Supporting information

Materials and Methods:

All chemicals were reagent grade and used as purchased without further purification. Elemental analysis for C, H and N was carried out on a German Elementar Vario EL III instrument. Thermogravimetric analyses was recorded on a NETZSCH STA 449C unit at a heating rate of 10 °C·min-1 under nitrogen atmosphere. The power X-ray diffractometer using Cu K α radiation ($\lambda = 0.154$ nm).

Synthesis of compound FJI-H20

Compound **FJI-H20** {[Zn₄O(DPOT)](H₂O)₂(DEF)₄}_{*n*} was obtained by dissolving Zn(NO₃)₂ (0.03mmol, 9mg) and H₆DPOT (0.015mmol, 9 mg) in DEF/H₂O (v₁:v₂ = 2:1), and heating this solution at 85°C for three days, then the colourless crystal obtained in 85% yield. Anal. calcd for C₄₇H₅₇Zn₄N₇O₂₂ (Mr = 1333.63): C, 42.33; H, 4.31; N, 7.35. Found: C, 42.54; H, 4.51; N, 7.53.

Gas adsorption Analysis

 N_2 , H_2 , and CO_2 isotherms for **FJI-H20** were determined using an Accelerated Surface Area and Porosimetry 2020-M System at the Fujian Institute of Research on the Structure of Matter in a clean ultra- high vacuum system. Before measurements, about 100 mg solvent-exchanged samples were loaded into the sample basket within the adsorption instrument and then degassed under dynamic vacuum at 100 °C for 10 h to obtain the fully desolvated samples.

Single Crystal X-ray crystallography

Data collections were all performed on a SuperNova diffractometer with graphite mono chromated CuKa radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods, and all calculations were performed using the SHELXL package¹. The structure of **FJI-H20** was refined by full matrix least-squares with anisotropic displacement parameters for non-hydrogen atoms. All hydrogen atoms were generated geometrically and treated as riding. The crystallographic data are summarized in Table S1-S2. CCDC 1880645-6 contains the supplementary crystallographic data for compound **FJI-H20** and its mirror. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

(1) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, **1997**.

	FJI-H20	FJI-H20-mirror
Formula	C ₄₇ H ₅₇ Zn ₄ N ₇ O ₂₂	C ₄₇ H ₅₇ Zn ₄ N ₇ O ₂₂
Formula weight	1333.63	1333.63
Crystal system	cubic	cubic
space group	P213	P2 ₁ 3
a (Å)	18.1601(3)	18.1710(2)
b (Å)	18.1601(3)	18.1710(2)
c (Å)	18.1601(3)	18.1710(2)
α (°)	90	90
β (°)	90	90
γ (°)	90	90

Table S1 Crystal data and refinement results for compound FJI-H20 and its mirror.

Volume (Å ³)	5989.0(3)	5999.8(2)
T (K)	150	150
Z	4	4
F (000)	1760.0	1760.0
R1 (I>2 ^{\sigma} (I))	0.0449	0.0376
wR2 (I> 2^{σ} (I))	0.1223	0.1053
Goodness of fit on F2	1.018	1.061

Table S2 Selected Bond Lengths (Å) and Angle (°) for compound FJI-H20 and its mirror.

FJI-H20		FJI-H20-mirror		
Bond	(Å)	Bond	(Å)	
Zn2—O5 ⁱ	1.972 (4)	Zn2—O5 ⁱ	1.965 (3)	
Zn2—O1	1.930 (2)	Zn2—O1	1.932 (2)	
Zn2—O4 ⁱⁱ	1.979 (4)	Zn2—O4 ⁱⁱ	1.987 (4)	
Zn2—O3	1.965 (5)	Zn2—O3	1.957 (4)	
Zn1—O1	2.034 (7)	Zn1—O1	2.013 (5)	
Zn1—O2 ⁱⁱⁱ	1.892 (11)	Zn1—O2 ⁱⁱⁱ	1.851 (8)	
Zn1—O2 ^{iv}	1.892 (11)	Zn1—O2 ^{iv}	1.851 (8)	
Zn1—O2	1.892 (11)	Zn1—O2	1.851 (8)	
Angle	(°)	Angle	(°)	
O5 ⁱ —Zn2—O3	111.7 (2)	O5 ⁱ —Zn2—O3	111.8 (2)	
O1—Zn2—O5 ⁱ	111.3 (2)	O1—Zn2—O5 ⁱ	111.5 (2)	
O1—Zn2—O4 ⁱⁱ	109.6 (2)	O1—Zn2—O4 ⁱⁱ	109.8(2)	
O1—Zn2—O3	118.9 (2)	O1—Zn2—O3	118.7(2)	
O4 ⁱⁱ —Zn2—O5 ⁱ	99.1 (2)	O4 ⁱⁱ —Zn2—O5 ⁱ	98.9 (2)	
O4 ⁱⁱ —Zn2—O3	104.1 (2)	O4 ⁱⁱ —Zn2—O3	104.0 (2)	
O2 ^{iv} —Zn1—O1	102.6 (4)	O2 ^{iv} —Zn1—O1	103.1 (3)	
O2 ⁱⁱⁱ —Zn1—O1	102.6 (4)	O2 ⁱⁱⁱ —Zn1—O1	103.1 (3)	
O2—Zn1—O1	102.6 (4)	O2—Zn1—O1	103.1 (3)	
O2 ⁱⁱⁱ —Zn1—O2 ^{iv}	115.4 (3)	O2 ⁱⁱⁱ —Zn1—O2 ^{iv}	115.0 (2)	
O2 ^{iv} —Zn1—O2	115.4 (3)	O2 ^{iv} —Zn1—O2	115.0 (2)	
O2 ⁱⁱⁱ —Zn1—O2	115.4 (3)	O2 ⁱⁱⁱ —Zn1—O2	115.0 (2)	

Symmetry codes : ${}^{i}1/2+X,1/2-Y,-Z; {}^{ii}-Z,1/2+X,1/2-Y; {}^{iii}Y,Z,X; {}^{iv}Z,X,Y$

Figure S1 asymmetric unit of FJI-H20 and FJI-20H-mirror.

 Table S3 Refined structure data of ten randomly selected FJI-H20 crystals with absolute configuration and flack parameter

		D 1	D 2	Flack
	a (A) R1		wR2	parameter
Crystal-1	18.1925(6)	0.0449	0.1210	-0.02(4)
Crystal-2	18.2179(2)	0.0444	0.1274	0.08(4)
Crystal-3	18.2201(7)	0.0818	0.2369	0.95(3)
Crystal-4	18.1914(3)	0.0429	0.1087	0.94(6)
Crystal-5	18.2236(5)	0.0537	0.1335	0.04(7)
Crystal-6	18.2004(10)	0.0452	0.1072	0.05(6)
Crystal-7	18.2072(5)	0.0480	0.1336	0.08(4)
Crystal-8	18.1766(6)	0.0463	0.1124	0.04(7)
Crystal-9	18.2326(12)	0.0535	0.1416	0.01(8)
Crystal-10	18.2444(3)	0.0443	0.1255	0.06(4)

Figure S2 Powder X-ray diffraction Analyses of FJI-H20 for adsorption.

Figure S3 TGA curves of compound FJI-H20.

Figure S4 Adsorption heat of H₂ of FJI-H20.

Figure S5 Adsorption heat of CO₂ of FJI-H20.

Figure S6 The CO_2/N_2 selectivity for of FJI-H20 at 273 K and 298K, respectively.

MOFs	H_2 uptake at 77 K ^a per	$\Delta H_{ads}/\mathrm{Kj}$	Reference
	1 atm per wt%	mol ⁻¹	
FJI-H16, Zn ₄ O(dpot)	2.04	6.0	this work
IR MOF-1(MOF-5), Zn ₄ O(bdc) ₃	1.32	4.8	1a

Table S4 Hydrogen adsorption data for selected MOFs based on Zn₄O SBUs.

IR MOF-2, Zn ₄ O(bbdc) ₃	1.21		1b
IR MOF-3, Zn ₄ O(abdc) ₃	1.42	6.1	1b
IR MOF-6, Zn ₄ O(cbbdc) ₃	1.48		1b
IR MOF-8, Zn ₄ O(ndc) ₃	1.5		1c
IR MOF-9, Zn ₄ O(bpdc) ₃	1.17		1b
IR MOF-11, Zn ₄ O(hpdc) ₃	1.62		1d
IR MOF-13, Zn ₄ O(pydc) ₃	1.73	5.1-9.1	1a
IR MOF-18, Zn ₄ O(tmbdc) ₃	0.89		1b
IR MOF-20, Zn ₄ O(ttdc) ₃	1.35		1d
MOF-177, Zn ₄ O(btb) ₂	1.25	4.4	1a
PCN-13, Zn ₄ O(adc) ₃	0.41		1e
$Zn_4O(D_2$ -tcppda) _{3/2}	0.8		1 f
$Zn_4O(ntb)_2$	1.9		1g
UMCM-2, $Zn_4O(t^2dc)(btb)_{4/3}$	1.28	6.4	1h
IRMOF-3–AM5,	1.21	5.7	1i
Zn ₄ O(abdc) _{0.42} (habdc) _{2.58}			
IRMOF-3–AMPh-a,	1.73	5.3	1i
Zn ₄ O(abdc) _{2.04} (babdc) _{0.96}			
IRMOF-3–AMPh-b,	1.73	5.7	1i
$Zn_4O(abdc)_{1.68}(babdc)_{1.32}$			
IRMOF-3–AMPh-c,	1.68	6.0	1i
Zn ₄ O(abdc) _{0.9} (babdc) _{2.1}			
IRMOF-3-URPh,	1.54	5.7	1i
Zn ₄ O(abdc) _{1.77} (pubdc) _{1.23}			
SNU-77H, Zn ₄ O(tcbpa) ₂	1.79	7.05	1j
MOF-646, Zn ₄ O(azd) ₃	1.75	7.8	1k
FJI-3, Zn ₄ O(btc) ₂	1.26	4.62	11
		• • • • • • • •	

^a wt% = $100 \times (\text{weight of adsorbed H}_2)/(\text{weight of MOF material} + \text{weight of adsorbed} H_2).$

(a) J. L. C. Rowsell, A. R. Millward, K. S. Park and O. M. Yaghi, J. Am. Chem. Soc., 2004, 126, 5666. (b) J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304; (c) A. Dailly, J. J. Vajo and C. C. Ahn, J. Phys. Chem. B, 2006, 110, 1099; (d) A. G. Wong-Foy, A. J. Matzger and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 3494; (e) S. Q. Ma, X. S. Wang, C. D. Collier, E. S. Manis and H. C. Zhou, Inorg. Chem., 2007, 46, 8499; (f) D. F. Sun, D. J. Collins, Y. X. Ke, J. L. Zuo and H. C. Zhou, Chem.– Eur. J., 2006, 12, 3768; (g) E. Y. Lee, S. Y. Jang and M. P. Suh, J. Am. Chem. Soc., 2005, 127, 6374; (h) K. Koh, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2009, 131, 4184; (i) Z. Q. Wang, K. K. Tanabe and S. M. Cohen, Chem.–Eur. J., 2010, 16, 212; (j) H. J. Park, D.-W. Lim, W. S. Yang, T.-R. Oh, M. P. Suh, Chem.–Eur. J., 2011, 17, 7251-7260; (k) S. Barman, H. Furukawa, O. Blacque, K. Venkatesan, O. M. Yaghi, H. Berke, Chem. Commun., 2010, 46, 7981-7983; (l) J. Qian, F. Jiang, L. Zhang, K. Su, J. Pan, Q. Li, D. Yuan, M. Hong, Chem. Commun., 2014, 50, 1678-1681.