Supporting Information for

A visible light photoredox catalyzed carbon radical-mediated generation of *o*-QMs for 2,3-dihydrobenzofuran synthesis

Fan Zhou,^a Ying Cheng,^a Xiao-Peng Liu,^a Jia-Rong Chen,^a* and Wen-Jing Xiao^{a,b}

^a Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032,China.

E-mail: chenjiarong@mail.ccnu.edu.cn

Table of Contents

1.	General Information	1
2.	Detailed Optimization of Reaction Conditions and Control Experiments	1
	2.1 Optimization of Reaction Conditions	1
	2.2 Control Experiments	3
3.	Experimental Procedure and Spectral Data of Products	4
	3.1 General Process	.4
	3.2 Experimental Procedure of Reaction Using Sulfonium Bromide	.4
	3.3 Experimental Procedure of Reaction Using Iodoacetonitrile as Radical Source	.5
	3.4 Experimental Procedure of Reaction Using (R)-BINOL-derived Chiral Sulfur Ylide	5
	3.5 Spectra Data of Products	6
4.	Synthetic Utility	11
	4.1 1.0 mmol Scale Experiment	11
	4.2 Sunlight-driven Reaction	11
5.	Mechanism Study	12
6.	Spectra of Products	13
7.	Copy of HPLC Chromatograms	54

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. *fac*-Ir(4'-CF₃-ppy)₃ was prepared according to literature.¹ The solvents used were treated by distillation over the drying agents. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400 or 600 MHz spectrophotometers. Chemical shifts are reported in delta (δ (ppm)) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400 (100 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm). The high resolution mass spectra (HRMS) were measured on a Bruker ESI-O-TOF MS mass spectrometer. 2-Vinylphenols **1**,² sulfonium bromides **5** and sulfur ylides **2** were prepared according to previous reported procedures.³

2. Detailed Optimization of Reaction Conditions and Control Experiments

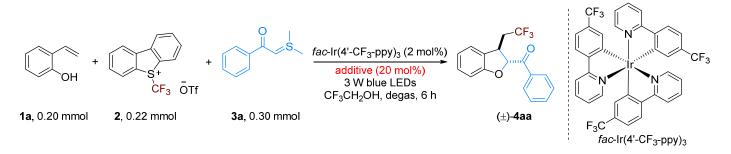
2.1 Optimization of Reaction Conditions

Table S1. Screen of the solvents

	СН +	CF ₃ O	+	[Ru(bpy) ₃]Cl₂●6H₂O (2mol %) 3 W blue LEDs solvent, degas, rt, 6 h	CF ₃ O			
1a , 0.2	20 mmol	2 , 0.22 mmol	3a , 0.30 mmol		(±)- 4 aa			
	Entry ^[a]		solvent	Yield ^[b] [%]				
	1		CH ₂ Cl ₂	36				
	2		Toluene	13				
	3		DMF	20				
	4	(CF ₃ CH ₂ OH	42				

[a] Unless otherwise noted, reactions were carried out with **1a** (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **3a** (54.0 mg, 0.30 mmol), $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (2 mol%) in solvent (2.0 mL) at rt under irradiation of 3 W blue LEDs. [b] Determined by ¹HNMR yield using 1,3,5-trimethoxybenzene as the internal standard.

As shown in *Table S1*, among all the solvents tested, CF₃CH₂OH gave the best results in terms of yield (42% yield), and was thus selected for further optimization studies.

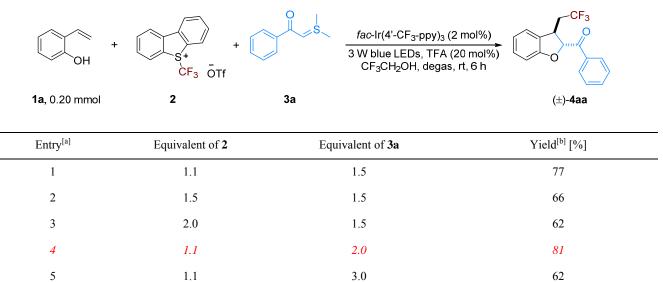

Table S2. Screen of the photocatalysts

OH +	$CF_3 \overline{OTf}$	Photocatalyst 3 W blue LEDs CF ₃ CH ₂ OH, degas, rt, 6 h				
1a , 0.20 mmol	2 , 0.22 mmol 3a , 0.30 mmol	(±) -4 aa				
Entry ^[a]	photocatalyst	Yield ^[b] [%]				
1	<i>fac</i> -Ir(ppy) ₃	51				
2	[Ru(bpz) ₃]PF ₆	49				
3	[Ir(dtbbpy)(ppy) ₂]PF ₆	57				
4	[IrdF(CF ₃ ppy) ₂ (dtbpy)]PF ₆	60				
5	fac - $Ir(4'$ - CF_3 - $ppy)_3$	73				
6	Ir(4-Fppy) ₃	52				
7	Eosin Y	53				
8	No photocatalyst	45				

[a] Unless otherwise noted, reactions were carried out with **1a** (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **3a** (54.0 mg, 0.30 mmol), photocatalyst (2 mol%) in CF₃CH₂OH (2.0 mL) at rt under irradiation of 3 W blue LEDs. [b] Determined by ¹HNMR yield using 1,3,5-trimethoxybenzene as the internal standard.

As shown in *Table S2*, among all the photocatalysts tested, fac-Ir(4'-CF₃-ppy)₃ gave the best results in terms of yield (73% yield), and was thus selected for further optimization studies.

Table S3. Screen of the additives



Entry ^[a]	additive	Yield ^[b] [%]
1	TFA	77
2	TsOH	47
3	Isobutyric acid	30
4	Pivalic acid	70
5	1-Adamantane carboxylic acid	55
6		73

[a] Unless otherwise noted, reactions were carried out with **1a** (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **3a** (54.0 mg, 0.30 mmol), *fac*-Ir(4'-CF₃-ppy)₃ (2 mol%), additive (20 mol%) in CF₃CH₂OH (2.0 mL) at rt under irradiation of 3 W blue LEDs. [b] Determined by ¹HNMR yield using 1,3,5-trimethoxybenzene as the internal standard.

As shown in *Table S3*, among all the additives tested, TFA gave the best result in terms of yield (77% yield), and was thus selected for further optimization studies.

Table S4. Screen of the ratio of the substrates

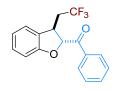
[a] Unless otherwise noted, reactions were carried out with **1a** (24.0 mg, 0.20 mmol), **2**, **3a**, *fac*-Ir(4'-CF₃-ppy)₃ (2 mol%), TFA (20 mol%) in CF₃CH₂OH (2.0 mL) at rt under irradiation of 3 W blue LEDs. [b] Determined by ¹HNMR yield using 1,3,5-trimethoxybenzene as the internal standard.

As shown in *Table S4*, among all the conditions tested, 1.1 equivalent of **2**, 2.0 equivalent of **3a** gave the best results in terms of yield (81% yield), and was thus selected for further optimization studies.

2.2 Control Experiments

Table S5. Control experiments

1a, 0.20 mmol



2, 0.22 mmol

3a, 0.30 mmol

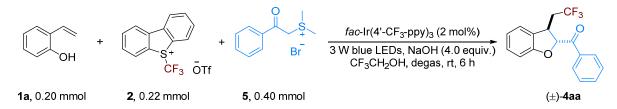
fac-Ir(4'-CF₃-ppy)₃ (2 mol%) 3 W blue LEDs, TFA (20 mol%) CF₃CH₂OH, degas, rt, 6 h

(±)-**4**aa

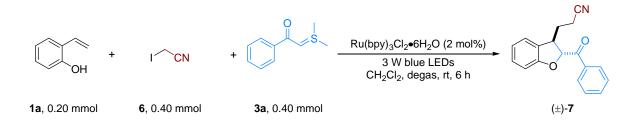
Entry ^[a]	hv	photocatalyst	Yield ^[b] (%)
1	+	+	75
2	-	+	Trace
3	+	-	40
4	-	-	No reaction

[a] Unless otherwise noted, reactions were carried out with **1a** (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **3a** (54.0 mg, 0.30 mmol) *fac*-Ir(4'-CF₃-ppy)₃ (2 mol%), TFA (20 mol%) in CF₃CH₂OH (2.0 mL) at rt under irradiation of 3 W blue LEDs. [b] Determined by isolated yield.

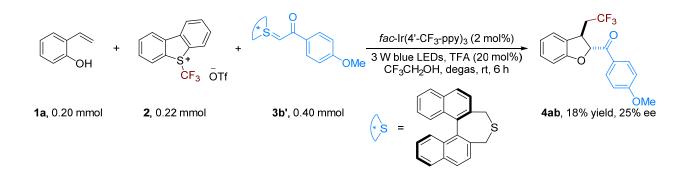
The results of Table S5 revealed that synthesis of 4aa is indeed a photoredox catalysis process.


3. Experimental Procedure and Spectral Data of Products

3.1 General Process


1a (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **3a** (72.0 mg, 0.40 mmol), *fac*-Ir(4'-CF₃-ppy)₃ (3.4 mg, 2 mol%), TFA (4.5 mg, 20 mol%) were dissolved in CF₃CH₂OH (2.0 mL). The resulting mixture was degased by a "freeze-pump-thaw" procedure (3 times). Then, the mixture was stirred at 3 W blue LEDs at room temperature about 6 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 200:1) directly to give the desired product **4aa** in 81% isolated yield as a white solid. Other products were prepared according to the above procedure.

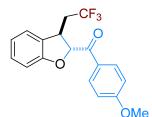
3.2 Experimental Procedure of Reaction Using Sulfonium Bromide


1a (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **5** (104.0 mg, 0.40 mmol), NaOH (32.0 mg, 0.80 mmol), *fac*-Ir(4'-CF₃-ppy)₃ (3.4 mg, 2 mol%), were dissolved in CF₃CH₂OH (2.0 mL). The resulting mixture was degased by a "freeze-pump-thaw" procedure (3 times). Then, the mixture was stirred at 3 W blue LEDs at room temperature about 6 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 200:1) directly to give the desired product **4aa** in 50% isolated yield as a white solid.

1a (24.0 mg, 0.20 mmol), **6** (66.8 mg, 0.40 mmol), **3a** (72.0 mg, 0.40 mmol), $Ru(bpy)_3Cl_2$ · $6H_2O(3.0 mg, 2 mol\%)$, were dissolved in CH_2Cl_2 (2.0 mL). The resulting mixture was degased by a "freeze-pump-thaw" procedure (3 times). Then, the mixture was stirred at 3 W blue LEDs at room temperature about 6 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 200:1) directly to give the desired product **7** in 70% isolated yield as a yellow oil.

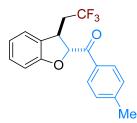
3.4 Experimental Procedure of Reaction Using (R)-BINOL-derived Chiral Sulfur Ylide

1a (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **3b'** (92.1 mg, 0.40 mmol), *fac*-Ir(4'-CF₃-ppy)₃ (3.4 mg, 2 mol%), TFA (4.5 mg, 20 mol%) were dissolved in CF₃CH₂OH (2.0 mL). The resulting mixture was degased by a "freeze-pump-thaw" procedure (3 times). Then, the mixture was stirred at 3 W blue LEDs at room temperature about 6 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 200:1) directly to give the desired product **4ab** in 18% isolated yield as a white solid.

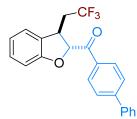

3.5 Spectral Data of Products

Product 4aa

J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.14. HRMS (ESI) for: C₁₇ H₁₃F₃O₂ [M + H]⁺: calcd: 307.0940, found: 307.0950.


Product 4ab

37 mg, white solid, yield: 55%. The ee was determined by chiral HPLC (Chiralpak AD-H, n-hexane/isopropanol 80:20 v/v, flow rate 1.0 mL/min, $\lambda = 254$ nm, 25 °C). Retention times: Rt = 9.246 min (major), Rt = 12.158 min (minor). ee = 25%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 7.6 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 7.00 (d, J = 8.8 Hz, 2H), 6.94 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 5.66 (d, J = 8.0 Hz, 1H), 4.47 – 4.42 (m, 1H), 3.90 (s, 3H), 2.74 – 2.62 (m, 1H), 2.57 – 2.48 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm)

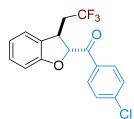

191.7, 164.1, 158.1, 131.9, 129.2, 127.6, 127.5 (q, J = 275.7 Hz), 127.2, 124.5, 122.2, 121.6, 114.0, 110.0, 87.0, 55.5, 38.7 (q, J = 27.2 Hz), 37.3 (q, J = 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.12. HRMS (ESI) for: C₁₈H₁₅F₃O₃ [M + K]⁺: calcd: 375.0605, found: 375.0602.

Product 4ac

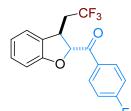
38 mg, white solid, yield: 60%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.00 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.0, 2H), 7.24 (d, J = 7.6 Hz, 1H), 7.20 (t, J = 8.0 Hz, 1H), 6.94 (t, J = 7.2 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 5.68 (d, J = 5.2 Hz, 1H), 4.45 – 4.40 (m, 1H), 2.71 – 2.63 (m, 1H), 2.57 – 2.48 (m, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.1, 158.1, 144.9, 132.1, 129.6, 129.4, 129.2, 127.4 (q, J = 275.7 Hz), 127.1, 124.5, 121.6, 110.1, 86.9, 39.0 (q, J = 27.7 Hz), 37.3 (d, J = 2.3 Hz), 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.09. HRMS (ESI) for: C₁₈H₁₅F₃O₂ [M + H]⁺: calcd: 321.1097, found: 321.1096.

Product 4ad

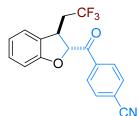
48 mg, white solid, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.18 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.2 Hz, 2H), 7.50 – 7.46 (m, 2H), 7.43 – 7.39 (m, 1H), 7.25 (d, J = 7.2 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 6.95 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 5.72 (d, J = 4.8 Hz, 1H), 4.50 – 4.45 (m, 1H), 2.75 – 2.64 (m, 1H), 2.59 – 2.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.1, 158.1, 146.5, 139.7, 133.3, 130.1, 129.3, 129.0, 128.4, 127.4, 127.3, 127.1, 126.1 (q, J = 275.9 Hz) 124.5, 121.7, 110.1, 87.1, 38.9 (q, J = 27.7 Hz), 37.32 (q, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.09. HRMS (ESI) for: C₂₃H₁₇F₃O₂ [M + H]⁺: calcd: 383.1253,


found: 383.1255.

Product 4ae

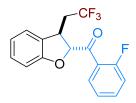

54 mg, white solid, yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 – 7.87 (m, 2H), 7.60 – 7.56 (m, 2H), 7.17 (d, J = 7.6 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H) , 5.55 (d, J = 5.2 Hz, 1H), 4.37 (m, 1H), 2.67 – 2.53 (m, 1H), 2.51 – 2.37 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 157.8, 133.4, 132.1, 131.0, 129.4, 129.2, 126.9, 126.0 (q, J = 275.8 Hz), 124.5, 121.9, 110.1, 87.1, 38.9 (q, J = 27.8 Hz), 37.2 (q, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.17. HRMS (ESI) for: C₁₇H₁₂BrF₃O₂ [M + H]⁺: calcd: 385.0046, found: 385.0042.

Product 4af


44 mg, white solid, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.05 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 7.6 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 6.96 (t, J = 7.2 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 5.63 (d, J = 5.2 Hz, 1H), 4.47 – 4.42 (m, 1H), 2.75 – 2.64 (m, 1H), 2.57 – 2.48 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.5, 157.8, 140.4, 132.9, 130.9, 129.3, 129.0, 127.4 (q, J = 276.1 Hz), 126.9, 124.5, 121.8, 110.1, 87.0, 38.7 (q, J = 27.7 Hz), 37.1 (q, J = 2.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.20. HRMS (ESI) for: C₁₇H₁₂ClF₃O₂ [M + H]⁺: calcd: 341.0551, found: 341.0558.

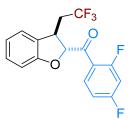
Product 4ag

43 mg, white solid, yield: 66%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.16 – 8.11 (m, 2H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.21 – 7.16 (m, 3H), 6.97 – 6.93 (m, 2H), 6.84 (d, *J* = 8.0 Hz, 1H), 5.64 (d, *J* = 5.2 Hz, 1H), 4.80 – 4.43 (m, 1H), 2.72 – 2.61 (m, 1H), 2.57 – 2.48 (m, 1H). ¹³C NMR (100MHz, CDCl₃) δ (ppm) 192.0, 166.2 (d, *J* = 254.8 Hz), 157.9, 132.3, 131.1, 129.3, 127.0, 126.0 (q, *J* = 275.8 Hz) 124.5, 121.8, 116.0, 110.1, 87.1, 38.9 (q, *J* = 27.7 Hz), 37.2 (q, *J* = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.20, -103.48. HRMS (ESI) for: C₁₇H₁₂F₄O₂ [M + H]⁺: calcd: 325.0846, found: 325.0851.


Product 4ah

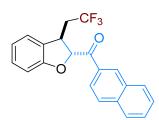
35 mg, white solid, yield: 53%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.19 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 7.2 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 6.97 (t, J = 7.2 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 5.65 (d, J = 5.2 Hz, 1H), 4.49 – 4.44 (m, 1H), 2.74 – 2.63 (m, 1H), 2.60 – 2.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 157.5, 137.7, 132.4, 129.9, 129.4, 127.3 (q, J = 275.7 Hz), 126.6, 124.5, 122.0, 117.8, 116.9, 110.1, 87.1, 38.9 (q, J = 27.7 Hz), 37.1 (q, J = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.22. HRMS (ESI) for: C₁₈H₁₂F₃NO₂ [M + Na]⁺: calcd:

354.0712, found: 354.0722.


Product 4ai

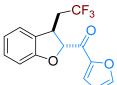
40 mg, white solid, yield: 62%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.82 – 7.78 (m, 1H), 7.61 – 7.56 (m, 1H), 7.28 – 7.16 (m, 4H), 6.94 – 6.90 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H), 5.63 – 5.62 (m, 1H), 4.21 (dd, J = 11.2, 5.6 Hz, 1H), 2.66 – 2.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.6, 162.9 (d, J = 252.7 Hz), 158.4, 135.3 (d, J = 9.1 Hz), 131.3 (d, J = 2.9 Hz), 129.4, 126.7, 126.0 (q, J = 275.7 Hz), 124.8 (m), 123.6 (d, J = 13.5 Hz), 121.6, 116.7 (d, J = 23.2 Hz), 110.1, 89.7 (d, J = 16 Hz), 39.4

(q, J = 27.7 Hz), 38.0 (q, J = 2.7 Hz).¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.06, -109.65. HRMS (ESI) for: C₁₇H₁₂F₄O₂ [M + H]⁺: calcd: 325.0846, found: 325.0851.


Product 4aj

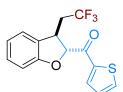
38 mg, white solid, yield: 58%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.88 – 7.82 (m, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 7.01 – 6.91 (m, 3H), 6.84 (d, J = 8.0 Hz, 1H), 5.58 (dd, J = 3.6, 2.4 Hz, 1H), 4.26 – 4.22 (m, 1H), 2.67 – 2.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.1 (d, J = 4.2, Hz), 167.6 (dd, J = 256.6, 12.4 Hz), 163.9 (dd, J = 255.9, 12.6 Hz), 158.2, 133.3 (dd, J = 10.6, 4.5 Hz), 129.4, 127.4 (q, J = 275.8 Hz), 126.7, 124.8, 121.7, 120.2 (dd, J = 13.5, 3.5 Hz), 112.7 (dd, J = 21.5, 3.3 Hz), 110.1, 104.8 (dd, J = 27.0, 17.5 Hz), 89.5 (d, J = 5.9 Hz), 39.4 (q, J = 27.7 Hz), 37.8 (q, J = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.15, -100.32, -104.81. HRMS

(ESI) for: $C_{17}H_{11}F_5O_2 [M + Na]^+$: calcd: 365.0571, found: 365.0589.


Product 4ak

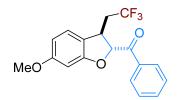
44 mg, white solid, yield: 62%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.66 (s, 1H), 8.11 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H) 7.88 (d, J = 8.0 Hz, 1H), 7.65 – 7.53 (m, 2H), 7.25 (d, J = 7.2 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 5.86 (d, J = 4.8 Hz, 1H), 4.53 – 4.48 (m, 1H), 2.77 – 2.66 (m, 1H), 2.64 – 2.53 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.4, 158.1, 135.9, 132.4, 131.9, 131.7, 129.8, 129.2, 128.9, 128.5, 127.8, 127.1, 126.8, 126.0 (q, J = 275.9 Hz) 124.5, 124.4, 121.7, 110.1, 87.0,

38.9 (q, J = 27.7 Hz), 37.4 (q, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.09. HRMS (ESI) for: C₂₁H₁₅F₃O₂ [M + H]⁺: calcd: 357.1097, found: 357.1095.


Product 4al

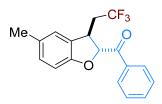
40 mg, white solid, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.69 – 7.68 (m, 1H), 7.47 (d, J = 3.6 Hz, 1H), 7.24 – 7.19 (m, 2H), 6.97 – 6.93 (m, 1H), 6.91 (d, J = 8.0 Hz, 1H), 6.60 (dd, J = 1.0, 0.8 Hz, 1H), 5.49 (d, J = 4.8 Hz, 1H), 4.25 – 4.20 (m, 1H), 2.68 – 2.54 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 183.3, 158.4, 150.5, 147.7, 129.4, 127.3 (q, J = 275.8 Hz), 126.7, 124.7, 121.8, 120.6, 112.6, 110.1, 87.1, 39.2 (q, J = 27.9 Hz), 38.6 (q, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) for: C. H. F.O. [M + H1⁺; calcd: 297.0733, found: 297.0731

-64.01. HRMS (ESI) for: $C_{15}H_{11}F_3O_3$ [M + H]⁺: calcd: 297.0733, found: 297.0731.


Product 4am

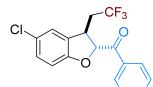
38 mg, corlorless oil, yield: 61%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.04 (dd, J = 4.0, 1.2 Hz, 1H), 7.73 (dd, J = 4.8, 0.8 Hz, 1H), 7.25 – 7.17 (m, 3H), 6.98 – 6.94 (m, 1H), 6.91 (d, J = 8.0 Hz, 1H), 5.44 (d, J = 5.2 Hz, 1H), 4.35 – 4.30 (m, 1H), 2.68 – 2.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 188.1, 158.1, 140.7, 135.4, 134.6, 129.4, 128.3, 126.8, 126.0 (q, J = 275.8 Hz), 124.7, 121.9, 110.2, 88.3, 39.0 (q, J = 27.8 Hz), 38.7 (q, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.93. HRMS

(ESI) for: $C_{15}H_{11}F_3O_2S [M + Na]^+$: calcd: 335.0324, found: 335.0325.


Product 4ba

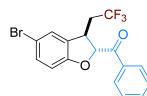
27 mg, yellow oil, yield: 41%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.08 (d, J = 7.6 Hz, 2H) 7.63 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.11 (d, J = 8.4 Hz, 1H), 6.50 (dd, J = 8.4, 2.0 Hz, 1H), 6.44 (d, J = 2.0 Hz, 1H), 5.70 (d, J = 5.2 Hz, 1H), 4.34 – 4.29 (m, 1H), 3.75 (s, 1H), 2.66 – 2.47 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.7, 161.2, 159.4, 134.6, 133.9, 129.4, 128.7, 127.4 (q, J = 276.0 Hz) 124.7, 118.8, 107.6, 96.5, 87.9, 55.5, 39.3 (q, J = 27.4 Hz), 37.0 (q, J = 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.09. HRMS (ESI) for:

 $C_{18}H_{15}F_{3}O_{3}$ [M + H]⁺: calcd: 337.1046, found: 337.1042.


Product 4ca

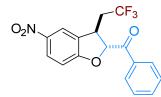
41 mg, white solid, yield: 64%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 – 8.06 (m, 2H), 7.63 – 7.59 (m, 1H), 7.52 – 7.48 (m, 2H), 7.03 (s, 1H), 6.98 – 6.96 (d, J = 8.0 Hz, 1H), 6.73 – 6.71 (d, J = 8.0 Hz, 1H), 5.67 – 5.66 (d, J = 5.6 Hz, 1H), 4.40 – 4.35 (m, 1H), 2.69 – 2.60 (m, 1H), 2.55 – 2.46 (m, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.7, 156.0, 134.7, 133.8, 131.1, 129.7, 129.4, 128.7, 127.0, 126.1 (q, J = 275.8 Hz), 124.9, 109.6, 87.1, 38.9 (q, J = 27.6 Hz), 37.4 (q, J = 2.7 Hz), 20.8. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.2. HRMS (ESI) for:

 $C_{18}H_{15}F_{3}O_{2}$ [M + Na]⁺: calcd: 343.0916, found: 343.0900.

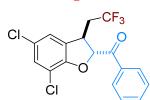

Product 4da

43 mg, white solid, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.01 – 7.99 (m, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.13 (s, 1H), 7.08 (dd, J = 8.4, 2.0 Hz, 1H), 6.70 – 6.68 (d, J = 8.4 Hz, 1H), 5.66 – 5.64 (d, J = 5.2 Hz, 1H), 4.37 – 4.33 (m, 1H), 2.64 – 2.54 (m, 1H), 2.52 – 2.42 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.0, 156.7, 134.3, 134.0, 129.4, 129.2, 128.9, 128.7, 126.5, 125.8 (q, J = 275.9 Hz), 124.7, 111.1, 87.3, 38.6 (q, J = 27.9 Hz), 37.3

(q, J = 2.7 Hz).¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.10. HRMS (ESI) for: $C_{17}H_{12}ClF_3O_2 [M + Na]^+$: calcd:363.0370, found: 363.0380.


Product 4ea

52 mg, white solid, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.00 – 7.98 (m, 2H), 7.58 – 7.54 (m, 1H), 7.46 – 7.43 (m, 2H), 7.27 (s, 1H), 7.20 (dd, J = 8.4, 2.0 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 5.65 (d, J = 5.6 Hz, 1H), 4.38 – 4.33 (m, 1H), 2.61 – 2.54 (m, 1H), 2.51 – 2.42 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.9, 157.2, 134.4, 134.0, 132.2, 129.5, 129.4, 128.8, 127.6, 125.8 (q, J = 275.8 Hz) 113.5, 111.7, 87.3, 38.7 (q, J = 27.6 Hz), 37.3 (q, J = 2.7 Hz). ¹⁹F


NMR (376 MHz, CDCl₃) δ (ppm) -64.12. HRMS (ESI) for: C₁₇H₁₂BrF₃O₂ [M + Na]⁺: calcd: 406.9865, found: 406.9882.

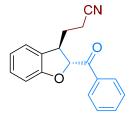
Product 4fa

14 mg, white solid, yield: 20%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.12 (m, 2H), 8.02 (d, J = 7.6 Hz, 2H), 7.61 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 6.87 – 6.84 (m, 1H), 5.86 (d, J = 5.2 Hz, 1H), 4.48 – 4.43 (m, 1H), 2.71 – 2.61 (m, 1H), 2.58 – 2.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.9, 163.1, 142.9, 134.4, 134.0, 129.5, 128.9, 128.7 (q, J = 276.0 Hz), 127.0, 126.7, 121.1, 110.2, 88.2, 38.7 (q, J = 28.2 Hz), 36.8 (q, J = 2.6 Hz). ¹⁹F NMR (376

MHz, CDCl₃) δ (ppm) -63.97. HRMS (ESI) for: C₁₇H₁₂F₃NO₄ [M + Na]⁺: calcd: 374.0611, found: 374.0617. **Product 4ga**

43 mg, white solid, yield: 58%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.03 – 8.00 (m, 2H), 7.58 – 7.54 (m, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 2.0 Hz, 1H), 7.03 (s, 1H), 5.72 (d, *J* = 5.2 Hz, 1H), 4.43 – 4.38 (m, 1H), 2.60 – 2.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.5, 153.1, 134.2, 134.2, 130.1, 129.5, 129.3, 128.8, 127.1 (q, *J* = 275.8 Hz), 126.9, 123.2, 116.3, 87.7, 38.7 (q, *J* = 28.2 Hz), 38.3 (q, *J* = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.05. HRMS (ESI)

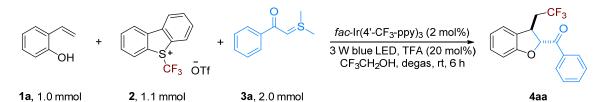
for: $C_{17}H_{11}F_3O_3 [M + Na]^+$: calcd: 396.9980, found: 396.9976.


Product 4ha

46 mg, white solid, yield: 61%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.47 (s, 1H), 7.28 (s, 1H), 5.78 (d, J = 7.2 Hz, 1H), 4.53 – 4.48 (m, 1H), 2.67 – 2.51 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.5, 155.0, 134.6, 134.2, 134.1, 130.1, 129.5, 128.8, 126.6, 125.7 (q, J = 275.8 Hz), 113.8, 103.9, 87.4, 38.6 (q, J = 28.2 Hz), 38.5 (q, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -64.04. HRMS (ESI)

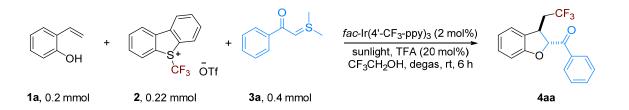
for: $C_{17}H_{11}Br_2F_3O_3 [M + K]^+$: calcd: 500.8709, found: 500.8704.

Product 7


39 mg, yellow oil, yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.04 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.22 – 7.17 (m, 2H), 6.95 (t, J = 7.2 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 5.53 (d, J = 5.2 Hz, 1H), 4.04 (q, J = 6.0 Hz, 1H), 2.55 – 2.37 (m, 2H), 2.31 – 2.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 195.4, 158.6, 134.3, 133.9, 129.3, 129.3, 128.8, 126.9, 124.4, 121.6, 119.0, 110.3, 88.0, 43.1, 30.5, 14.5. IR (in KBr): 1688, 1596, 1478, 1461, 1448, 1221, 751, 691 cm⁻¹. HRMS (ESI) for: C₁₈ H₁₅NO₂ [M + Na]⁺: calcd: 300.0995, found: 300.0998.

References:

- [1] A. Singh, K. Teegardin, M. Kelly, K. S. Prasad, S. Krishnan, J. D. Weaver, J. Organomet. Chem. 2014, 776, 51-59.
- [2] a) V. Hirschbeck, P. H. Gehrtz and I. Fleischer, *Chem. Eur. J.* 2018, 24, 7092-7107.; b) P. Liu, S. Zou, B. Yu, L. Li and H. Huang, *Org. Lett.* 2018, 20, 3601-3604. c) H. Konishi, T. Ueda, T. Muto, and K. Manabe, *Org. Lett.* 2012, 14, 4722. d) F. Yang, K. Rauch, K. Kettelhoit and L. Ackermann, *Angew. Chem. Int. Ed*, 2014, 53, 11285-11288.
- [3] Y.-Y. Liu, X.-Y. Yu, J.-R. Chen, M.-M. Qiao, X. Qi, D.-Q. Shi and W.-J. Xiao, Angew. Chem. Int. Ed., 2017, 56, 9527-9531.


4. Synthetic Utility

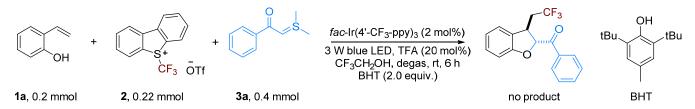
4.1 1.0 mmol Scale Reaction

1a (120.0 mg, 1.0 mmol), **2** (440.0 mg, 1.1 mmol), **3a** (360.0 mg, 2.0 mmol), *fac*-Ir(4'-CF₃-ppy)₃ (17.2 mg, 2 mol%), TFA (22.8 mg, 20 mol%) were dissolved in CF₃CH₂OH (10 mL). The resulting mixture was degased by a "freeze-pump-thaw" procedure (3 times). Then, the resulting mixture was stirred at 3 W blue LEDs at rt about 6 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 200:1) directly to give the desired product **4aa** in 76% isolated yield as a white solid.

4.2 Sunlight-driven Reaction

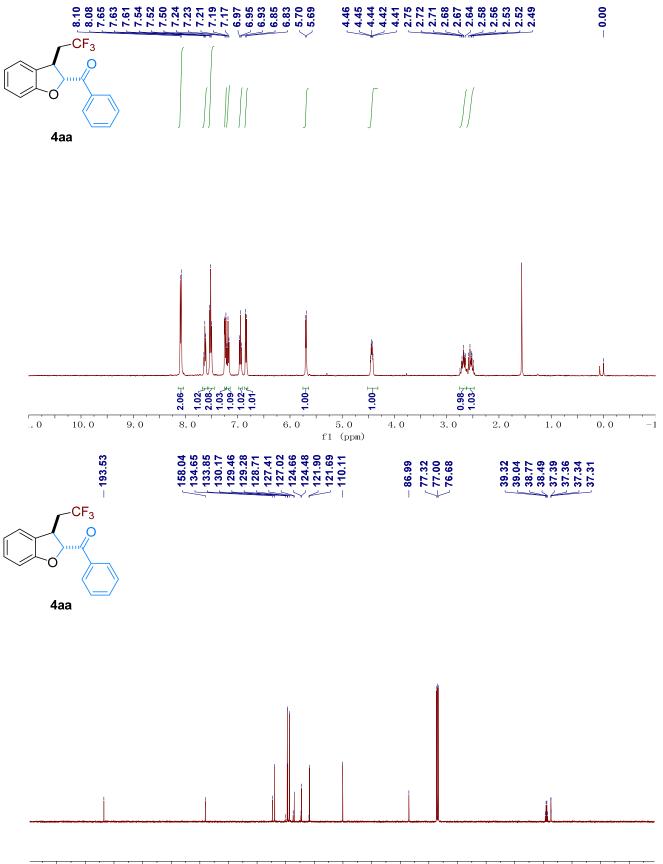
1a (24.0 mg, 0.2 mmol), **2** (88.0 mg, 0.22 mmol), **3a** (72.0 mg, 0.4 mmol), *fac*-Ir(4'-CF₃-ppy)₃ (3.4 mg, 2 mol%), TFA (4.5 mg, 20 mol%) were dissolved in CF₃CH₂OH (2 mL). The resulting mixture was degased by a "freeze-pump-thaw" procedure (3 times). Then, the resulting mixture was stirred at 3 W blue LEDs at rt about 6 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum

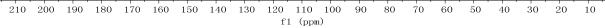
ether/ethyl acetate 200:1) directly to give the desired product 4aa in 57% isolated yield as a white solid.

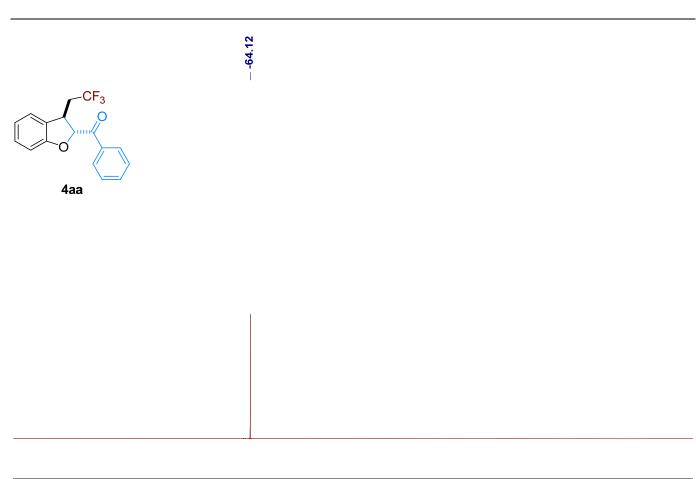

5. Mechanism Study

TEMPO Trapping Experiment

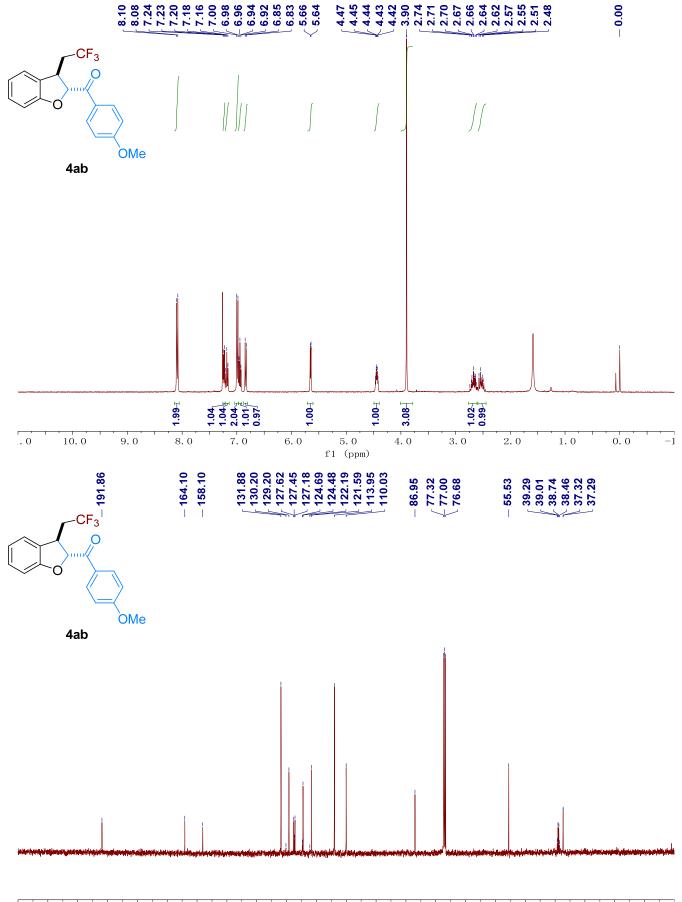
1a (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **3a** (72.0 mg, 0.4 mmol), *fac*-Ir(4 -CF₃-ppy)₃ (3.4 mg, 2 mol%), TFA (4.5 mg, 20 mol%), TEMPO (62.4 mg, 2.0 equiv.) were dissolved in CF₃CH₂OH (2.0 mL). The resulting mixture was degased by a "freeze-pump-thaw" procedure (3 times). Then, the mixture was stirred at 3 W blue LEDs at room temperature about 6 h. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 200:1) directly to give the desired product **4aa** in 28% isolated yield as a white solid. The TEMPO trapped intermediate **8** was detected by HRMS. HRMS (ESI) for: $(C_{18}H_{26}F_{3}NO_2) [M + H]^+$ calcd: 346.1988, found: 346.1991.

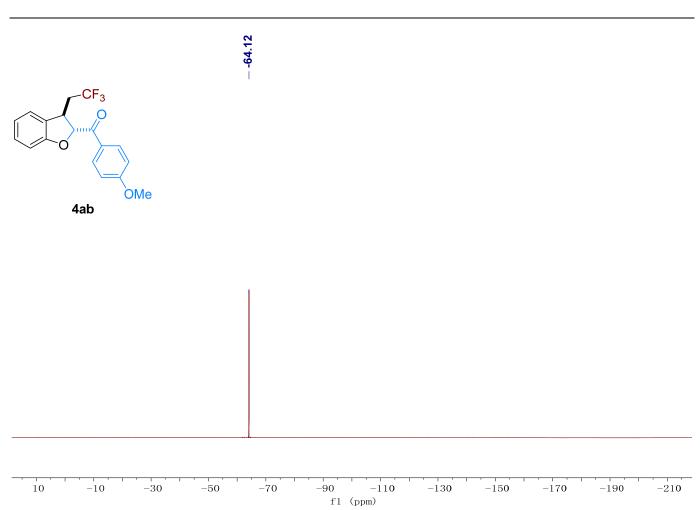

BHT Traping Experiment

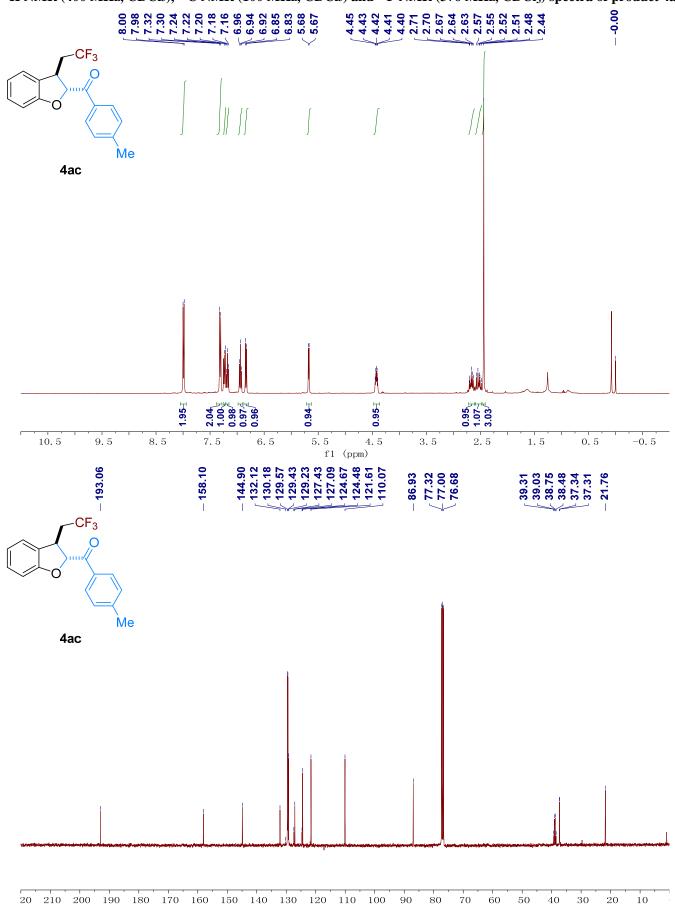



1a (24.0 mg, 0.20 mmol), **2** (88.4 mg, 0.22 mmol), **3a** (72.0 mg, 0.4 mmol), *fac*-Ir(4° -CF₃-ppy)₃ (3.4 mg, 2 mol%), TFA (4.5 mg, 20 mol%), BHT (88.1 mg, 2.0 equiv.) were dissolved in CF₃CH₂OH (2.0 ml). The resulting mixture was degased by a "freeze-pump-thaw" procedure (3 times). Then, the mixture was stirred at 3 W blue LEDs at room temperature about 6 h. No desired product **4aa** can be detected.

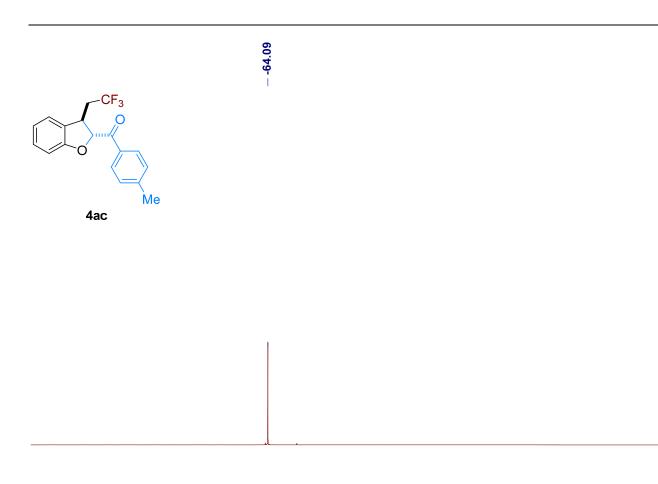
6. Spectra of Products

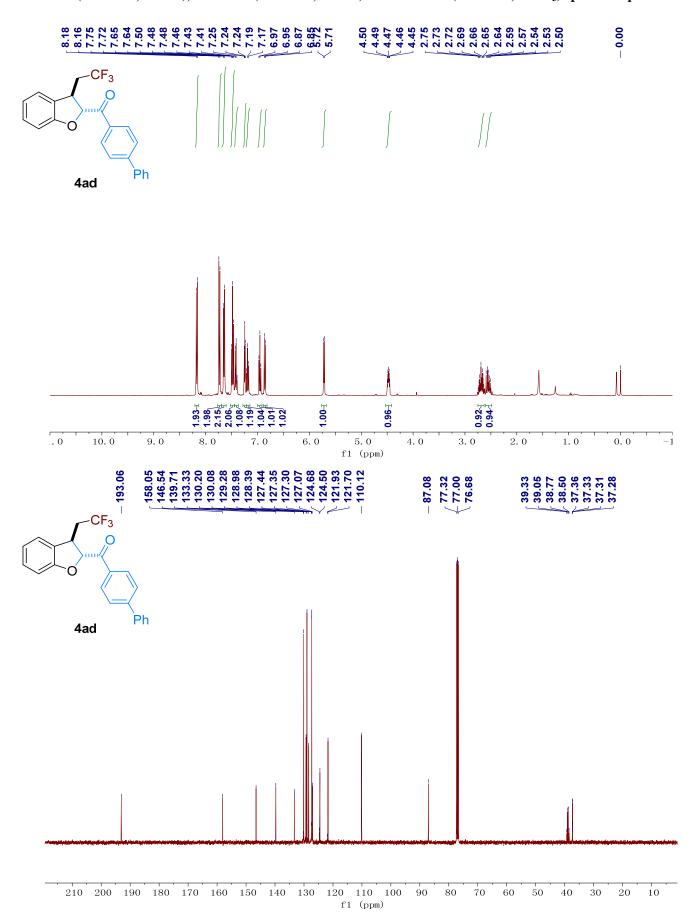

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4aa



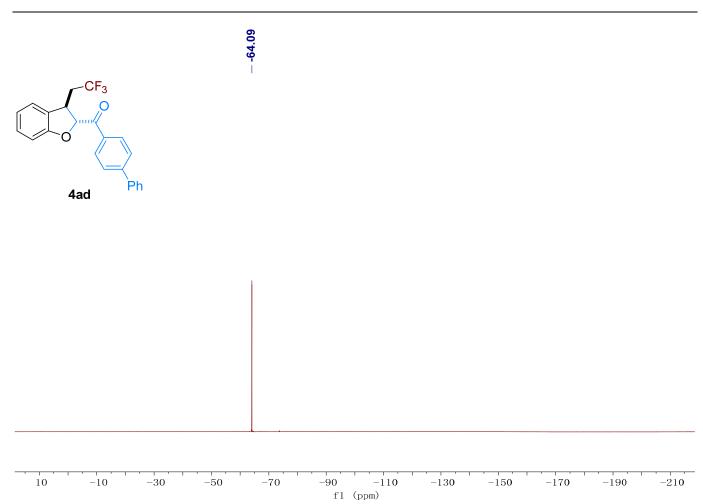

						1 1 1					
10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
f1 (ppm)											

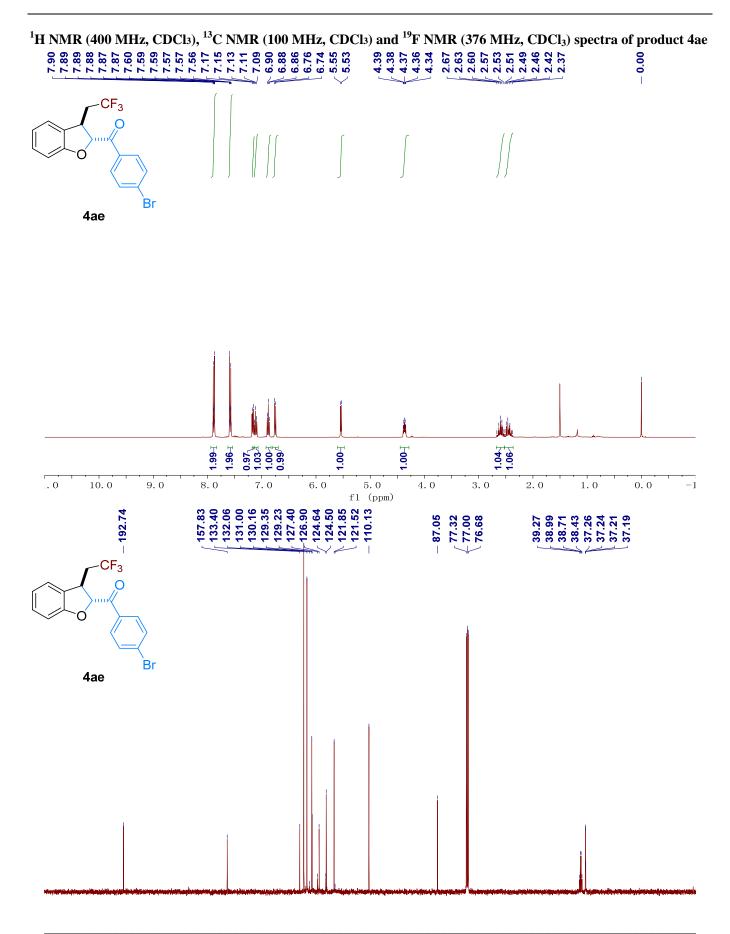
¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4ab


210 200 $\dot{70}$ $\dot{20}$ f1 (ppm)

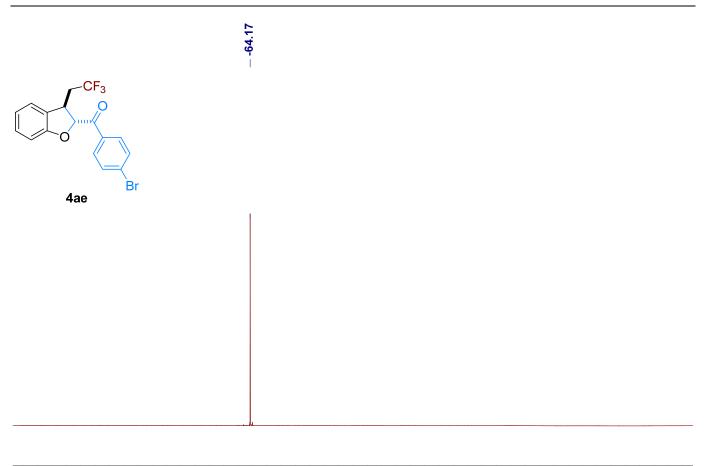


¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4ac

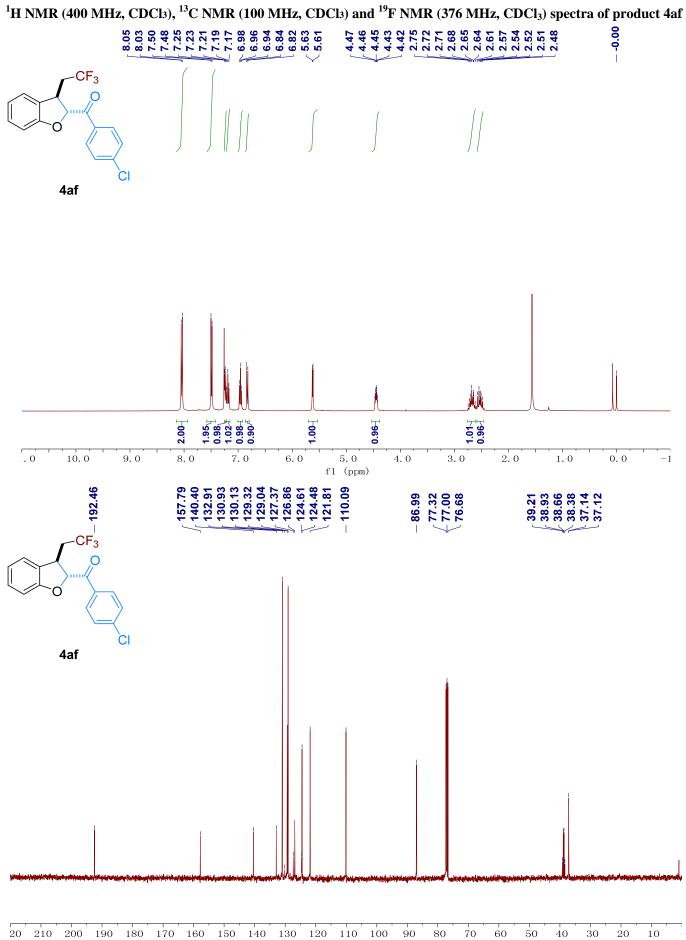

fl (ppm)

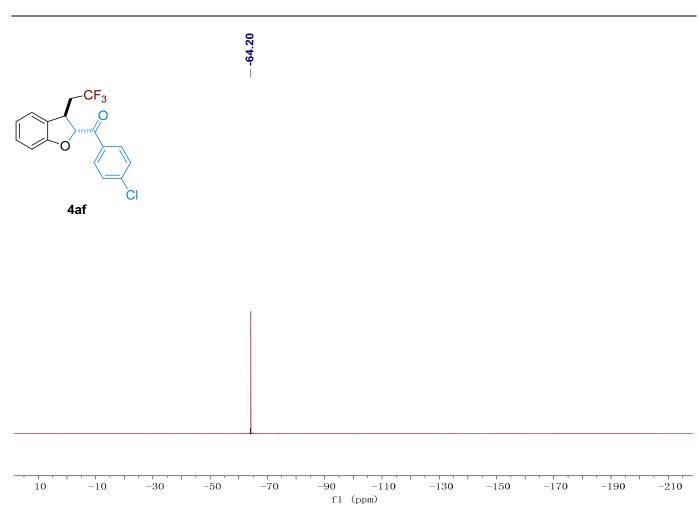


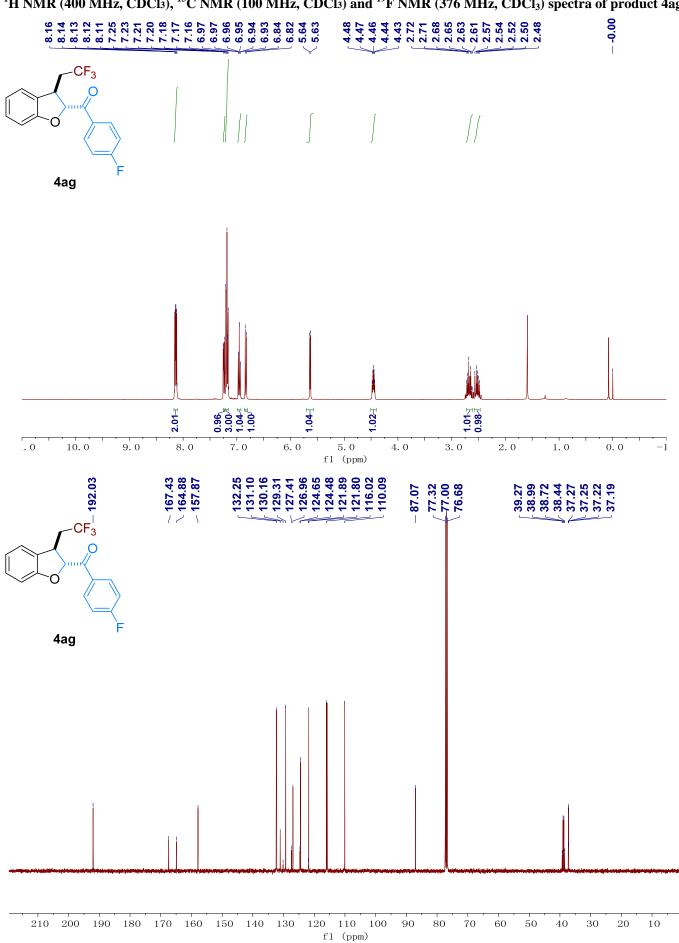
	1								1		- · · · ·
10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
f1 (ppm)											

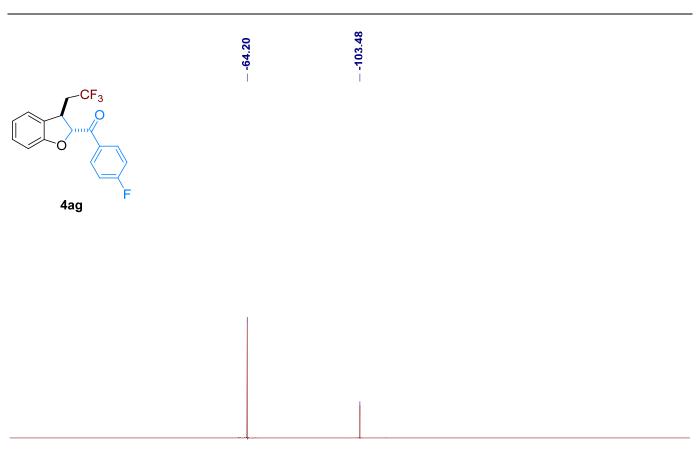


¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4ad

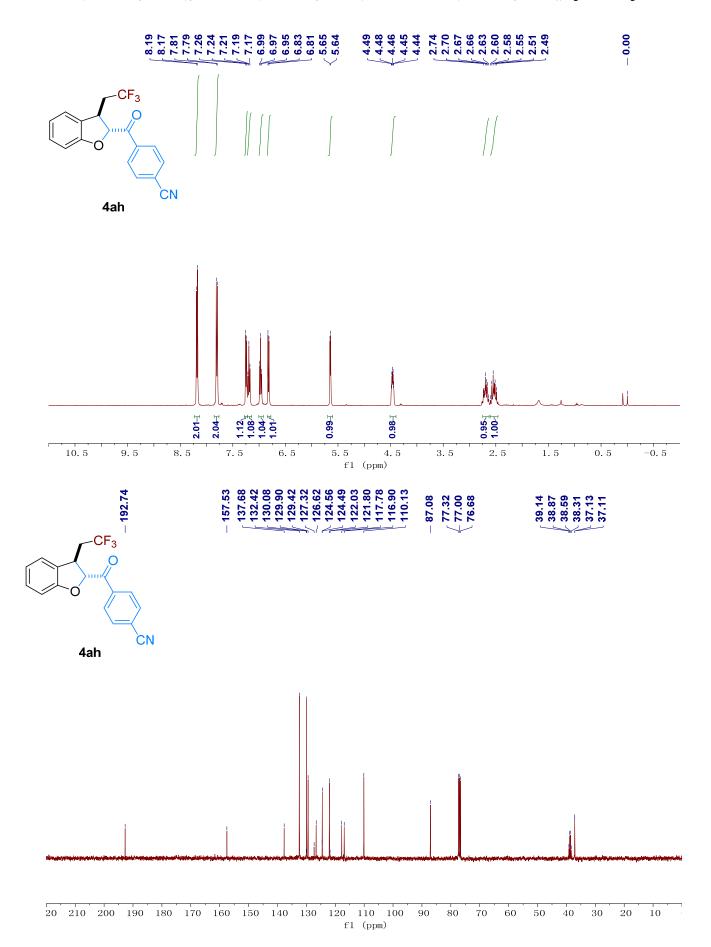


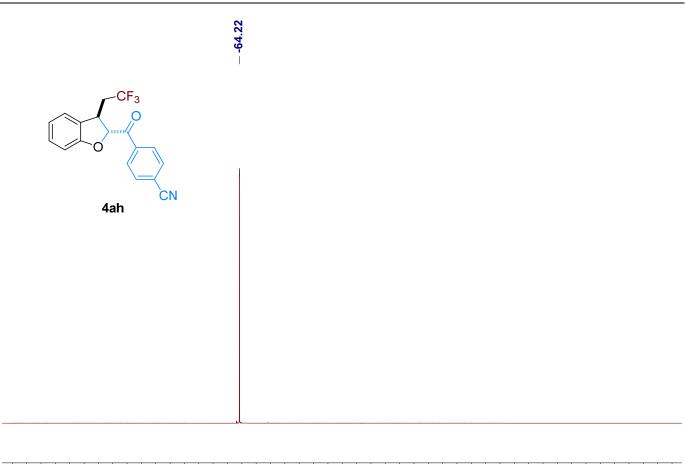

210 200 fl (ppm)

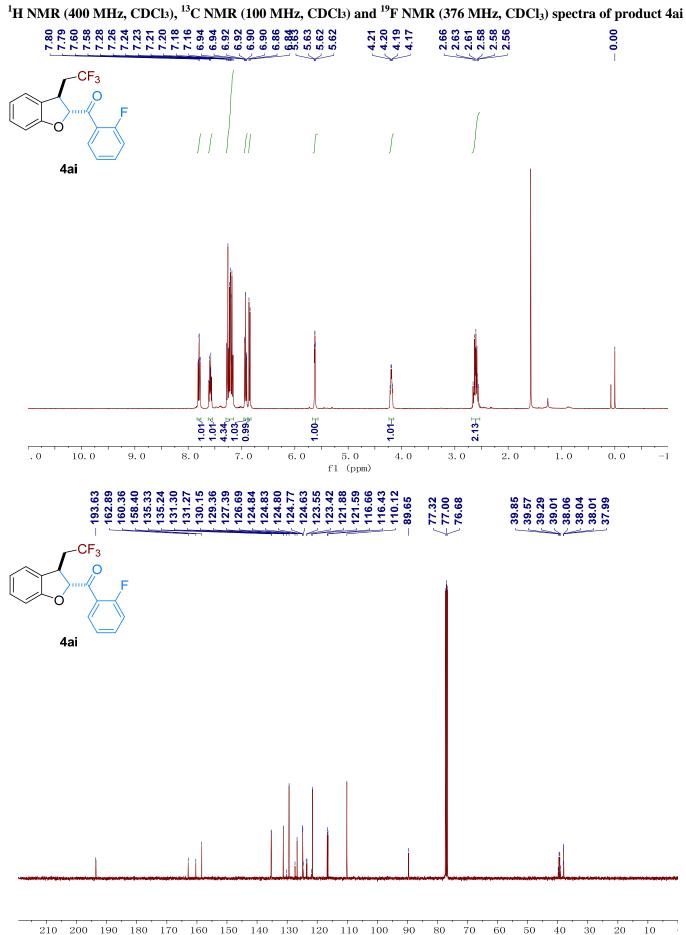



10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

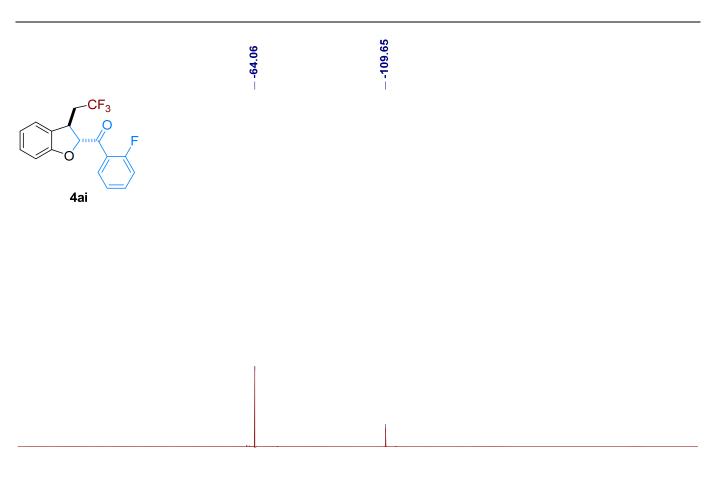
f1 (ppm)

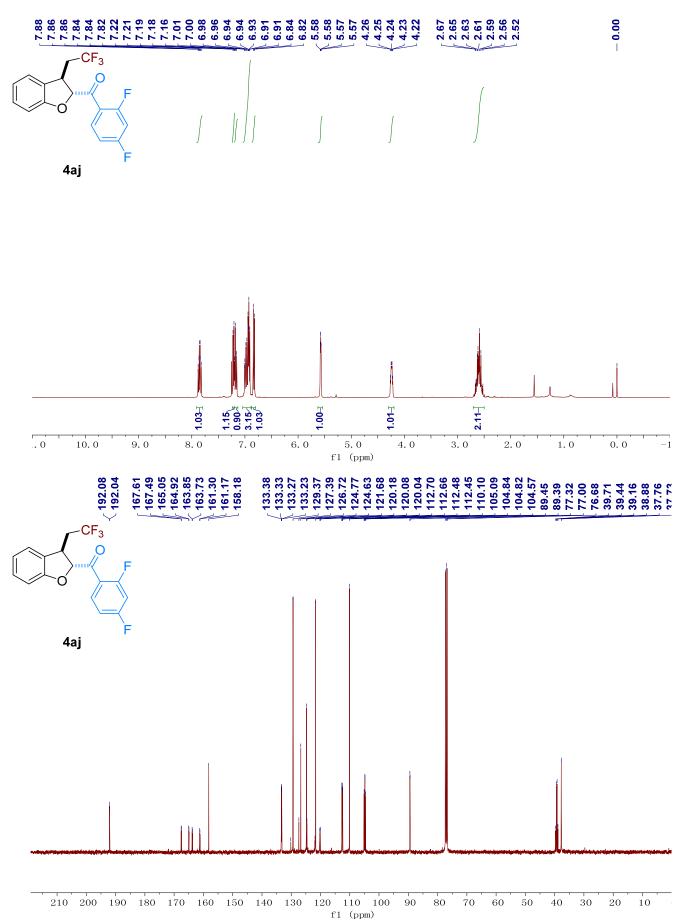


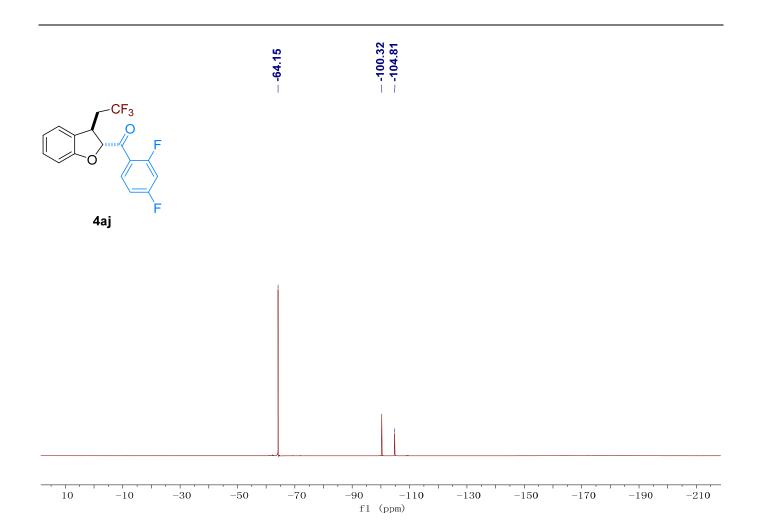


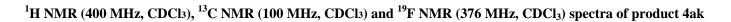

										-	
10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
f1 (ppm)											

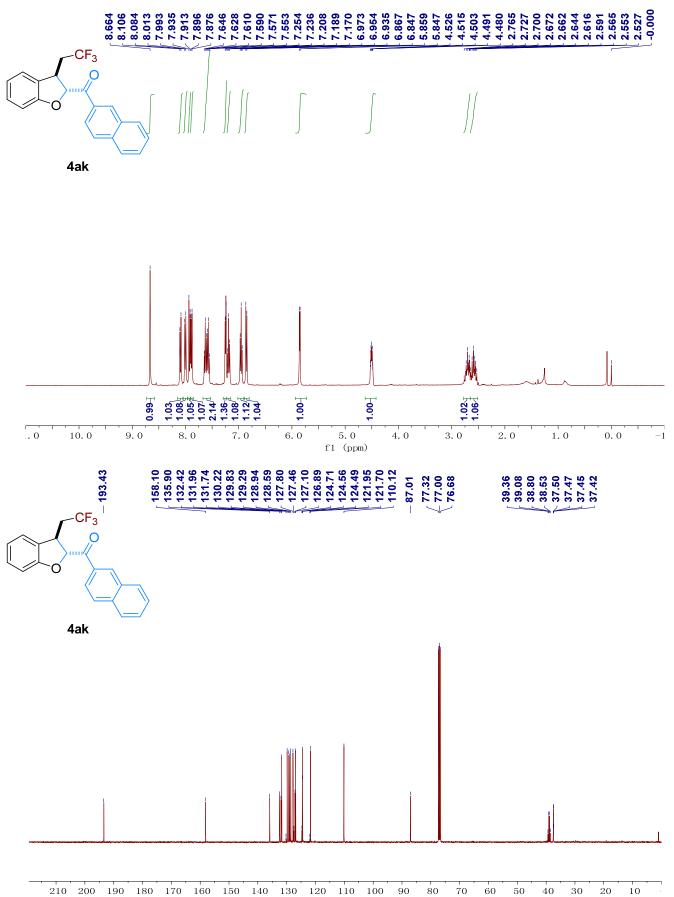
¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4ah

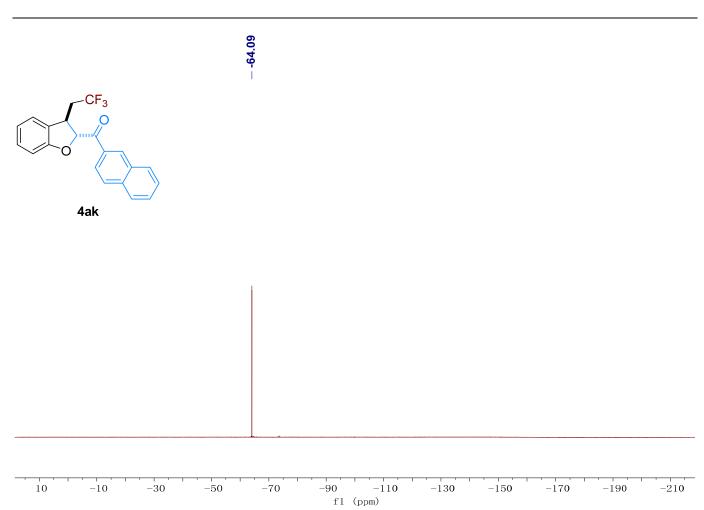


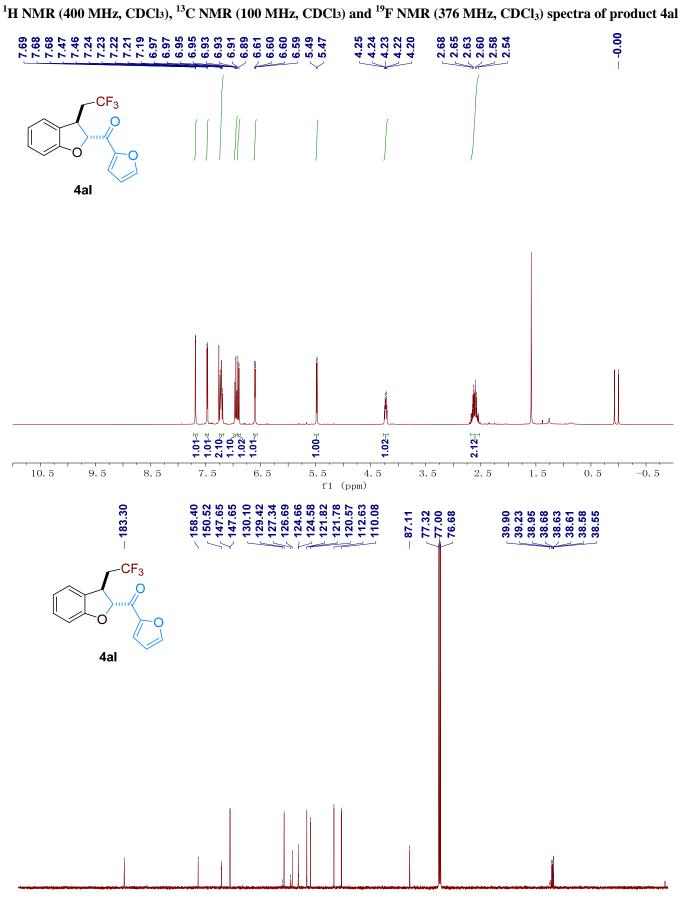

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

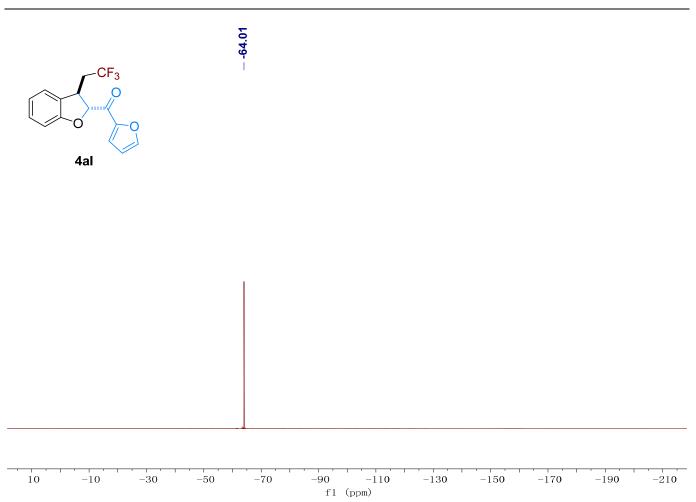

f1 (ppm)



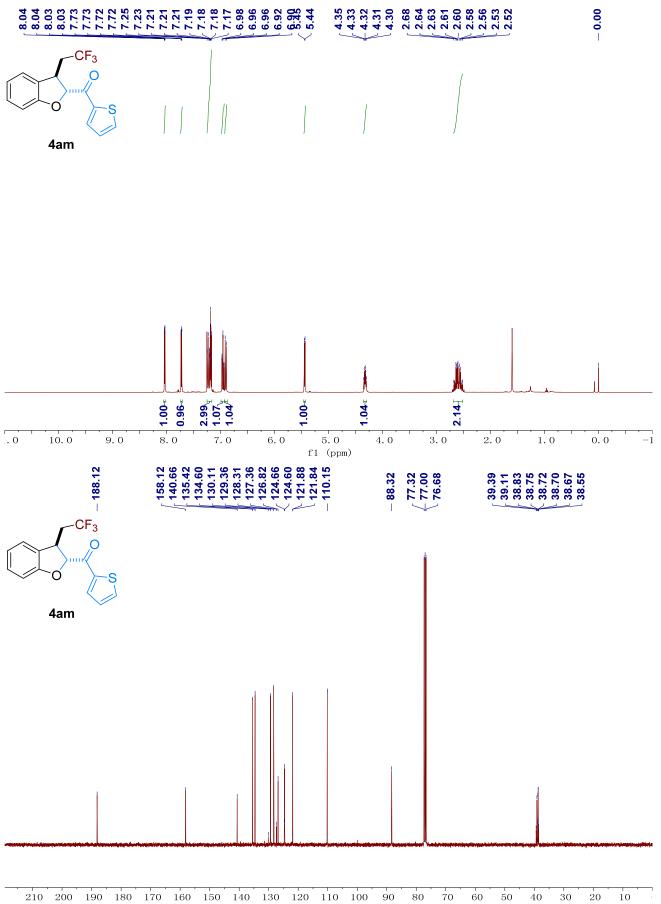

											1
10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
f1 (ppm)											


¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4aj

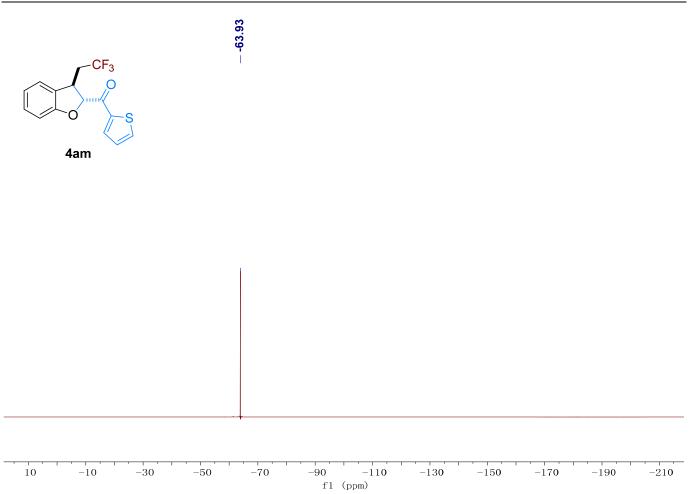


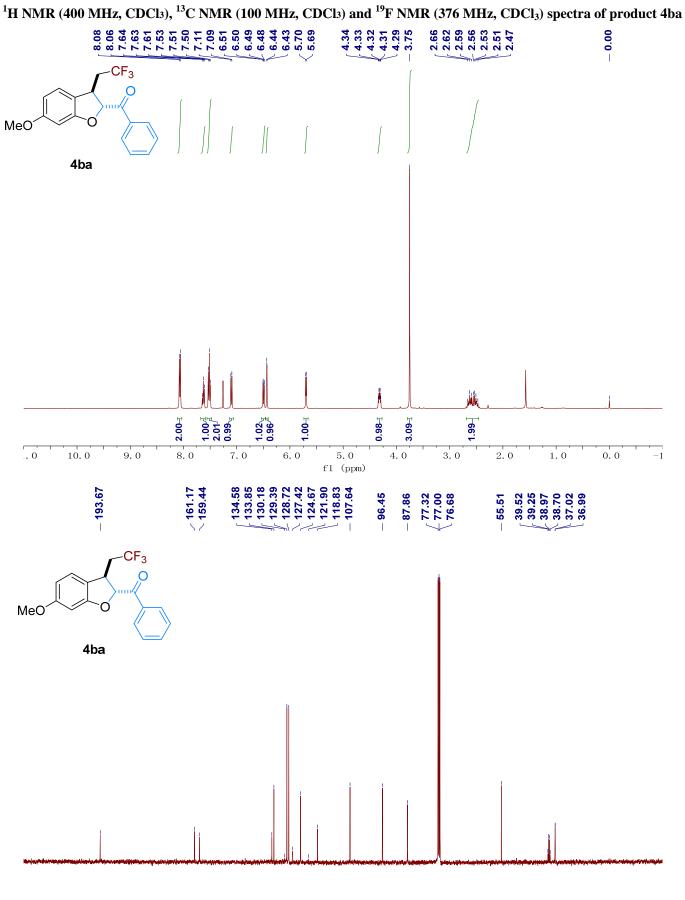


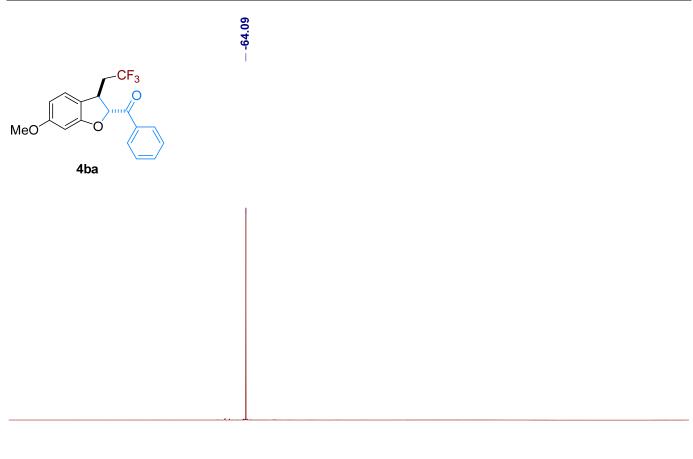
20 110 1 f1 (ppm)



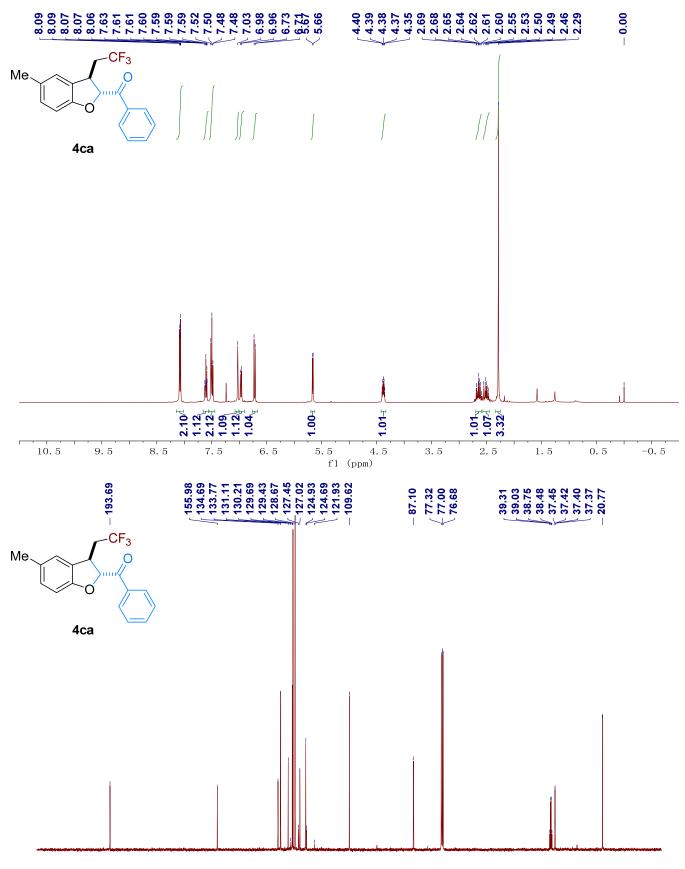
210 200 110 100 $\dot{70}$ $\dot{40}$ fl (ppm)



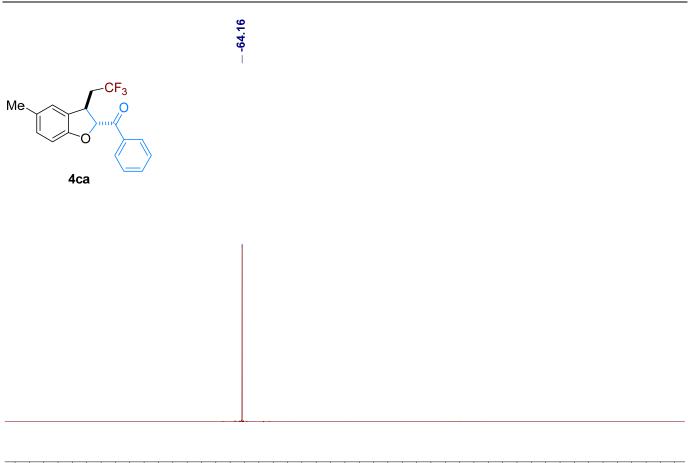

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4am


37

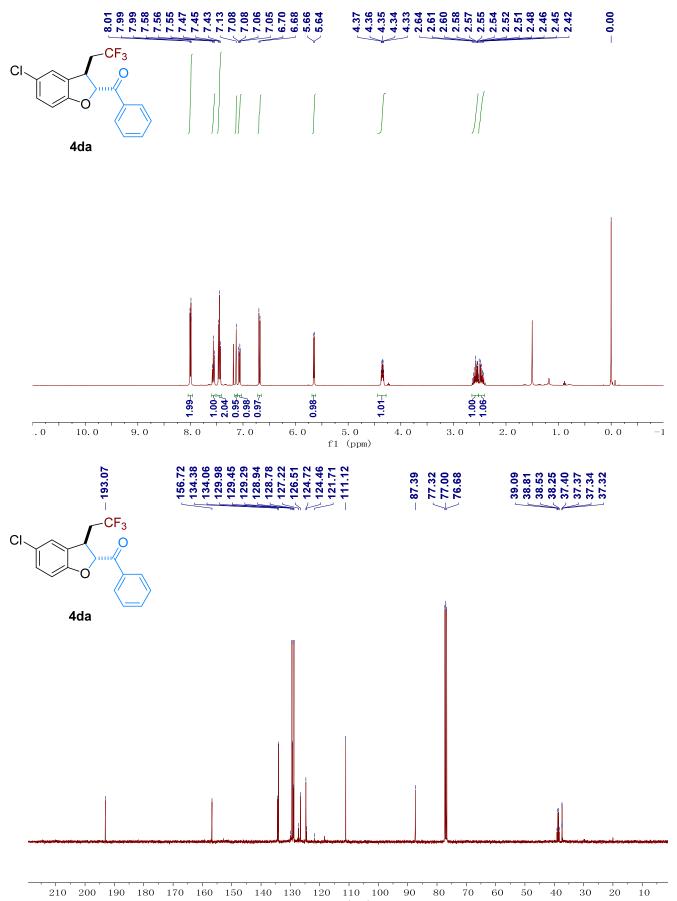
f1 (ppm)



210 200 f1 (ppm)

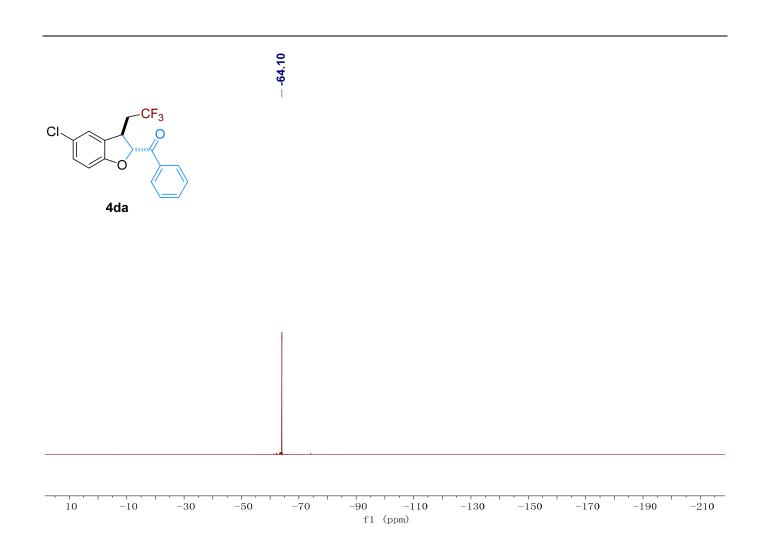


10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

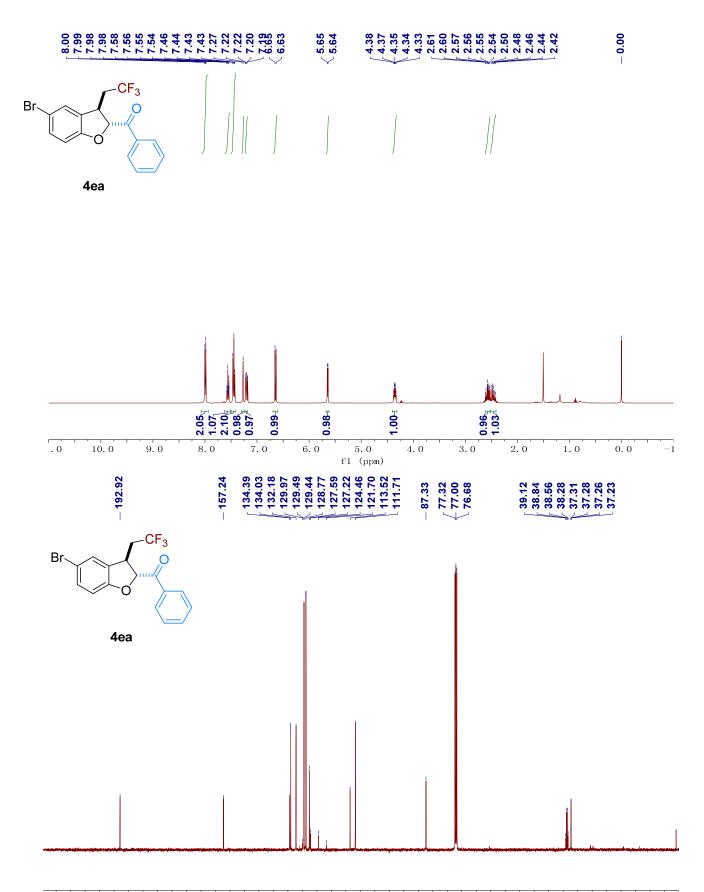


¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4ca

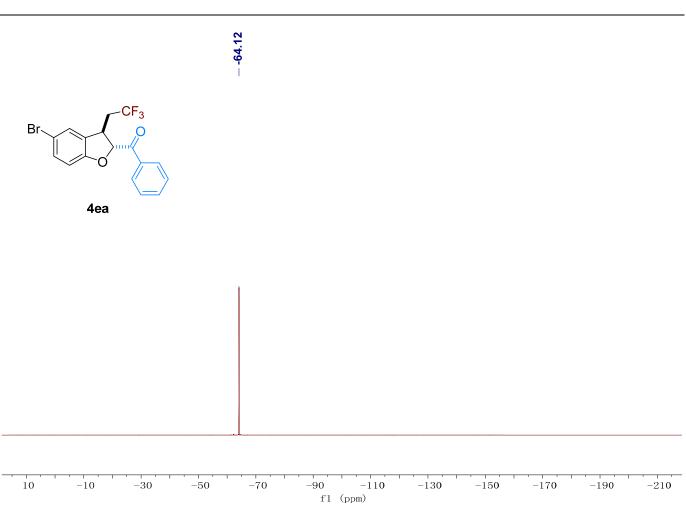
210 200 190 180 170 160 150 140 f1 (ppm)

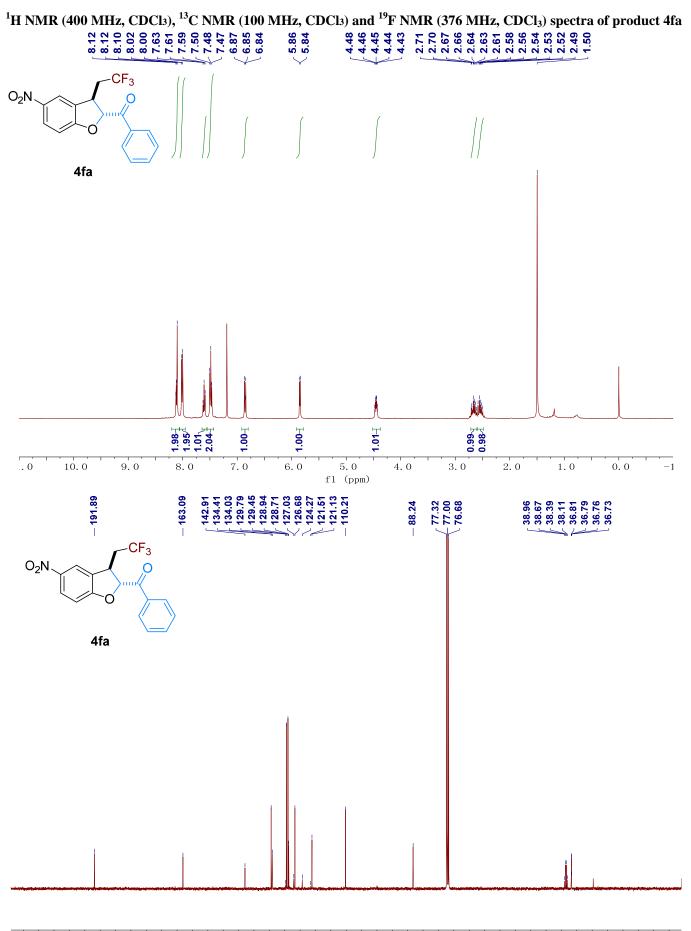


							1 1 1				
10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
f1 (ppm)											

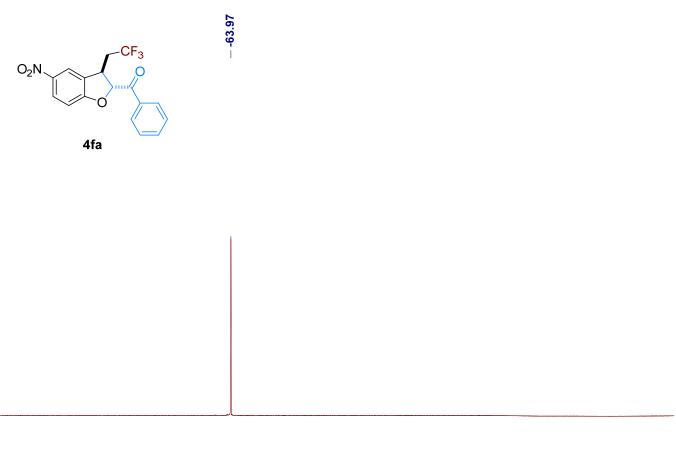


¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4da

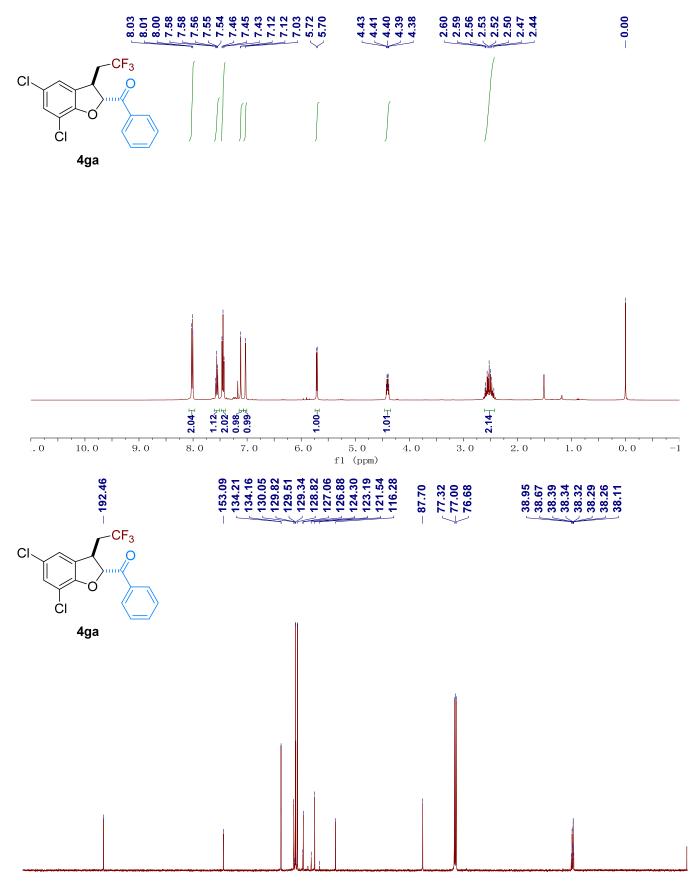

f1 (ppm)



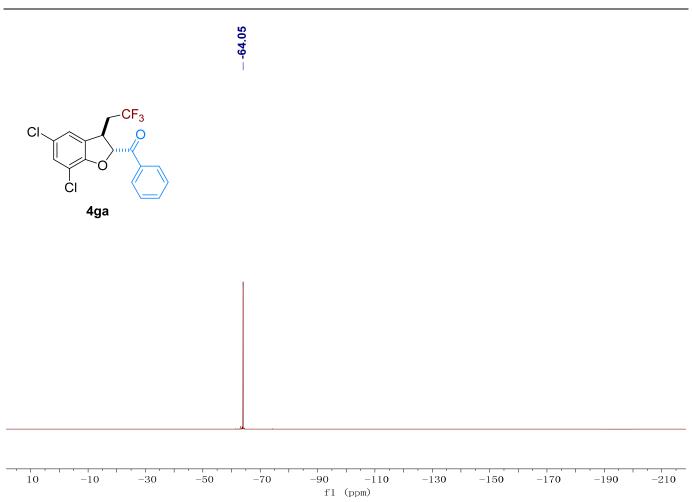
¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4ea

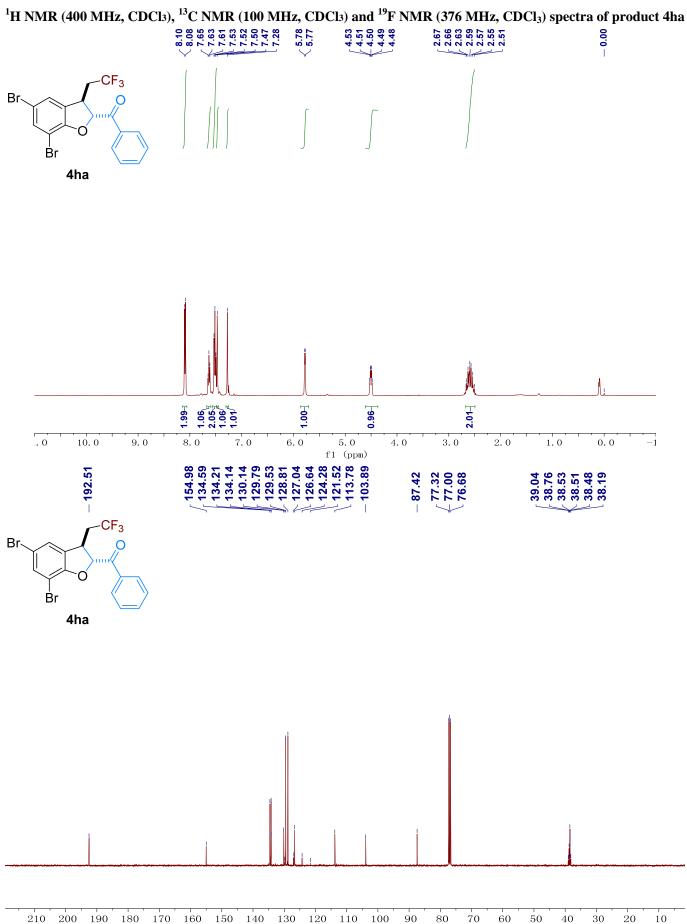


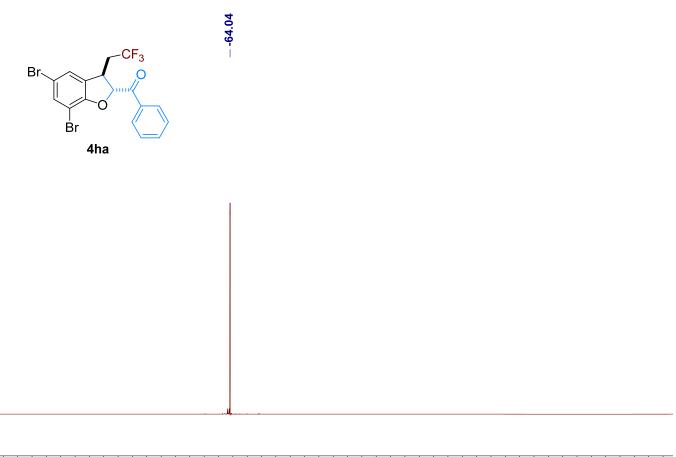
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)



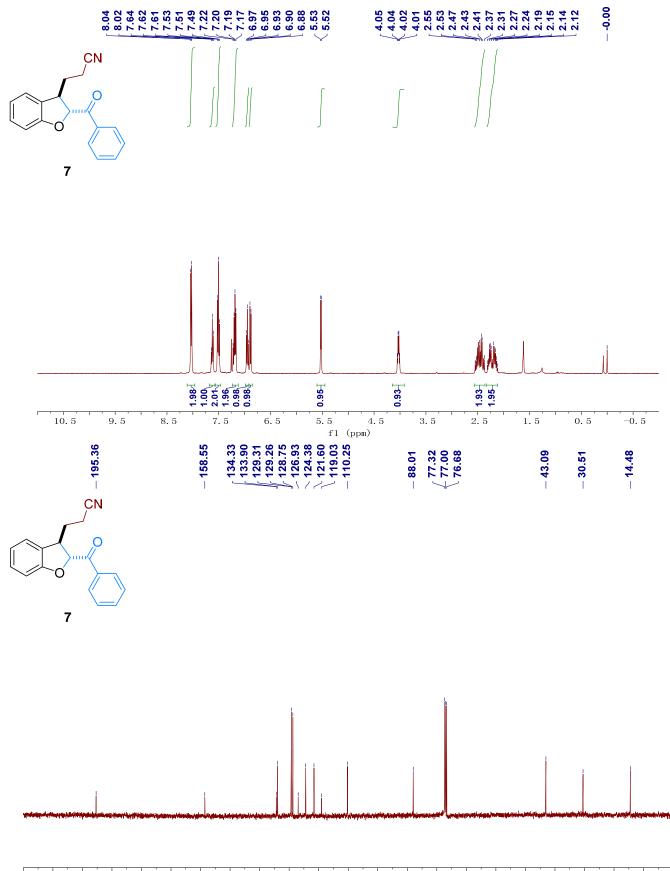
210 200 190 180 170 160 f1 (ppm)



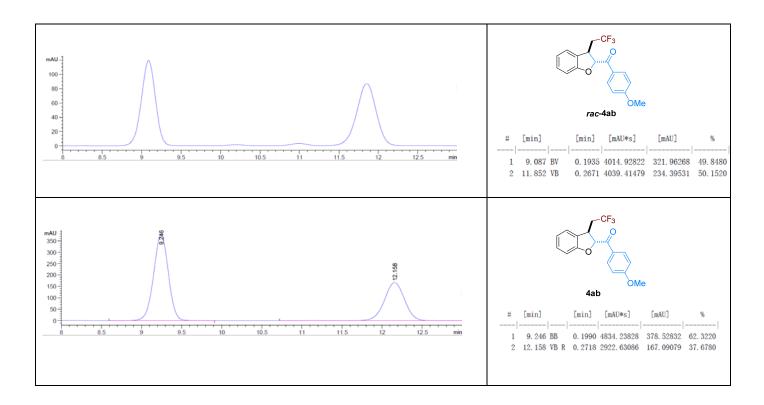

						1			1 . 1 . 1		
10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
f1 (ppm)											


¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of product 4ga

f1(ppm)



fl (ppm)


	1 1 1 1				1 1 1 1	· · ·		1 1 1 1			
10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
f1 (ppm)											

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectra of product 7

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

7. Copy of HPLC Chromatograms

