} 0.64868000\\ 1.76098400\\ 0.29191100\\ 0.07235400\\ 0.87576400\\ 1.95440300\\ 0.63437700\\ 0.64163400 \end{array}$
H1.74173900-2.81274200H1.40821800-3.75474100C3.940468000.85817600C5.189853000.44797200H5.010083000.50631700H6.009005001.13623000H5.53236900-0.56206500C3.609969002.31605600	$\begin{array}{c} 1.76098400\\ 0.29191100\\ 0.07235400\\ 0.87576400\\ 1.95440300\\ 0.63437700\\ 0.64163400\end{array}$
H1.40821800-3.75474100C3.940468000.85817600C5.189853000.44797200H5.010083000.50631700H6.009005001.13623000H5.53236900-0.56206500C3.609969002.31605600	$\begin{array}{c} 0.29191100\\ 0.07235400\\ 0.87576400\\ 1.95440300\\ 0.63437700\\ 0.64163400 \end{array}$
C 3.94046800 0.85817600 C 5.18985300 0.44797200 H 5.01008300 0.50631700 H 6.00900500 1.13623000 H 5.53236900 -0.56206500 C 3.60996900 2.31605600	0.07235400 0.87576400 1.95440300 0.63437700 0.64163400
C 5.18985300 0.44797200 H 5.01008300 0.50631700 H 6.00900500 1.13623000 H 5.53236900 -0.56206500 C 3.60996900 2.31605600	0.87576400 1.95440300 0.63437700 0.64163400
H 5.01008300 0.50631700 H 6.00900500 1.13623000 H 5.53236900 -0.56206500 C 3.60996900 2.31605600	1.95440300 0.63437700 0.64163400
H 6.00900500 1.13623000 H 5.53236900 -0.56206500 C 3.60996900 2.31605600	0.63437700 0.64163400
H 5.53236900 -0.56206500 C 3.60996900 2.31605600	0.64163400
C 3.60996900 2.31605600	
	0.45550600
Н 3.35899300 2.40624500	1.51859300
Н 2.78384000 2.71243100	-0.13691500
Н 4.49316200 2.93952400	0.27032400
C 4.23966800 0.78322500	-1.42953300
Н 4.58978200 -0.20967400	-1.72654200
Н 5.03834700 1.49493100	-1.67463900
Н 3.36156200 1.04428800	-2.02470000
C -2.97726300 2.53871900	-0.57997100
Н -3.44655600 3.17566200	0.17995100
C -2.47993600 3.38885500	-1.74947400
Н -1.72907900 4.11124700	-1.42062900
Н -3.31284500 3.93226400	-2.20899600
Н -2.01884900 2.75397200	-2.51139200
C -1.41055700 2.26515700	1.34146800
Н -0.71866900 1.52633600	1.75110800
C -0.67753500 3.59923500	1.20244800
Н 0.12162900 3.51385500	0.46079500
Н -0.24081100 3.88951900	2.16364000
Н -1.35517400 4.40006900	0.89015100
C -3.10624500 -1.96599000	-0.72804600
Н -3.70835100 -2.56522100	-0.03794300
C -2.04846300 -2.89413400	-1.33201100
Н -1.38855600 -3.28476400	-0.55231000
Н -1.43263900 -2.35663700	-2.06142400
Н -2.52063900 -3.73842100	-1.84567800
C -4.06501500 -1.42423300	-1.79332900
Н -4.81945200 -0.77876400	-1.33336500
Н -4.57586000 -2.24864200	-2.30208900
Н -3.52718700 -0.84226500	-2.54823500

-2.77854700	-0.89152000	1.53232000
-2.17352200	-0.08639400	1.95312500
-2.32895000	-2.18242800	2.22234400
-1.26788100	-2.36530300	2.03626100
-2.89659700	-3.05388200	1.87912400
-2.47889000	-2.09852200	3.30336500
-4.24499800	-0.55725900	1.82023300
-4.50666000	0.40030500	1.36014300
-4.42195400	-0.48660400	2.89839800
-4.91848900	-1.32474300	1.42232700
-2.50696500	-0.89335200	0.08834600
-1.93301300	1.75565000	0.08024000
2.48906000	-0.17807900	0.71010800
-1.57724000	0.28142300	-0.68058200
-3.77204000	1.86599900	-0.93282200
-2.23235800	2.36831900	2.06903800
-0.08892200	-0.03523100	0.16767800
1.04861300	0.54812400	-0.24358700
1.07713200	1.41973600	-1.08491700
	-2.77854700 -2.17352200 -2.32895000 -1.26788100 -2.89659700 -2.47889000 -4.2499800 -4.50666000 -4.42195400 -4.91848900 -2.50696500 -1.93301300 2.48906000 -1.57724000 -3.77204000 -2.23235800 -0.08892200 1.04861300 1.07713200	-2.77854700 -0.89152000 -2.17352200 -0.08639400 -2.32895000 -2.18242800 -1.26788100 -2.36530300 -2.89659700 -3.05388200 -2.47889000 -2.09852200 -4.4499800 -0.55725900 -4.50666000 0.40030500 -4.42195400 -0.48660400 -4.91848900 -1.32474300 -2.50696500 -0.89335200 -1.93301300 1.75565000 2.48906000 -0.17807900 -1.57724000 0.28142300 -3.77204000 1.86599900 -2.3235800 2.36831900 -0.03892200 -0.03523100 1.04861300 0.54812400 1.07713200 1.41973600

S	0.08088500	-0.48777100	0.68620200
Р	-2.83156700	-0.42152700	0.66881200
Р	1.79609300	-0.02249700	-0.59351400
S	-1.14677100	1.24147600	-1.44071300
Ν	2.87510500	-1.02714200	0.25125300
Ν	2.12395200	1.60038200	-0.24674100
С	-1.27162200	0.21502600	-0.16277400
С	4.46702200	-0.31281500	2.03536200
Н	5.32505600	-0.87978800	1.65810600
Н	4.58522300	-0.21624200	3.11948400
Н	4.49796000	0.68578600	1.59009500
С	-3.31564300	-1.82877200	-0.53163400
С	2.09714800	2.24970900	1.06069300
Н	3.03528300	2.80169100	1.20947600
Н	2.07715800	1.47878400	1.83145700
С	3.10449100	-2.87703200	-1.40178700
Н	2.51502600	-3.51905600	-0.74119800
Н	3.82917600	-3.49660900	-1.94069100
Н	2.42785200	-2.43059000	-2.13750600
С	3.81963300	-1.79446300	-0.59076800
Н	4.49068600	-2.30515600	0.10605800
С	-4.75400500	-2.25715300	-0.19394700
Н	-4.88782200	-2.43466400	0.87847700
Н	-4.97643100	-3.19543600	-0.71624300
Н	-5.49195600	-1.51982100	-0.51979200
С	-4.68945100	1.35582700	-0.78946400
Н	-3.92165400	1.59606000	-1.52733500
Н	-5.34197400	2.23141100	-0.67708100
Н	-5.30720400	0.54077200	-1.17695200

С	2.24632100	2.48437300	-1.40643700
Н	1.46913100	3.25791800	-1.37644700
Н	2.03972500	1.88788900	-2.30005500
С	3.14495100	-1.00961400	1.69628300
Н	2.33937400	-0.42781800	2.15265500
С	-4.07674300	1.01176300	0.57308900
С	3.05180200	-2.40870700	2.31390700
Н	2.08260000	-2.85970700	2.08479400
Н	3.15719100	-2.34351500	3.40156100
Н	3.83865900	-3.07674900	1.94868800
С	3.62755000	3.12547200	-1.52727400
Н	3.68407100	3.72849000	-2.43922900
Н	4.40468100	2.35621000	-1.57066000
Н	3.84770900	3.78598500	-0.68254000
С	4.69475300	-0.89980100	-1.47630000
Н	4.09457100	-0.39574200	-2.24165100
Н	5.45713100	-1.49643800	-1.98832200
Н	5.19529800	-0.13469900	-0.87567300
С	-3.36008100	2.25162000	1.14316800
Н	-2.84996900	2.02681600	2.08707500
Н	-4.10399900	3.03150700	1.34555100
Н	-2.62929400	2.65921200	0.44200900
С	-3.20974400	-1.52593400	-2.03099400
Н	-3.79159900	-0.65173300	-2.32834400
Н	-3.58548600	-2.39021400	-2.59353000
Н	-2.17453500	-1.35641300	-2.33575300
С	-5.20423700	0.64619700	1.56142100
Н	-5.77776700	-0.22735600	1.24348500
Н	-5.90297200	1.48874300	1.63209100
Н	-4.80954000	0.44759600	2.56288000
С	0.90656500	3.18363700	1.27938400
Н	0.91678600	4.03317700	0.59080200
Н	0.93594800	3.58365700	2.29793800
Н	-0.03586400	2.64662600	1.14365400
С	-2.38089200	-3.00642600	-0.19828900
Н	-1.33417200	-2.77479700	-0.41437900
Н	-2.66429500	-3.87254400	-0.80929900
Н	-2.45379700	-3.29226700	0.85564900

FIG. S74. OPTIMIZED STRUCTURE 3

Р	0.46447100	-0.12941000	0.66171100
Р	-1.36356100	-0.13303600	-0.67295100
Ν	1.19562800	-1.56232000	0.07090800
С	-2.35197900	-1.49928600	0.26402700
С	-2.19105800	-1.54634300	1.79196000
Н	-1.16680600	-1.78557300	2.08802700
Н	-2.45922600	-0.60341300	2.27286400
Н	-2.84691600	-2.32947800	2.19445400
С	-3.84877200	-1.37922300	-0.06239700

Н	-4.31876500	-0.55089500	0.47335100
Н	-4.03017900	-1.25259000	-1.13460600
Н	-4.35563700	-2.29849600	0.25612300
С	3.27628700	-1.76671300	1.47790100
Н	3.94166300	-1.66170800	0.61629500
Н	3.14523700	-0.77631200	1.92594800
Н	3.76551900	-2.41136700	2.21622500
С	2.69558100	-2.08592900	-1.90657200
Н	3.15721100	-1.09687900	-1.92920800
Н	3.35369600	-2.75760400	-1.34671100
Н	2.63940000	-2.46175200	-2.93372900
С	-1.86415300	-2.84476600	-0.30609500
Н	-1.95556500	-2.88006900	-1.39654800
Н	-0.82325400	-3.03530800	-0.03778000
Н	-2.47223500	-3.65625900	0.11347700
С	1.29073300	-2.04371400	-1.30525000
Н	0.63901400	-1.42550300	-1.92737900
С	1.92020000	-2.34761800	1.07063600
Н	2.05232100	-3.36078600	0.66948300
Ν	1.40476500	1.22039000	0.19951100
С	3.45405600	1.44532200	-1.23069200
Н	3.89904000	2.32785900	-0.76118400
Н	3.86715900	0.55893500	-0.74023300
Н	3.76524900	1.43945600	-2.28004200
С	1.79434600	3.49544800	1.18705400
Н	2.18043200	3.90513400	0.24774400
Н	0.73104800	3.74324600	1.25430600
Н	2.31499600	4.00076100	2.00673900
С	1.92681600	1.46351100	-1.14088800
Н	1.50855900	0.70435700	-1.80693900
С	2.01444400	1.98682000	1.28578800
Н	3.09467100	1.78205000	1.34210500
Н	1.29627900	-2.44667800	1.96785500
Н	0.87273500	-3.06123800	-1.35238300
Н	1.56275300	2.42891000	-1.52367100
Н	1.58313700	1.62007500	2.22183300
С	-2.18247900	1.56672900	-0.35375600
С	-3.49217500	1.65287200	-1.16264800
С	-2.45420400	1.91550500	1.11397600
С	-1.24356000	2.62508700	-0.96009300
Н	-3.33735300	1.35162000	-2.20392900
Н	-4.29763200	1.04814600	-0.74836100
Н	-3.83718000	2.69465500	-1.16405000
Н	-1.54654600	1.84493600	1.72225000
Н	-2.83211700	2.94379500	1.18726300
Н	-3.21069400	1.25907700	1.55278200
Н	-1.74258800	3.60185900	-0.93593900
Н	-0.31237300	2.70430100	-0.40339600
Н	-1.00594000	2.39672000	-2.00507800

Р	-1.79908700	0.08645500	-0.97541300
Р	2.17133400	-0.18076900	0.73018300
Ν	-2.59552400	-1.20600900	-0.22562800
С	2.37499800	-1.94415300	0.02026500
С	2.15020500	-2.06391600	-1.49436000
Н	1.11995900	-1.81849700	-1.76846900
Н	2.81800600	-1.41957300	-2.06929900
Н	2.33237100	-3.10060500	-1.80478200
С	3.77262200	-2.47361600	0.37552000
Ĥ	4.55909600	-1.98620900	-0.20619100
Н	3,99829000	-2.35020300	1.44004400
Н	3.81575900	-3.54590000	0.14949100
C	-3.74818100	-3.27078800	-1.03265200
Ĥ	-2.79872800	-3.65016900	-1.42256500
Н	-4.55403000	-3.60650500	-1.69233600
C	-3.69533200	-1.24582400	2.03390900
н	-3.91061500	-0.17582900	1.96332100
Н	-4.59484300	-1.79054000	1.73051500
Н	-3.49843300	-1.49036000	3.08243400
C	1 33383900	-2 81698200	074714600
Н	1.48650600	-2.80105600	1.83108800
Н	0.31411900	-2.48615300	0.53667800
Н	1.43318800	-3.85429600	0.40313200
C	-2.48775100	-1.61747300	1.17240600
Ĥ	-1.57744300	-1.17954700	1.58485200
C	-3.73130900	-1.74521500	-0.97312600
Н	-3.66969900	-1.34795700	-1.99191500
N	-2.19790300	1.54909600	-0.22177400
C	-3.06215700	2.64486500	1.84451400
н	-3.14989300	3.65048200	1.42247400
Н	-4.02500500	2.14076400	1.71545400
Н	-2.86543200	2.75142000	2.91546800
C	-1.31984100	3,75725400	-1.06755800
н	-1.25857400	4.24897100	-0.09107200
Н	-0.35028700	3.30639400	-1.29250500
Н	-1.53056100	4.53198200	-1.81149000
C	-1.94100500	1.84730800	1.18427400
н	-1.80953700	0.90362900	1.71510500
C	-2.42029300	2.69804400	-1.10553300
H	-3.38826700	3.15580200	-0.86178200
Н	-4.68212400	-1.38022000	-0.55709900
Н	-2.33464600	-2.70398800	1.20936500
Н	-0.98795300	2.38681600	1.29061400
Н	-2.51172300	2.30776500	-2.12407700
C	3.61379500	0.93517700	0.21806500
C	4,78456500	0.65216400	1.17925700
C	4.09282900	0.82644200	-1.23438300
С	3.13820500	2.37737600	0.49410800

Н	4.47131800	0.72725500	2.22599700
Н	5.23172600	-0.33228400	1.02748400
Н	5.57095200	1.39818400	1.01126200
Н	3.27534100	0.99854200	-1.93834200
Н	4.86414500	1.58544000	-1.41800100
Н	4.54303400	-0.14844200	-1.44305200
Н	3.99267900	3.05839100	0.39848800
Н	2.37165400	2.69313300	-0.21522100
Н	2.74330000	2.48320700	1.51111700
С	0.80827900	0.39651300	-0.41895000
Н	-3.92017500	-3.72079200	-0.04998000
0	-0.31439500	-0.26623800	-0.12302900
0	0.87264400	1.24511100	-1.28363900
C H O O	0.80827900 -3.92017500 -0.31439500 0.87264400	0.39651300 -3.72079200 -0.26623800 1.24511100	-0.41895000 -0.04998000 -0.12302900 -1.28363900

Р	2.12906300	0.53886300	0.82396800
Р	-2.51341500	0.62560900	-0.68233000
Ν	2.27779500	-1.13684300	0.62538800
С	-2.72057900	-1.15553000	-1.35046200
С	-2.56015300	-2.29705400	-0.33920900
Н	-1.54684100	-2.33915300	0.06748100
Н	-3.25081100	-2.21553000	0.50169800
Н	-2.75559200	-3.25072400	-0.84638000
С	-4.10452000	-1.25247000	-2.01404800
Н	-4.91345600	-1.26047500	-1.27954600
Н	-4.27947900	-0.43235500	-2.71848000
Н	-4.16433500	-2.19270700	-2.57547200
С	1.72867800	-2.92842000	2.30945500
Н	0.74466600	-2.48392100	2.47936300
Н	2.08883800	-3.35343900	3.25118800
С	2.92299400	-2.90639500	-1.02874800
Н	3.82115900	-2.36256400	-1.33479200
Н	3.21387200	-3.64473500	-0.27571500
Н	2.53792900	-3.45208300	-1.89561000
С	-1.65643500	-1.31988300	-2.45105500
Н	-1.75044500	-0.55020300	-3.22321800
Н	-0.64277400	-1.26866800	-2.04549400
Н	-1.77827200	-2.30133900	-2.92610400
С	1.85173900	-1.95031800	-0.50957400
Н	1.54361700	-1.28429400	-1.31628400
С	2.71523900	-1.87141600	1.81796200
Н	2.87657100	-1.13600700	2.61257300
Ν	3.31076100	1.25565700	-0.15802900
С	5.20776700	0.12305200	-1.28296900
Н	5.94060700	0.86813300	-0.95883300
Н	5.18854400	-0.67699100	-0.53764500
Н	5.54981100	-0.29058000	-2.23760400

С	3.06472700	3.73375200	-0.49519500
Н	3.18104200	3.65399100	-1.58062600
Н	1.99427900	3.73241100	-0.27002000
Н	3.48337500	4.69621300	-0.18353900
С	3.81613400	0.73897700	-1.42510800
Н	3.12197500	-0.00964700	-1.81278000
С	3.77340000	2.58792200	0.22899800
Н	4.85474700	2.64655200	0.05041600
Н	3.69248900	-2.33704900	1.62486100
Н	0.95110100	-2.51951300	-0.23628300
Н	3.83491800	1.54480200	-2.17036900
Н	3.63045000	2.69563100	1.30970000
С	-3.93509200	1.06964200	0.50018200
С	-5.06984500	1.60291000	-0.39941500
С	-4.49012400	-0.02260500	1.42214400
С	-3.43737900	2.25555000	1.34980400
Н	-4.72362800	2.41920000	-1.04129200
Н	-5.50224700	0.82983300	-1.03839000
Н	-5.87473100	1.99022700	0.23721500
Н	-3.71026500	-0.44798200	2.05675200
Н	-5.25776700	0.41627600	2.07259500
Н	-4.96788300	-0.83060200	0.86045200
Н	-4.29263400	2.70553200	1.86814000
Н	-2.71297800	1.94354000	2.10417800
Н	-2.97872400	3.03331600	0.72863100
С	-0.99891200	0.39393500	0.40712300
S	-0.93638000	-0.20151200	1.93903700
S	0.38845100	0.95835700	-0.48620200
Н	1.61927200	-3.75330600	1.59847800

FIG. S77. OPTIMIZED STRUCTURE CO2

С	0.00000000	0.00000000	0.00000000
0	0.00000000	0.00000000	1.16478300
0	0.00000000	0.00000000	-1.16478300

FIG. S78. OPTIMIZED STRUCTURE CS_2

С	0.00000000	0.00000000	0.00000000
S	0.00000000	0.00000000	1.55606900
S	0.00000000	0.00000000	-1.55606900

References

- (1) Szynkiewicz, N.; Ponikiewski, Ł.; Grubba, R. Symmetrical and Unsymmetrical Diphosphanes with Diversified Alkyl, Aryl, and Amino Substituents. *Dalt. Trans.* **2018**, *47* (47), 16885–16894 DOI: 10.1039/C8DT03775B.
- (2) Sheldrick, G. M. A Short History of SHELX. *Acta Crystallographica Section A: Foundations of Crystallography*. International Union of Crystallography 2008, pp 112–122.
- (3) Farrugia, L. J. WinGX and ORTEP for Windows: An Update. *J. Appl. Crystallogr.* **2012**, *45* (4), 849–854 DOI: 10.1107/S0021889812029111.
- (4) M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; G. A. Petersson; H. Nakatsuji; X. Li; M. Caricato; A. Marenich; J. Bloino; B. G. Janesko; R. Gomperts; B. Mennucci; H. P. Hratchian; J. V. Ortritz; Izmaylov, A. F.; J. L. Sonnenberg; D. Williams-Young, F. Ding, F. L.; F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throsse, J. B. F.; Fox, D. J. Gaussian 09. Gaussian, Inc.: Wallingford CT 2016.
- (5) Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–atom Dispersion Corrections. *Phys. Chem. Chem. Phys.* **2008**, *10* (44), 6615 DOI: 10.1039/b810189b.
- (6) Grimme, S. Density Functional Theory with London Dispersion Corrections. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2011**, *1* (2), 211–228 DOI: 10.1002/wcms.30.
- (7) Parr, R. G.; Yang, W. Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. *J. Am. Chem. Soc.* **1984**, *106* (14), 4049–4050 DOI: 10.1021/ja00326a036.
- (8) Morell, C.; Grand, A.; Toro-Labbé, A. New Dual Descriptor for Chemical Reactivity. *J. Phys. Chem. A* **2005**, *109* (1), 205–212 DOI: 10.1021/jp046577a.