Supporting Information

Palladium-Catalyzed Regiocontrollable Hydroarylation Reaction of Allenamides with B₂pin₂/H₂O

Jie Cui,[†] Long Meng,[†] Xiaochen Chi,[†] Qing Liu,[†] Pingping Zhao,[‡] Dao-peng Zhang,[†] Lei Chen,[†] Xinjin Li,[†] Yunhui Dong[†] and Hui Liu*[†]

[†]School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China

[‡]College of chemical and environmental engineering, Shandong university of science and technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, P.R.China

*E-mail: huiliu1030@sdut.edu.cn

Table of Contents

1. General Information	S2
2. Preparation of Starting Material	S3
3. Typical Procedure for Reaction	S7
4. Optimization of the Reaction Conditions	S25
5. Copies of the ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR for Product allylamines	
6. Copies of the ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR for Product enamines	
7. Copies of the ¹ H NMR for Product 3aa and 4aa in deuterium-labeled experiments	S64

1. General Information

Organic solvents (Aldrich) were used without further purification. Purifications of reactions products were carried out by flash chromatography using Merck silica gel (40-63 μ m). ¹H NMR (400 MHz), ¹³C NMR (100 MHz) were measured on a Brucker Avance 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm, δ) downfield from residual solvents peaks and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), doublet (d), triplet (t), Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m). Electrospray mass spectra were obtained using an ESI/TOF Mariner Mass Spectrometer. Unless otherwise noted, all other commercially available reagents and solvents were used without further purification.

2. Preparation of Starting Material.

General Procedure I:

Preparation of SI-2: To a solution of Aniline **SI-1** (9.3 g, 100 mmol, 1.0 equiv) in DCM (70 mL) at room temperature was added TsCl (19.1 g, 100 mmol, 1.0 equiv). Then a solution of triethylamine (11.2 g, 110 mmol, 1.1 equiv) in 30 mL DCM was added dropwise by constant pressure funnel under vigorous stirring. The mixture was stirred at room temperature overnight and then washed three times with water. The organic layer was dried over Na_2SO_4 and concentrated to afford the crude material **SI-2** (22.8 g, 92 mmol, 92 yield) as a white solid, which was used without further purification.

Preparation of SI-4: The **SI-2** (1.98 g, 8 mmol, 1.0 equiv) was dissolved in 35 mL acetone, and **SI-3** (0.9 mL, 10.4 mmol, 1.3 equiv), K_2CO_3 (2.21 g, 16 mmol, 2.0 equiv), KI (0.66 g, 4 mmol, 0.5 equiv) was added successively. The mixture was stirred for 3h and refluxed at 60 °C. Then the reaction system was quenched with water, the organic layer was exacted three times with EtOAc. Drying over Na₂SO₄ and concentration in vacuo afforded the crude material, which was then purified by silica gel column chromatography to give **SI-4** (2.12 g, 7.43 mmol, 93% yield) as a white solid.

Preparation of 1a: The solution of potassium tert-butylate (1.01 g, 9 mmol, 1.5 equiv) was stirred in dry THF (25 mL) at -5 °C under a nitrogen atmosphere. The 4-methyl-N-phenyl-N-(prop-2-yn-1-yl)benzenesulfonamide (1.71 g, 6 mmol, 1.0 equiv) was dissolved in 5 mL THF and added into the solution. Then the reaction mixture was stirred for 0.5 h. The aqueous layer was extracted three times with EtOAc. The organic phase was combined, dried over Na₂SO₄, evaporated and purified by flash chromatography to give **1a** (1.49 g, 5.22 mmol, 87% yield) as a yellow solid.

The following compounds were prepared according to general procedure I.

General Procedure II:

Preparation of SI-6: To a solution of **SI-5** (1.23 g, 7.2 mmol, 3.0 equiv) in MeCN (7 mL) was added K_2CO_3 (0.67 g, 4.8 mmol, 2.0 equiv), KI (0.08 g, 2 mmol, 0.2 equiv). The solution was warmed slowly to reflux. Then propargyl bromides (0.2 mL, 2.4 mmol, 1.0 equiv) were added dropwise. The solution was kept reflux overnight. Then the mixture was cooled to room temperature and neutralized with 1N HCl/H₂O solution. The aqueous layer was extracted three times with EtOAc. The combined organic layers was dried with Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography afforded 4-methyl-N-(prop-2-yn-1-yl) benzenesulfonamide **SI-6** (361.6 mg, 1.73 mmol, 72%) as a white solid.

Preparation of SI-8: The **SI-6** (1.5 g, 7.2 mmol, 1.0 equiv) was dissolved in 40 mL acetone, and **SI-7** (1.41 mL, 14.4 mmol, 2.0 equiv), K_2CO_3 (2.0 g, 14.4 mmol, 2.0 equiv), KI (0.12 g, 0.72 mmol, 0.1 equiv) was added successively. The mixture was stirred and refluxed at 60 °C overnight and then washed three times with water. The organic layer was exacted three times with EtOAc. Drying over Na₂SO₄ and concentration in vacuo afforded the crude material, which was then purified by silica gel column chromatography to give **SI-8** (1.65 g, 2.47 mmol, 87% yield) as a white solid.

Preparation of 1d: The solution of potassium tert-butylate (0.96 g, 8.55 mmol, 1.5 equiv) was stirred in dry THF (25 mL) at -5 °C under a nitrogen atmosphere. The 4-methyl-N-(2-methylallyl)-N-(prop-2-yn-1-yl)benzenesulfonamide (1.50 g, 5.7 mol, 1.0 equiv) was dissolved in 5 mL THF and added into the solution. Then the reaction mixture was stirred for 0.5 h. The aqueous layer was extracted three times with EtOAc. The organic phase was combined, dried

over Na₂SO₄, evaporated and purified by flash chromatography to give **1d** (1.26 g, 4.79 mmol, 84% yield) as a white solid.

Preparation of SI-10: The **SI-6** (1.67 g, 8 mmol, 1.0 equiv) was dissolved in 40 mL acetone, and 3-bromoprop-1-ene **SI-9** (0.83 mL, 9.6 mmol, 1.2 equiv), K_2CO_3 (2.21 g, 16 mmol, 2.0 equiv), KI (0.13 g, 0.8 mmol, 0.1 equiv) was added successively. The mixture was stirred and refluxed at 60 °C overnight and then washed three times with water. The organic layer was exacted three times with EtOAc. Drying over Na₂SO₄ and concentration in vacuo afforded the crude material, which was then purified by silica gel column chromatography to give **SI-10** (1.72 g, 6.90 mmol, 86% yield) as a white solid.

Preparation of 1c: The solution of potassium tert-butylate (1.01 g, 9 mmol, 1.5 equiv) was stirred in dry THF (25 mL) at -5 °C under a nitrogen atmosphere. N-allyl-4-methyl-N-(prop-2-yn-1-yl) benzenesulfonamide (1.50 g, 6 mmol, 1.0 equiv) was dissolved in 5 mL THF and added into the solution. The mixture was stirred at -5 °C for 0.5 h. The aqueous layer was extracted three times with EtOAc. The organic phase was combined, dried over Na₂SO₄, evaporated and purified by flash chromatography to afford **1c** (1.30 g, 5.21 mmol, 87% yield) as a white solid.

Substrate 1i was prepared according to general procedure II.

3. Typical Procedure and Analytical Data for Reaction.

Typical Procedure:

Allenamide **1a** (57.1 mg, 0.20 mmol), (Bpin)₂ (101.6 mg, 0.40 mmol), 4-Iodoanisole **2a** (56.2 mg, 0.24 mmol), Pd(PPh₃)₄ (23.1 mg, 0.02 mmol) and Cs₂CO₃ (130.3 mg, 0.40 mmol) were added to a reaction tube. Then the dry THF (2 mL) and H₂O (7.2 mg, 0.40 mmol) were added under nitrogen atmosphere. The resulting mixture was stirred at 60 °C for 12 h. After cooling the reaction mixture at room temperature, it was quenched by H₂O and extracted with EtOAc three times. The combined organic phase was dried over Na₂SO₄ and then concentrated in vacuo. The mixture was purified by silica gel column chromatography (PE:EA, 30:1) to give the product **3aa** (66.1 mg, 0.17 mmol, 84% yield).

Analytical Data:

Isolated Amount: 66.1 mg Yield: 84%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.40 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 7.6 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 3H), 7.11 (d, *J* = 6.8 Hz, 2H), 6.78 (d, *J* = 7.6 Hz, 2H), 6.71 (d, *J* = 6.8 Hz, 2H), 6.33 (s, 0.18H), 5.10 (s, 1H), 4.83 (s, 1H), 4.50 (s, 2H), 3.74 (s, 3H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.4, 143.5, 141.7, 138.4, 135.1, 130.6, 129.4, 129.1, 128.5, 127.8, 127.7, 127.3, 115.5, 113.6, 55.3, 54.4, 21.6.

MS (EI) m/z 393 (M+); HRMS (ESI) Calcd for C₂₃H₂₃NO₃S +H 394.1477, Found 394.1478.

.....

 4-methyl-N-phenyl-N-(2-phenylallyl)benzenesulfonamide

 C₂₂H₂₁NO₂S
 MW: 363.47 g⋅mol⁻¹

 Brown Solid

 Isolated Amount: 44.3 mg
 Yield: 61%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.47 (d, *J* = 7.6 Hz, 2H), 7.37-7.30 (m, 5H), 7.25-7.19 (m, 5H), 6.80 (d, *J* = 7.2 Hz, 2H), 6.51 (s, 0.04H), 5.27 (s, 1H), 5.04 (s, 1H), 4.61 (s, 2H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.5, 142.5, 138.4, 138.2, 135.1, 129.5, 129.4, 129.2, 129.0, 128.7, 128.5, 128.3, 127.9, 126.6, 54.3, 21.7.

MS (EI) m/z 363 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₁NO₂S +H 364.1371, Found 364.1373.

.....

 4-methyl-N-phenyl-N-(2-(p-tolyl)allyl)benzenesulfonamide

 C₂₃H₂₃NO₂S
 MW: 377.50 g⋅mol⁻¹

 Yellow Solid

 Isolated Amount: 47.6 mg
 Yield: 63%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.47 (d, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.20-7.17 (m, 3H), 7.12 (d, *J* = 7.6 Hz, 2H), 6.81 (d, *J* = 7.2 Hz, 2H), 6.46 (s, 0.02H), 5.23 (s, 1H), 4.97 (s, 1H), 4.59 (s, 2H), 2.42 (s, 3H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.5, 142.2, 138.5, 137.7, 135.3, 135.1, 129.5, 129.4, 129.2, 129.0, 128.7, 127.9, 126.5, 116.3, 54.4, 21.5, 21.3.

MS (EI) m/z 377 (M+); **HRMS (ESI)** Calcd for C₂₃H₂₃NO₂S+H 378.1527, Found 378.1525.

.....

N-(2-(4-(tert-butyl)phenyl)allyl)-4-methyl-Nphenylbenzenesulfonamide

> C₂₆H₂₉NO₂S MW: 419.58 g·mol⁻¹ White Solid Isolated Amount: 59.6 mg Yield: 71%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.40 (d, *J* = 7.6 Hz, 2H), 7.27 -7.23 (m, 4H), 7.17 -7.11 (m, 5H), 6.75 (d, *J* = 6.8 Hz, 2H), 5.17 (s, 1H), 4.91 (s, 1H), 4.52 (s, 2H), 2.35 (s, 3H), 1.25 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 150.9, 143.5, 142.1, 138.6, 135.3, 135.1, 129.5, 129.3, 129.2, 129.0, 128.7, 127.9, 126.2, 125.2, 116.3, 54.4, 34.6, 31.4, 31.3, 21.5.

MS (EI) m/z 419 (M+); **HRMS (ESI)** Calcd for C₂₆H₂₉NO₂S+H 420.1997, Found 420.1994.

.....

4-methyl-N-phenyl-N-(2-(m-tolyl)allyl)benzenesulfonamide

 $C_{23}H_{23}NO_2S$ MW: 377.50 g·mol⁻¹Yellow SolidIsolated Amount: 42.2 mgYield: 56%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.47 (d, *J* = 7.6 Hz, 2H), 7.25-7.09 (m, 8H), 7.10 (d, *J* = 6.8 Hz, 1H), 6.83 (d, *J* = 6.4 Hz, 2H), 6.49 (s, 0.02H), 5.26 (s, 1H), 5.04 (s, 1H), 4.60 (s, 2H), 2.42 (s, 3H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.5, 142.6, 138.6, 138.3, 137.7, 135.2, 129.5, 129.4, 129.2, 129.0, 128.7, 128.5, 127.8, 127.3, 127.2, 116.7, 54.4, 21.7, 21.5.

MS (EI) m/z 377 (M+); HRMS (ESI) Calcd for C₂₃H₂₃NO₂S+H 378.1527, Found 378.1526.

N-(2-(4-(hydroxymethyl)phenyl)allyl)-4-methyl-Nphenylbenzenesulfonamide

 $C_{23}H_{23}NO_3S$ MW: 393.50 g·mol⁻¹White SolidIsolated Amount: 55.9 mgYield: 71%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.40 (d, *J* = 8.0 Hz, 2H), 7.31 -7.23 (m, 4H), 7.19 -7.11 (m, 5H), 6.72 (d, *J* = 7.2 Hz, 2H), 6.43 (s, 0.03H), 5.19 (s, 1H), 4.95 (s, 1H), 4.63 (s, 2H), 4.53 (s, 2H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.5, 142.1, 140.6, 138.4, 137.5, 135.0, 129.4, 129.0, 128.6, 127.8, 127.8, 126.9, 126.8, 117.1, 65.1, 21.6.

MS (EI) m/z 393 (M+); **HRMS (ESI)** Calcd for C₂₃H₂₃NO₃S+H 394.1477, Found 394.1478.

.....

4-(3-(4-methyl-N-phenylphenylsulfonamido)prop-1-en-2yl)benzyl benzoate

> C₃₀H₂₇NO₄S **MW:** 497.60 g·mol⁻¹ White Solid

Isolated Amount: 67.6 mg Yield: 68%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.02 (d, *J* = 8.0 Hz, 2H), 7.50 -7.47 (m, 1H), 7.38 (d, *J* = 7.6 Hz, 4H), 7.33 (s, 4H), 7.17 -7.11 (m, 5H), 6.72 (d, *J* = 6.8 Hz, 2H), 6.45 (s, 0.01H), 5.29 (s, 2H), 5.19 (s, 1H), 4.95 (s, 1H), 4.63 (s, 2H), 4.53 (s, 2H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 165.4, 142.5, 140.9, 137.3, 137.1, 134.6, 133.9, 132.0, 129.0, 128.7, 128.4, 128.0, 127.6, 127.4, 127.0, 126.8, 125.7, 116.4, 65.3, 53.3, 20.5.

MS (EI) m/z 497 (M+); **HRMS (ESI)** Calcd for C₃₀H₂₇NO₄S+H 498.1739, Found 498.1741.

.....

ethyl 4-(3-(4-methyl-N-phenylphenylsulfonamido)prop-1-en-2yl)benzoate

 $C_{25}H_{25}NO_4S$ **MW:** 435.54 g·mol⁻¹

Yellow Solid

Isolated Amount: 55.8 mg Yield: 64%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.92 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.14-7.09 (m, 3H), 6.69 (d, *J* = 7.2 Hz, 2H), 5.27 (s, 1H), 5.04 (s, 1H), 4.56 (s, 2H), 4.31 (q, *J* = 6.8 Hz, 2H), 2.35 (s, 3H), 1.33 (t, *J* = 6.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 166.4, 143.6, 142.5, 141.9, 138.2, 134.9, 129.8, 129.6, 129.5, 129.4, 129.1, 128.9, 128.8, 128.6, 127.9, 127.8, 126.6, 126.5, 118.8, 61.0, 54.2, 21.7, 14.3.

MS (EI) m/z 435 (M+); HRMS (ESI) Calcd for C₂₅H₂₅NO₄S+H 436.1582, Found 436.1585.

.....

N-(2-(3-fluorophenyl)allyl)-4-methyl-Nphenylbenzenesulfonamide

> C₂₂H₂₀FNO₂S MW: $381.46 \text{ g} \cdot \text{mol}^{-1}$ White Solid Isolated Amount: 41.2 mg Yield: 54%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.40 (d, *J* = 8.0 Hz, 2H), 7.22-7.11 (m, 7H), 6.95-6.88 (m, 2H), 6.73 (d, *J* = 7.2 Hz, 2H), 5.21 (s, 1H), 5.00 (s, 1H), 4.51 (s, 2H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 164.0, 161.5, 143.6, 141.6, 141.5, 140.5, 140.4, 138.4, 135.0, 129.8, 129.5, 129.4, 129.1, 128.9, 128.8, 128.6, 127.9, 118.1, 115.0, 114.7, 113.7, 113.5, 54.2, 25.1.

¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -113.4.

MS (EI) m/z 381 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₀FNO₂S+H 382.1277, Found 382.1276.

.....

N-(2-(4-fluorophenyl)allyl)-4-methyl-Nphenylbenzenesulfonamide

C₂₂H₂₀FNO₂S **MW:** 381.46 g·mol⁻¹

Brown Solid

Isolated Amount: 46.5 mg Yield: 61%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.39 (d, *J* = 7.6 Hz, 2H), 7.29-7.26 (m, 2H), 7.18 (d, *J* = 7.2 Hz, 2H), 7.14-7.10 (m, 3H), 6.95-6.91 (m, 2H), 6.70 (d, *J* = 6.8 Hz, 2H), 6.30 (s, 0.02H), 5.13 (s, 1H), 4.91 (s, 1H), 4.51 (s, 2H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 162.7, 160.2, 142.5, 140.4, 137.1, 133.8, 133.0, 128.4, 128.3, 128.0, 127.8, 127.6, 127.4, 127.3, 127.2, 127.1, 126.7, 116.0, 114.2, 114.0, 113.8, 53.3, 20.4.

¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -114.3.

MS (EI) m/z 381 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₀FNO₂S+H 382.1277, Found 382.1275.

.....

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.47 (d, *J* = 7.6 Hz, 2H), 7.30-7.20 (m, 9H), 6.81 (d, *J* = 7.2 Hz, 2H), 5.28 (s, 1H), 5.09 (s, 1H), 4.58 (s, 2H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.6, 141.4, 140.1, 138.3, 134.9, 134.1, 129.9, 129.6, 129.5, 129.0, 128.7, 127.9, 127.8, 126.7, 124.8, 118.2, 54.2, 21.6.

MS (EI) m/z 397 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₀ClNO₂S+H 398.0981, Found 398.0980.

CI H N 3al

N-(2-(4-chlorophenyl)allyl)-4-methyl-Nphenylbenzenesulfonamide

 $C_{22}H_{20}CINO_2S$ **MW**: 397.92 g·mol⁻¹

Yellow Solid

Isolated Amount: 51.0 mg Yield: 64%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.39 (d, *J* = 7.6 Hz, 2H), 7.23-7.22 (m, 3H), 7.18 (d, *J* = 7.2 Hz, 3H), 7.13-7.10 (m, 3H), 6.70 (d, *J* = 7.2 Hz, 2H), 5.17 (s, 1H), 4.94 (s, 1H), 4.51 (s, 2H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.6, 141.5, 138.2, 136.5, 134.9, 133.8, 129.5, 129.4, 129.1, 128.9, 128.7, 128.5, 127.9, 117.6, 54.3, 21.5.

MS (EI) m/z 397 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₀ClNO₂S+H 398.0981, Found 398.0979.

.....

N-(2-(3,4-dichlorophenyl)allyl)-4-methyl-Nphenylbenzenesulfonamide $C_{22}H_{19} Cl_2NO_2S$ MW: 432.36 g·mol⁻¹ Brown Oil.

Isolated Amount: 31.1 mg Yield: 36%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.39 (d, *J* = 7.6 Hz, 2H), 7.32 (s, 1H), 7.22-7.13 (m, 7H), 6.72 (d, *J* = 6.8 Hz, 2H), 5.20 (s, 1H), 4.99 (s, 1H), 4.48 (s, 2H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 142.6, 139.4, 137.1, 137.0, 133.7, 131.3, 130.8, 129.2, 128.5, 128.3, 127.9, 127.7, 126.8, 124.9, 124.8, 117.5, 53.0, 20.4.

MS (EI) m/z 432 (M+); **HRMS (ESI)** Calcd for $C_{22}H_{19}Cl_2NO_2S+H$ 432.0592, Found 432.0594.

(E)-N-(4-(4-methoxyphenyl)-2-methylenebut-3-en-1-yl)-4methyl-N-phenylbenzenesulfonamide

C₂₅H₂₅NO₃S MW: 419.54 g·mol⁻¹ Yellow Oil. Isolated Amount: 38.6 mg Yield: 46%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.46 (d, *J* = 7.2 Hz, 2H), 7.31 (d, *J* = 7.6 Hz, 2H), 7.21 -7.17 (m, 6H), 6.93 -6.91 (m, 2H), 6.80 (d, *J* = 8.0 Hz, 2H), 6.45 (d, *J* = 8.0 Hz, 2H), 6.34 (s, 0.23H), 4.98 (s, 1H), 4.83 (s, 1H), 4.35 (s, 2H), 3.75 (s, 3H), 2.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.4, 143.5, 139.9, 138.7, 135.0, 129.9, 129.8, 129.5, 129.4, 129.1, 128.9, 128.7, 127.9, 125.8, 125.6, 119.5, 114.2, 55.5, 52.8, 21.7.

MS (EI) m/z 419 (M+); HRMS (ESI) Calcd for C₂₅H₂₅NO₃S+H 420.1633, Found 420.1632..

(E)-N-(4-(4-chlorophenyl)-2-methylenebut-3-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide

C₂₄H₂₂ClNO₂S **MW:** 423.95 g·mol⁻¹ White Solid **Isolated Amount:** 35.6 mg **Yield:** 42%

¹H NMR (400 MHz, CDCl₃, δ ppm): 7.45 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.23
-7.17 (m, 8H), 6.90 (s, 2H), 6.53 (d, J = 16.4 Hz, 1H), 6.43 (s, 0.03H), 5.04 (s, 1H), 4.89 (s, 1H), 4.35 (s, 2H), 2.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.6, 139.6, 138.5, 135.7, 134.9, 133.3, 129.6, 129.5, 129.2, 129.0, 128.8, 128.7, 128.3, 128.1, 127.9, 121.0, 52.7, 21.7.

MS (EI) m/z 423 (M+); **HRMS (ESI)** Calcd for C₂₄H₂₂ClNO₂S+H 424.1138, Found 424.1140.

.....

N-(2-(4-methoxyphenyl)allyl)-4-methyl-N-(p-
tolyl)benzenesulfonamide $C_{24}H_{25}NO_3S$ MW: 407.53 g·mol⁻¹

Yellow Oil

Isolated Amount: 58.7 mg Yield: 72%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.41 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 6.59 (d, *J* = 8.0 Hz, 2H), 6.31 (q, *J* = 1.6 Hz, 0.14H), 5.10 (s, 1H), 4.83 (s, 1H), 4.47 (s, 2H), 3.75 (s, 3H), 2.35 (s, 3H), 2.21 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.4, 143.4, 141.7, 137.7, 135.7, 130.7, 129.5, 129.4, 129.2, 128.8, 127.9, 127.8, 115.4, 113.6, 115.4, 113.6, 55.3, 54.5, 21.6, 21.1.

MS (EI) m/z 407 (M+); **HRMS (ESI)** Calcd for C₂₄H₂₅NO₃S+H 408.1633, Found 420.1632.

.....

N-allyl-N-(2-(4-methoxyphenyl)allyl)-4-methylbenzenesulfonamide

C₂₀H₂₃NO₃S **MW:** 357.47 g·mol⁻¹

Yellow Solid

Isolated Amount: 48.0 mg Yield: 67%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.58 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 7.2 Hz, 2H), 6.77 (d, *J* = 7.6 Hz, 2H), 5.46 -5.40 (m, 1H), 5.30 (s, 1H), 5.04 (s, 1H), 5.00 (s, 1H), 4.97 (s, 1H), 4.12 (s, 2H), 3.73 (s, 3H), 3.65 (d, *J* = 6.4 Hz, 2H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.5, 143.2, 141.8, 137.1, 132.3, 130.9, 129.6, 127.7, 127.4, 119.2, 118.8, 113.7, 55.3, 50.5, 49.3, 21.5.

MS (EI) m/z 357 (M+); **HRMS (ESI)** Calcd for C₂₀H₂₃NO₃S+H 358.4743, Found 358.4746.

.....

N-(2-(4-methoxyphenyl)allyl)-4-methyl-N-(2-
methylallyl)benzenesulfonamide $C_{21}H_{25}NO_3S$ MW: 371.49 g·mol⁻¹

Yellow Solid

Isolated Amount: 46.8 mg Yield: 63%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.64 (d, *J* = 8.4 Hz, 2H), 7.28 -7.24 (m, 4H), 6.80 (d, *J* = 8.0 Hz, 2H), 5.28 (s, 1H), 5.05 (s, 1H), 4.81 (s, 1H), 4.74 (s, 1H), 4.19 (s, 2H), 3.80 (s, 3H), 3.67 (s, 2H), 2.42 (s, 3H), 1.52 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.5, 143.1, 142.1, 140.3, 137.1, 131.3, 129.5, 127.7, 127.3, 114.8, 114.3, 113.6, 55.3, 53.3, 51.4, 21.5, 20.2.

MS (EI) m/z 371 (M+); **HRMS (ESI)** Calcd for C₂₁H₂₅NO₃S+H 372.1633, Found 372.1637.

N-(2-(4-methoxyphenyl)allyl)-4-methyl-Npropylbenzenesulfonamide

 $C_{20}H_{25}NO_3S$

MW: 359.48 g·mol⁻¹

Yellow Oil

Isolated Amount: 41.0 mg Yield: 57%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.60 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.19 (d, *J* = 4.8 Hz, 1H), 6.81 -6.77 (m, 2H), 5.32 (s, 1H), 5.06 (s, 1H), 4.09 (s, 2H), 3.74 (s, 3H), 2.99 (t, *J* = 7.2 Hz, 1H), 2.91 (t, *J* = 7.6 Hz, 1H), 2.35 (s, 3H), 1.45 (q, *J* = 7.6 Hz, 1H), 1.32 (q, *J* = 7.6 Hz, 1H), 0.86 (t, *J* = 7.6 Hz, 1H), 0.64 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.5, 143.1, 142.4, 136.7, 130.7, 129.6, 127.6, 127.3, 122.0, 113.7, 55.3, 52.3, 49.5, 21.5, 21.3, 11.2.

MS (EI) m/z 359 (M+); **HRMS (ESI)** Calcd for C₂₀H₂₅NO₃S+H 360.1633, Found 372.1635.

.....

N-isopropyl-N-(2-(4-methoxyphenyl)allyl)-4methylbenzenesulfonamide C₂₀H₂₅NO₃S MW: 359.48 g·mol⁻¹

Yellow Oil

Isolated Amount: 46.7 mg Yield: 65%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.61 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 12.0 Hz, 2H), 7.22 (d, *J* = 5.6 Hz, 2H), 6.81 (d, *J* = 12.4 Hz, 2H), 5.30 (s, 1H), 5.24 (s, 1H), 4.13 (s, 2H), 4.02 - 3.95 (m, 1H), 3.75 (s, 3H), 2.35 (s, 3H), 0.91 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.3, 144.6, 143.0, 137.8, 131.6, 129.6, 127.7, 127.2, 116.2, 113.7, 55.3, 50.0, 47.0, 21.5, 20.6.

MS (EI) m/z 359 (M+); **HRMS (ESI)** Calcd for C₂₀H₂₅NO₃S+H 360.1633, Found 372.1634.

N-(2,2-diethoxyethyl)-N-(2-(4-methoxyphenyl)allyl)-4methylbenzenesulfonamide $C_{23}H_{31}NO_5S$ MW: 433.56 g·mol⁻¹

Yellow Oil

Isolated Amount: 54.6 mg Yield: 63%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.57 (d, *J* = 8.0 Hz, 2H), 7.20 (dd, *J* = 8.8 Hz, *J* = 2.4 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.8 Hz, 2H), 5.25 (s, 1H), 4.98 (s, 1H), 4.52 (t, *J* = 5.2 Hz, 1H), 4.30 (s, 2H), 3.73 (s, 3H), 3.55 (q, *J* = 6.8 Hz, 2H), 3.32 (q, *J* = 7.2 Hz, 2H), 3.15 (d, *J* = 5.6 Hz, 2H), 2.34 (s, 3H), 1.05 (t, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.4, 143.1, 141.9, 137.3, 131.3, 129.5, 127.6, 127.3, 115.0, 113.7, 102.3.

MS (EI) m/z 433 (M+); **HRMS (ESI)** Calcd for C₂₃H₃₁NO₅S+H 434.2001, Found 434.1998.

.....

N-(2-(4-methoxyphenyl)allyl)-N-phenylmethanesulfonamide

 $C_{17}H_{19}NO_3S$ **MW:** 317.40 g·mol⁻¹ Yellow Oil

Isolated Amount: 30.0 mg Yield: 47%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.34 (d, *J* = 8.8 Hz, 2H), 7.32 -7.28 (m, 3H), 7.12 (d, *J* = 6.8 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 5.23 (s, 1H), 5.00 (s, 1H), 4.73 (s, 2H), 3.82 (s, 3H), 2.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.5, 142.2, 138.5, 129.7, 129.2, 129.0, 128.1, 127.9, 120.8, 115.7, 113.7, 55.3, 54.7, 37.9.

MS (EI) m/z 317 (M+); **HRMS (ESI)** Calcd for C₁₇H₁₉NO₃S+H 318.1164, Found 318.1162.

.....

N-allyl-N-(2-(4-methox	yphenyl)allyl)methanesulfonamide
$C_{14}H_{19}NO_3S$	MW: 281.37 g·mol ⁻¹
Yellow Oil	
Isolated Amount:	25.2mg Yield: 43%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.40 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 2H), 5.85-5.75 (m, 1H), 5.42 (s, 1H), 5.27 (s, 1H), 5.25 (s, 1H), 5.24 (d, *J* = 8.8 Hz, 1H), 5.21 (s, 1H), 4.28 (s, 2H), 3.82 (s, 3H), 3.76 (d, *J* = 6.4 Hz, 2H), 2.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.6, 142.3, 132.3, 131.0, 127.8, 119.7, 115.3, 113.9, 55.3, 50.2, 48.6, 39.9.

MS (EI) m/z 281 (M+); **HRMS (ESI)** Calcd for C₁₄H₁₉NO₃S+H 282.1164, Found 282.1163.

.....

N-(2-(4-methoxyphenyl)allyl)-4-nitro-Nphenylbenzenesulfonamide

 $C_{22}H_{20}N_2O_5S$ MW: 424.47 g·mol⁻¹

Yellow Powder

Isolated Amount: 13.5 mg Yield: 32%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.21 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.17-7.13 (m, 3H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.70 (d, *J* = 7.6 Hz, 2H), 5.12 (s, 1H), 4.84 (s, 1H), 4.57 (s, 2H), 3.77 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 158.5, 149.0, 142.9, 140.3, 136.3, 129.2, 128.0, 127.9, 127.8, 127.4, 126.7, 123.0, 115.2, 112.7, 54.3, 53.9.

MS (EI) m/z 424 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₀N₂O₅S+H 425.1171, Found 425.1173.

Typical Procedure:

This reaction was carried out in two steps. The specific reaction steps were as follows.

The first step: Allenamide **1a** (57.1 mg, 0.20 mmol), $(Bpin)_2$ (101.6 mg, 0.40 mmol), Pd(PPh₃)₄ (23.1 mg, 0.02 mmol) and Cs₂CO₃ (130.3 mg, 0.40 mmol) were added to a reaction tube. Then the dry THF (2 mL) and H₂O (7.2 mg, 0.40 mmol) were added under nitrogen atmosphere. The resulting mixture was stirred at 60 °C for 12 h.

The second step: After 4-Iodoanisole **2a** (56.2 mg, 0.24 mmol) was added to a reaction tube under nitrogen atmosphere. Upon completion, the reaction mixture was quenched by H_2O and extracted with EtOAc three times. The combined organic phase was dried over Na_2SO_4 and then concentrated in vacuo. The mixture was purified by silica gel column chromatography (PE:EA, 30:1) to give the product **4aa** (45.6 mg, 0.116 mmol, 58% yield).

Analytical Data:

(E)-N-(2-(4-methoxyphenyl)prop-1-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide

C₂₃H₂₃NO₃S MW: $393.50 \text{ g} \cdot \text{mol}^{-1}$ Yellow Oil Isolated Amount: 45.6 mg Yield: 58%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.35 (d, *J* = 8.4 Hz, 2H), 7.30-7.23 (m, 7H), 7.20-7.17 (m, 2H), 6.86 (d, *J* = 9.2 Hz, 2H), 6.40 (q, *J* = 1.2 Hz, 1H), 4.58 (s, 0.13H), 3.81 (s, 3H), 2.42 (s, 3H), 1.90 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.9, 141.4, 140.6, 136.6, 134.5, 129.5, 129.0, 128.4, 127.8, 127.1, 126.2, 124.7, 123.0, 21.6, 16.3.

MS (EI) m/z 393 (M+); **HRMS (ESI)** Calcd for C₂₃H₂₃NO₃S+H 394.1477, Found 364.1476.

.....

(E)-4-methyl-N-phenyl-N-(2-phenylprop-1-en-1-yl)benzenesulfonamide

 $C_{22}H_{21}NO_2S$ MW: 363.47 g·mol⁻¹Yellow OilIsolated Amount: 47.2 mgYield: 65%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.50 (d, *J* = 8.4 Hz, 2H), 7.34-7.32 (m, 4H), 7.30-7.28 (m, 3H), 7.25 (d, *J* = 7.2 Hz, 3H), 7.20-7.18 (m, 2H), 6.51 (q, J = 1.2 Hz, 1H),, 2.41 (s, 3H), 1.89 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.9, 141.4, 140.6, 136.6, 134.5, 129.5, 129.0, 128.4, 127.8, 127.1, 126.2, 124.7, 123.0, 21.6, 16.3.

MS (EI) m/z 363 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₁NO₂S+H 364.1371, Found 364.1373.

.....

(E)-4-methyl-N-phenyl-N-(2-(p-tolyl)prop-1-en-1yl)benzenesulfonamide

C₂₃H₂₃NO₂S MW: 377.50 g·mol⁻¹ Yellow Oil ¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.50 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.25-7.23 (m, 5H), 7.18 (d, *J* = 7.2 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.46 (q, *J* = 1.6 Hz, 1H), 2.41 (s, 3H), 2.34 (s, 3H), 1.88 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.8, 141.5, 137.7, 137.6, 137.0, 134.6, 129.5, 129.1, 129.0, 127.8, 127.0, 126.9, 126.0, 123.9, 21.6, 21.1, 16.2.

MS (EI) m/z 377 (M+); **HRMS (ESI)** Calcd for C₂₃H₂₃NO₂S+H 378.1527, Found 378.1525.

.....

Isolated Amount: 45.3 mg Yield: 54%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.50 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.30-7.27 (m, 4H), 7.25-7.22 (m, 3H), 7.18 (d, *J* = 6.8 Hz, 2H), 6.50 (q, J = 1.2 Hz, 1H), 2.41 (s, 3H), 1.87 (d, *J* = 1.2 Hz, 3H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 150.9, 143.8, 141.6, 137.6, 136.5, 134.6, 129.5, 128.9, 127.8, 127.0, 126.9, 125.8, 125.3, 124.1, 34.6, 31.3, 21.6, 16.1.

MS (EI) m/z 419 (M+); HRMS (ESI) Calcd for C₂₆H₂₉NO₂S+H 420.1997, Found 420.1999.

H 4ae Ts

(E)-4-methyl-N-phenyl-N-(2-(m-tolyl)prop-1-en-1-yl)benzenesulfonamide

C₂₃H₂₃NO₂S **MW:** 377.50 g⋅mol⁻¹ Brown Oil

Isolated Amount: 37.0 mg Yield: 49%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.50 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 7.6 Hz, 2H), 7.26-7.23 (m, 3H), 7.21-7.18 (m, 3H), 7.14-7.10 (m, 3H), 6.49 (q, *J* = 1.6 Hz, 1H), 2.41 (s, 3H), 2.35 (s, 3H), 1.87 (d, *J* = 1.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.8, 141.5, 140.6, 138.0, 136.9, 134.6, 129.5, 129.0, 128.5, 128.3, 127.8, 127.1, 126.9, 124.5, 123.3, 21.6, 21.5, 16.3.

MS (EI) m/z 377 (M+); **HRMS (ESI)** Calcd for C₂₃H₂₃NO₂S+H 378.1527, Found 378.1524.

.....

((E)-ethyl 4-(1-(4-methyl-N-phenylphenylsulfonamido)prop-1en-2-yl)benzoate

> C₂₅H₂₅NO₄S **MW:** $435.54 \text{ g} \cdot \text{mol}^{-1}$ Yellow Oil

Isolated Amount: 45.3 mg Yield: 52%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.99 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.31-7.24 (m, 5H), 7.18 (d, *J* = 7.2 Hz, 2H), 6.65 (q, J = 1.2 Hz, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 2.42 (s, 3H), 1.85 (d, *J* = 1.2 Hz, 3H), 1.40 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 166.3, 145.2, 144.1, 141.0, 134.3, 134.1, 129.7, 129.6, 129.5, 129.1, 127.8, 127.4, 127.2, 126.4, 125.9, 61.0, 21.6, 16.1, 14.4.

MS (EI) m/z 435 (M+); **HRMS (ESI)** Calcd for C₂₅H₂₅NO₄S+H 436.1582, Found 436.1583.

(E)-N-(2-(4-fluorophenyl)prop-1-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide

$C_{22}H_{20}FNO_2S$		81.46 g·mol ⁺
Yellow Solid		
Isolated Amount:	36.6 mg	Yield: 48%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.50 (d, *J* = 8.0 Hz, 2H), 7.32-7.24 (m, 7H), 7.17 (d, *J* = 7.2 Hz, 2H), 7.03-6.99 (m, 2H), 6.44 (q, *J* = 1.2 Hz, 1H), 2.42 (s, 3H), 1.88 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 163.7, 161.3, 143.9, 141.3, 136.6, 136.5, 135.8, 134.5, 129.5, 129.0, 127.8, 127.7, 127.1, 124.5, 123.8, 115.4, 115.2, 21.6, 16.4.

¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -114.4.

MS (EI) m/z 381 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₀FNO₂S+H 382.1277, Found 364.1278.

(E)-N-(2-(3,4-dichlorophenyl)prop-1-en-1-yl)-4-methyl-N-phenylbenzenesulfonamide

$C_{22}H_{19}Cl_2NO_2S$	MW: 432.36 g·mol ⁻¹
Yellow Solid	
Isolated Amount: 44.1	mg Yield: 51%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.48 (d, *J* = 8.4 Hz, 2H), 7.39-7.37 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.27-7.24 (m, 4H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.56 (q, J = 1.2 Hz, 1H), 2.42 (s, 3H), 1.81 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 144.1, 140.9, 140.8, 134.3, 132.5, 131.6, 130.3, 129.6, 129.1, 128.0, 127.8, 127.3, 126.1, 125.4, 21.6, 16.1.

MS (EI) m/z 432 (M+); **HRMS (ESI)** Calcd for $C_{22}H_{19}Cl_2NO_2S+H$ 432.0592, Found 432.0594.

.....

(E)-N-(2-(4-methoxyphenyl)prop-1-en-1-yl)-4-methyl-N-(p-tolyl)benzenesulfonamide

 $C_{24}H_{25}NO_3S$ MW: 407.53 g·mol⁻¹Yellow OilYield: 55%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.43 (d, *J* = 8.0 Hz, 2H), 7.21-7.16 (m, 4H), 7.00 (dd, *J* = 17.2 Hz, *J* = 8.4 Hz, 4H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.30 (q, J = 1.6 Hz, 1H), 4.47 (s, 0.06H), 3.73 (s, 3H), 2.34 (s, 3H), 2.25 (s, 3H), 1.83 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.4, 143.7, 139.0, 136.9, 136.8, 134.7, 133.0, 129.6, 129.4, 127.9, 127.3, 127.0, 123.3, 113.7, 55.3, 21.6, 21.1, 16.2.

MS (EI) m/z 407 (M+); **HRMS (ESI)** Calcd for C₂₄H₂₅NO₃S+H 408.1633, Found 408.1632.

.....

(E)-N-(2-(4-methoxyphenyl)prop-1-en-1-yl)-4-methyl-N-propylbenzenesulfonamide

```
      C_{20}H_{25}NO_3S
      MW: 359.48 g·mol<sup>-1</sup>

      Yellow Oil
      M
```

Isolated Amount: 36.0 mg Yield: 50%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.67 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 6.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 5.38 (q, *J* = 1.6 Hz, 1H), 3.82 (s, 3H), 3.06 (t, *J* = 7.2 Hz, 2H), 2.43 (s, 3H), 2.19 (d, *J* = 1.2 Hz, 3H), 1.53 (q, *J* = 7.2 Hz, 2H), 0.93 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 160.0, 143.3, 143.0, 134.9, 132.6, 129.6, 127.6, 127.2, 121.9, 113.8, 55.3, 52.7, 21.7, 21.6, 16.9, 11.4.

MS (EI) m/z 359 (M+); **HRMS (ESI)** Calcd for C₂₀H₂₅NO₃S+H 360.1633, Found 360.1636.

.....

Isolated Amount: 49.4 mg Yield: 57%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.67 (d, *J* = 8.4 Hz, 2H), 7.32-7.29 (m, 4H), 6.86 (d, *J* = 8.0 Hz, 2H), 5.52 (q, *J* = 1.2 Hz, 1H), 4.65 (t, *J* = 5.6 Hz, 1H), 3.81 (s, 3H), 3.71 (q, *J* = 6.8 Hz, 2H), 3.52 (q, *J* = 6.8 Hz, 2H), 3.25 (d, *J* = 5.6 Hz, 2H), 2.43 (s, 3H), 2.14 (d, *J* = 1.2 Hz, 3H), 1.18 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.5, 143.6, 142.5, 135.0, 132.5, 129.6, 127.5, 127.3, 122.3, 113.7, 100.7, 61.9, 55.3, 52.8, 21.6, 16.8, 15.3.

MS (EI) m/z 433 (M+); **HRMS (ESI)** Calcd for C₂₃H₃₁NO₅S+H 434.2001, Found 434.2003.

.....

MeO H 4ha Ms

(E)-N-(2-(4-methoxyphenyl)prop-1-en-1-yl)-N-phenylmethanesulfonamide

 $C_{17}H_{19}NO_3S$ **MW:** 317.40 g·mol⁻¹

Yellow Oil

Isolated Amount: 21.6 mg Yield: 34%

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.35-7.26 (m, 6H), 7.21-7.17 (m, 1H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.56 (s, 1H), 3.74 (s, 3H), 2.90 (s, 3H), 1.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 158.5, 140.2, 135.7, 131.5, 128.4, 126.2, 125.8, 125.1, 121.7, 112.8, 54.3, 36.1, 15.0.

MS (EI) m/z 317 (M+); **HRMS (ESI)** Calcd for C₁₇H₁₉NO₃S+H 318.1164, Found 318.1167.

4. Optimization of the Reaction Conditions.

entry	catalyst	ligand	base	solvent	t (°C)	yield ^c of 3aa (%)	yield ^c of 4aa (%)
1	Pd(OAc) ₂	dppf	Cs_2CO_3	toluene	60	57	trace
2	Pd(OAc) ₂	PPh ₃	Cs_2CO_3	toluene	60	39	trace
3	Pd(OAc) ₂	BINAP	Cs_2CO_3	toluene	60	34	trace
4	Pd(OAc) ₂	(2-OMe) ₃ P	Cs_2CO_3	toluene	60	31	trace
5	Pd(OAc) ₂	Ph ₂ PCy	Cs_2CO_3	toluene	60	23	trace
6	Pd(OAc) ₂	dppm	Cs_2CO_3	toluene	60	24	trace
7	Pd(OAc) ₂	Ruphos	Cs_2CO_3	toluene	60	26	trace
8	Pd(OAc) ₂	Davephos	Cs_2CO_3	toluene	60	23	trace
9	Pd(OAc) ₂	PCy ₃	Cs_2CO_3	toluene	60	34	trace
10	Pd(OAc) ₂	dppf	Cs_2CO_3	toluene	80	48	trace
11	Pd(OAc) ₂	dppf	Cs ₂ CO ₃	toluene	100	43	trace
12	Pd ₂ (dba) ₃	dppf	Cs_2CO_3	toluene	60	40	trace
13	PdCl ₂	dppf	Cs_2CO_3	toluene	60	32	trace
14	Pd(TFA) ₂	dppf	Cs ₂ CO ₃	toluene	60	42	trace
15	PdCl ₂ (dppf)	-	Cs ₂ CO ₃	toluene	60	59	trace
16	Pd(PPh ₂)₄	-	Cs ₂ CO ₂	toluene	60	66	trace
17	PdCl ₂ (PPh ₃) ₂	-	Cs_2CO_3	toluene	60	61	trace
18	Pd(PPh ₂) ₄	_	K ₂ CO2	toluene	60	13	trace
19	Pd(PPh ₂)₄	_	KOtBu	toluene	60	trace	trace
20	$Pd(PPh_{a})_{4}$	_	K ₂ PO ₄	toluene	60	36	trace
21	$Pd(PPh_{2})$	_		toluene	60	trace	trace
22	$Pd(PPh_a)_4$	(2-furyl) ₂ P		toluene	60	57	trace
22	$Pd(PPh_a)$	doof	Cs ₂ CO ₃	toluene	60	38	trace
23	$Pd(PPh_a)_4$	PCva	Cs_2CO_3	toluene	60	12	trace
25	Pd(PPh_)	- UV3	Cs ₂ CO ₃	THE	60	42 84	trace
26	$Pd(PPh_{1})$	_	Cs-CO-	1 4-diovane	60	57	trace
20	$Pd(PPb_{1})$	-	Cs ₂ CO ₃	MeCN	60	50	trace
28	$Pd(PPh_a)_4$	_	Cs_2CO_3	DME	60	34	trace
20	-	_	Cs_2CO_3	toluene	60	NR	-
30	Pd(PPha)	-	Cs ₂ CO ₃	THE	60	-	58
31	$PdCl_{o}(dnnf)$	_	CS2CO2	THE	60	_	42
32	PdCl ₂ (PPh ₂) ₂	-	Cs_2CO_3	THE	60	-	44
33	Pd(dba) ₂	doof	Cs_2CO_3	THE	60	_	27
34	Pd(PPh ₂) ₄	-	K2CO2	THE	60	-	trace
35	Pd(PPh ₂)₄	-	K₂PO₄	THE	60	-	trace
36	Pd(PPh ₂)₄	_	Cv _o NMe	THE	60	_	trace
37	$Pd(PPh_{a})$	_	KOtBu	THE	60	_	trace
38	Pd(PPh ₂)	-	CsoCOo	MeCN	60	-	trace
39	Pd(PPh ₂)₄	-	Cs ₂ CO ₂	1.4-dioxane	60	-	trace
			002003	., r aloxano	~~		

5. Copies of the ¹H NMR, ¹³C NMR and ¹⁹F NMR for allylamines.

-1 100 90 fl (mqq)

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 II (ppm)

:00

100 90 f1 (ppm) 30 150

-1

100 90 f1 (ppm)

-10

-2.824 -2.824 -2.827 -2.823 -2.823 -2.823 -3.233 -3.2333 -3.2333 -3.233 -3.233 -3.233 -3.233 -3.233 -3.233 -3.233

//.410 //.388 //.3882 //.3882 //.3882 //.3884 //.52446 //.5246 //.5246

~ 8.203 8.202 7.677 7.677 7.655 7.165 7.199 6.719 6.809 6.6809 6.6809 6.6809 6.6809 6.711 6.6809 6.701 6.6803 7.150 6.701 6.701 6.807 7.150 7.150 7.150 7.151 6.151 6.150

2.409
 2.338
 1.883
 1.880

~2.414 ~2.351 ~1.876 1.872

:00

150

100 90 fl (ppm)

-1

200 190 180 170 160 150 140 130 120 110 10 90 80 70 60 50 40 30 20 10 0 $\Gamma(1)$ $\Gamma(2)$ 7. Copies of the ¹H NMR for Product 3aa and 4aa in deuterium-labeled experiments

A of mixture products 3aa and 4aa

