A Catalytic Asymmetric One-Pot [3+2] Cyclization/Semipinacol Rearrangement Sequence: An Efficient Construction of Multi-Substituted 3*H*-Spiro[benzofuran-2,1'-cyclopentane] Skeleton

Lin Liu,^a Lin-Sheng Lei,^a Zong-Song Zhan,^a Si-Zhan Liu,^a Yu-Xiao Wang,^a Yong-Qiang Tu,^{*a} Fu-Min Zhang,^a Xiao-Ming Zhang,^a Ai-Jun Ma,^b Shao-Hua Wang^{*ab}

^aState Key Laboratory of Applied Organic Chemistry & School of Pharmacy, Lanzhou University, Lanzhou 730000 (P. R. China)

^bSchool of Biotechnology and Health Science, Wuyi University, Jiangmen 529020 (P. R. China)

Table of Contents

1.	General InformationS2
2.	Optimization of Reaction ConditionsS2
3.	Syntheses of the Substrates 1S4
4.	Syntheses of the Substrates 2S8
5.	Synthesis of the Ligand L5S16
6.	Experimental Procedures of the [3+2] Cyclization and Spectroscopic Data of ProductsS16
7.	Experimental Procedures of the One-Pot [3+2] Cyclization/Semipinacol Rearrangement Cascade and
	Spectroscopic Data of ProductsS18
8.	X-Ray Ellipsoid Plots of 3d and 5aS28
9.	Proposed Reaction MechanismS28
10.	ReferencesS29
11.	Copies of ¹ H and ¹³ C NMR Spectra of New CompoundsS30
12.	. Copies of HPLC Chromatogram of ProductsS128

1. General Information:

All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on silica gel F254 plates. Column chromatography was performed on silica gel (200-300 meshes) or neutral alumina (200-300 meshes). Solvents for reaction were distilled prior to use, and all air- or moisture-sensitive reactions were conducted under an argon atmosphere. The melting points were measured using micro melting point apparatus. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ solution, C₆D₆ solution or Actone-*d*₆ solution on instruments (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) and spectra data were reported in ppm relative to tetramethylsilane (TMS) as internal standard. High-resolution mass analysis (HRMS) data were measured by means of the ESI technique on Fourier transform ion cyclotron resonance mass analyzer. Ee values were determined by high performance liquid chromatography (HPLC) analysis employing Darcel Chiracel IF-3 columns. Optical rotation was measured using a 0.1-mL cell with a 1-cm path length by the Perkin Elmer 341 polarimeter.

2. Optimization of Reaction Conditions

Table 1. Optimization of Semipinacol Rearrangement Reaction Conditions^a

MeO ₂	OH OH OH Solvent 3a rac	o. NaBH₄, MeOH	OH OH OH OH OH OH OH OH OH OH	
Acid	Temp.	solvent	yield ^b	dr ^c
Cu(OTf) ₂	r.t.	DCM	NR	
PTS	r.t.	DCM	NR	
TfOH	0 °C	DCM	51%	4.0:1
SnCl ₄	0 °C	DCM	66%	5.5:1
TMSOTf	0 °C	DCM	68%	4.5:1
BF_3OEt_2	0 °C	DCM	68%	2.2:1
SnCl₄	-20 °C	DCM	81%	7.2:1
SnCl ₄	-40 °C	DCM	76%	7.2:1

^aUnless specified, reaction was conducted in DCM (4 mL) using **3a-rac** (0.1 mmol, 1.0 equiv), Lewis acid (2.0 equiv.) at the indicated temperature; ^bIsolated yields; ^cdr was determined by ¹H NMR.

^aUnless specified, reaction was conducted (also see supporting information) in THF (1.5 mL) using **1a** (0.1 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), Lewis acid (10 mol%), ligand (12 mol%) at the indicated temperature; ^bIsolated yields; ^cDetermined by chiral HPLC; ^d3Å MS (50 mg) was added; ^e4Å MS (50 mg) was added; ^f5Å MS (50 mg) was added; ^gLewis acid (5 mol%), ligand (6 mol%) was used; ^hdr = 7.2:1 (determined by ¹H NMR).

3. Syntheses of the Substrates 1 and Spectroscopic Data of Substrates

1a was synthesized according to a known procedure.^[1]

General procedure A: Allylic tertiary alcohol from enol-ethers (1b as an example):3.1 Synthesis of the Substrate 1b

To a solution of 3,4-dihydro-2*H*-pyran **S1** (1 mL, 10.9 mmol, 1.5 equiv.) in anhydrous THF (15 mL) at 0 °C was added n-butyllithium (5.6 mL, 1.6 M in hexane, 9.1mmol, 1.25 equiv.) over 10 minutes. The mixture was allowed to warm up to room temperature and stirred for a further 3 h, before it was cooled down to -78 °C. The substituted cyclobutanone **S2** (0.91 g, 7.2 mmol, 1 equiv.) was then added dropwise into the solution over 15 minutes. The reaction was then allowed to warm slowly to room temperature and then stirred for a further 2 h before quenched with saturated NaHCO₃ solution and extracted with EtOAc, the combined organic layer was washed with brine and dried over MgSO₄ before concentrated in vacuo. The product was purified by flash chromatography using neutral alumina to afford the desired product **1b** as a colorless oil (0.622 g, 2.95 mmol, 41%).

¹H NMR (400 MHz, Actone-*d₆*) δ 4.81 (t, *J* = 3.6 Hz, 1H), 3.97 (t, *J* = 5.2 Hz, 2H), 3.75 (s, 1H), 2.82 (s, 2H), 2.13-2.10 (m, 2H), 1.78-1.60 (m, 6H), 1.41 (q, *J* = 7.2 Hz, 2H), 0.75 (t, *J* = 7.6 Hz, 3H), 0.70 (t, *J* = 7.6 Hz, 3H);

¹³C NMR (100 MHz, Actone-*d*₆) δ 158.8, 93.7, 70.5, 66.6, 43.6, 34.8, 30.3, 23.1, 20.6, 8.2, 8.1;

3.2 Synthesis of the Substrates S4 and 1c

To a 100 mL three-neck round bottomed flask were added 1,1-dicyclohexylethene S3 (4.0 g, 20.8 mmol, 1 equiv.), Zn dust (1.76 g, 27.1 mmol, 1.3 equiv) and Et₂O (40 mL). Next, a solution of trichloroacetic chloride (3.04 mL, 27.1 mmol, 1.3 equiv) in Et₂O (10 mL) was added dropwise to the above suspension. This mixture was sonicated at room temperature for 3 h, and the solid was removed by filtration and the ether solution was washed with NH₄Cl, saturated NaHCO₃ and brine. Evaporation of the resulting solution dried over MgSO₄ gave a pale yellow liquid, which was directly used for the next step. A solution of the crude intermediate mentioned above in HOAc (25 mL) was added dropwise to a vigorously stirred suspension of zinc dust (5.41 g, 83.2 mmol, 4 equiv) in HOAc (25 ml) at 0 °C. After the addition, the reaction mixture was heated at 70 °C for 24 h, and cooled down to room temperature. The acetic acid was then removed by rotavapor. The residue was dissolved in Et₂O (200 mL) and then poured into a separation funnel containing H₂O (50 mL) and Et₂O (200 mL). The organic layer was washed with H₂O, saturated NaHCO₃ and brine, and dried over MgSO₄. Then the solution was concentrated followed by purification with flash chromatography giving the substituted cyclobutanone **S4** as a colorless oil (1.460 g, 6.24 mmol, 30%).

¹**H NMR** (400 MHz, CDCl₃) δ 2.72 (s, 4H), 1.72 (t, *J* = 12.8 Hz, 8H), 1.65-1.57 (m, 4H), 1.23-1.04 (m, 6H), 0.95-0.85 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 209.0, 49.2, 41.5, 38.2, 27.9, 26.7, 26.3.

Preparation according to the general procedure A from **S4** (0.780 g, 3.33 mmol) afforded **1c** as an amorphous solid (0.413 g, 1.30 mmol, 39% yield).

¹H NMR (400 MHz, Actone-*d*₆) δ 4.79 (t, *J* = 5.2 Hz, 1H), 3.97 (t, *J* = 5.2 Hz, 2H), 3.61 (s, 1H), 2.67-2.61 (m, 1H), 2.44-2.43 (m, 1H), 2.29-2.26 (dd, *J* = 2.8 Hz, 10.8 Hz, 2H), 2.00 (dt, *J* = 4.0 Hz, 6.4 Hz, 2H), 1.90-1.87 (m, 1H), 1.86-1.84 (m, 1H), 1.78-1.72 (m, 8H), 1.68-1.56 (m, 6H), 1.24-1.01 (m, 8H);

¹³C NMR (100 MHz, Actone-*d₆*) δ 159.0, 94.3, 70.3, 66.6, 39.8, 39.1, 30.3, 29.7, 29.6, 29.1, 28.2, 28.1, 27.5, 27.4, 23.1, 20.7;

HRMS ESI Calcd for C₂₁H₃₄O₂Na [M+Na]⁺: 341.2451, Found: 341.2451.

3.3 Synthesis of the Substrate 1d

Preparation according to the general procedure A from **S5** (0.570 g, 2.57 mmol) afforded **1d** as an amorphous solid (0.401 g, 1.31 mmol, 51% yield).

¹H NMR (400 MHz, Actone-*d₆*) δ 7.41 (dd, *J* = 0.8 Hz, 8.4 Hz, 2H), 7.35 (dd, *J* = 0.8 Hz, 8.4 Hz, 2H),
7.26-7.21 (m, 4H), 7.09-7.04 (m, 2H), 4.75 (t, *J* = 3.6 Hz, 1H), 3.96 (s, 1H), 3.84 (t, *J* = 5.2 Hz, 2H),
3.34 (d, *J* = 12.8 Hz, 2H), 2.88 (d, *J* = 12.8 Hz, 2H), 1.86 (dt, *J* = 3.6 Hz, 6.4 Hz, 2H), 1.66-1.60 (m, 2H);

¹³C NMR (100 MHz, Actone-*d*₆) δ 156.1, 150.8, 149.9, 127.7, 127.6, 126.0, 125.9, 124.7, 97.4, 70.2, 65.5, 46.2, 43.2, 21.8, 19.5;

HRMS ESI Calcd for C₂₁H₂₂O₂Na [M+Na]⁺: 329.1512, Found: 329.1502.

3.4 Synthesis of the Substrate 1e

Preparation according to the general procedure A from **S6** (0.901 g, 7.25 mmol) afforded **1e** as an amorphous solid (0.628 g, 3.02 mmol, 42% yield).

¹H NMR (400 MHz, C₆D₆) δ 4.81 (t, *J* = 4.0 Hz, 1H), 3.70 (t, *J* = 5.2 Hz, 2H), 2.48 (dd, *J* = 2.8 Hz, 10.0 Hz, 2H), 2.10 (dd, *J* = 2.8 Hz, 10.0 Hz, 2H), 2.03 (s, 1H), 1.81-1.76 (m, 4H), 1.60 (t, *J* = 6.4 Hz, 2H), 1.54-1.49 (m, 4H), 1.43-1.37 (m, 2H);

¹³C NMR (100 MHz, Actone-*d₆*) δ 158.5, 94.1, 71.0, 66.7, 45.7, 41.6, 40.2, 38.8, 24.3, 23.1, 20.7;
 HRMS ESI Calcd for C₁₃H₂₀O₂Na [M+Na]⁺: 231.1356, Found: 231.1345.

3.5 Synthesis of the Substrate 1f

Preparation according to the general procedure A from **S7** (0.99 g, 7.2 mmol) afforded **1f** as an amorphous solid (0.590 g, 2.66 mmol, 37% yield).

¹H NMR (400 MHz, Actone-*d₆*) δ 4.83 (t, *J* = 3.6 Hz, 1H), 3.98 (t, *J* = 4.8 Hz, 2H), 3.79 (s, 1H), 2.84 (s, 1H), 2.16 (d, *J* = 12.8 Hz, 2H), 2.07 (s, 1H), 1.80-1.70 (m, 4H), 1.68-1.53 (m, 2H), 1.42-1.25 (m, 8H);
¹³C NMR (100 MHz, Actone-*d₆*) δ 158.7, 93.7, 70.7, 66.6, 44.9, 39.9, 38.9, 31.8, 26.5, 23.6, 23.3, 23.1, 20.6;

HRMS ESI Calcd for $C_{14}H_{22}O_2Na$ [M+Na]⁺: 245.1512, Found: 245.1500.

3.6 Synthesis of the Substrate 1g

Preparation according to the general procedure A from **S8** (0.77 g, 5.1 mmol) afforded **1g** as an amorphous solid (0.550 g, 2.32 mmol, 46% yield).

¹H NMR (400 MHz, Actone-*d*₆) δ 4.81 (t, *J* = 3.6 Hz, 1H), 3.97 (t, *J* = 5.2 Hz, 2H), 3.77 (s, 1H), 2.18 (dd, *J* = 2.8 Hz, 10.0 Hz, 2H), 2.00 (dt, *J* = 3.6 Hz, 6.4 Hz, 2H), 1.82-1.77 (m, 2H), 1.76-1.74 (m, 2H), 1.73-1.71 (m, 2H), 1.60-1.56 (m, 2H), 1.52-1.47 (m, 6H), 1.47-1.41 (m, 2H);

¹³C NMR (100 MHz, Actone-*d₆*) δ 158.7, 93.7, 70.5, 66.6, 45.8, 43.3, 42.1, 34.6, 23.5, 23.4, 23.1, 20.6;

HRMS ESI Calcd for C₁₅H₂₄O₂Na [M+Na]⁺: 259.1669, Found: 259.1658.

3.7 Synthesis of the Substrate 1h

Preparation according to the general procedure A from **S9** (1.12 g, 7.2 mmol) afforded **1h** as an amorphous solid (0.648 g, 2.58 mmol, 36% yield).

¹H NMR (400 MHz, Actone-*d*₆) δ 4.82 (t, *J* = 3.6 Hz, 1H), 3.98 (t, *J* = 1.2 Hz, 2H), 3.77 (s, 1H), 2.83 (s, 2H), 2.15 (d, *J* = 13.2 Hz, 2H), 2.04-1.99 (m, 2H), 1.88-1.77 (m, 2H), 1.77-1.72 (m, 1H), 1.69 (d, *J* = 15.6 Hz, 1H), 1.64-1.62 (m, 2H), 1.60-1.30 (m, 10H);

¹³C NMR (100 MHz, Actone-*d₆*) δ 158.8, 93.7, 70.5, 66.6, 45.8, 38.1, 37.2, 34.2, 24.7, 23.2, 23.08, 22.99, 20.6;

HRMS ESI Calcd for C₁₆H₂₆O₂Na [M+Na]⁺: 273.1825, Found: 273.1816.

4. Syntheses of 1,4-dihydroxybenzene-2-carboxylates and the substrates 2 and spectroscopic data of substrates

Substrates 2a, 2k, 2l and 2q were synthesized according to known literatures.^[2]

General procedure B: Synthesis of 1,4-dihydroxybenzene-2-carboxylate from 2,5-dihydroxybenzoic

Solid KHCO₃ (2.619 g, 26.2 mmol, 2.7 equiv.) was added to a stirred mixture of 2,5-dihydroxybenzoic acid (1.50 g, 9.7 mmol, 1 equiv.) and RBr or RI (38.8 mmol, 4.0 equiv.) in DMF (30 mL). The mixture was heated to 70 °C and stirred for 5-24 h. The reaction mixture was cooled down to room temperature, diluted with 1 M HCl and extracted with EtOAc. The organic phases were washed with water and dried over MgSO₄. Then the solution was filtered, and concentrated followed by purification with flash chromatography giving the desired 1,4-dihydroxybenzene-2-carboxylate.

4.1 Synthesis of the Substrate S11

Preparation according to the general procedure B from **S10** (1.50 g, 9.7 mmol, 1 equiv.) and isobutyl bromide (4.2 mL, 38.8 mmol, 4 equiv.) afforded **S11** as a colorless oil (1.772 g, 8.43 mmol, 87% yield).

¹H NMR (400 MHz, CDCl₃) δ 10.38 (s, 1H), 7.32 (d, J = 3.2 Hz, 1H), 7.03 (dd, J = 3.2 Hz, 8.8 Hz, 1H),
6.84 (d, J = 8.8 Hz, 1H), 6.57 (s, 1H), 4.10 (d, J = 6.8 Hz, 2H), 2.93 (d, J = 28 Hz, 3H), 2.11-2.02 (m, 1H), 1.00 (d, J = 6.8 Hz, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 155.4, 148.3, 124.0, 118.2, 114.7, 112.4, 71.3, 36.8, 27.7, 27.7, 19.0.

HRMS ESI Calcd for C₁₁H₁₄O₄Na [M+Na]⁺: 233.0784, Found: 233.0778.

Preparation according to the general procedure B from **S10** (1.50 g, 9.7 mmol, 1 equiv.) and allyl bromide (2.85 mL, 38.8 mmol, 4 equiv.) afforded **S12** as an amorphous solid (1.787 g, 9.21 mmol, 95% yield).

¹H NMR (400 MHz, CDCl₃) δ 10.38 (s, 1H), 7.32 (d, *J* = 3.2 Hz, 1H), 7.02 (dd, *J* = 3.2 Hz, 8.8 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 1H), 6.02-5.95 (m, 1H), 5.41 (dd, *J* = 1.2 Hz, 17.2 Hz, 1H), 5.30 (dd, *J* = 0.8 Hz, 10.4 Hz, 1H), 4.81 (d, *J* = 5.6 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 155.6, 147.8, 131.3, 124.2, 119.0, 118.5, 114.9, 112.2, 66.0.

4.3 Synthesis of the Substrate S13

Preparation according to the general procedure B from **S10** (1.5 g, 9.7 mmol, 1 equiv.) and 4-bromo-1-butene (3.9 mL, 38.8 mmol, 4equiv.) afforded **S13** as an amorphous solid (1.836 g, 8.83 mmol, 91% yield).

¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 7.29 (d, *J* = 3.2Hz, 1H), 7.05 (s, 1H), 6.84 (d, *J* = 1.2 Hz, 2H), 5.82-5.89 (m, 1H), 5.17-5.11 (m, 2H), 4.38-4.34 (m, 2H), 2.52-2.49 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 155.4, 147.9, 133.4, 124.1, 118.3, 117.7, 114.8, 112.3, 64.4, 32.8.

4.4 Synthesis of the Substrate S14

Preparation according to the general procedure B from **S10** (1.5 g, 9.7 mmol, 1 equiv.) and 1-bromo-2-butyne (3.34 mL, 38.8 mmol, 4 equiv.) afforded **S14** as an amorphous solid (1.758 g, 8.53 mmol, 88% yield).

¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 7.32 (d, *J* = 3.2 Hz, 1H), 7.03 (dd, *J* = 3.2 Hz, 5.2 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 1H), 4.91-4.86 (m, 3H), 1.88 (t, *J* = 2.4 Hz, 3H);

 $^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCI}_3) \\ \delta 169.1, 155.9, 147.8, 124.4, 118.6, 114.9, 111.9, 84.1, 72.6, 53.7, 3.6;$

HRMS ESI Calcd for $C_{11}H_{10}O_4Na$ [M+Na]⁺: 229.0471, Found: 229.0463.

Preparation according to the general procedure B from S10 (1.5 g, 9.7 mmol, 1 equiv.) and

(bromomethyl) cyclopropane (3.76 mL, 38.8 mmol, 4 equiv.) afforded **S15** as a colorless oil (1.896 g, 9.11 mmol, 94% yield).

¹H NMR (400 MHz, CDCl₃) δ 10.40 (d, *J* = 2.8 Hz, 1H), 7.35 (d, *J* = 3.2 Hz, 1H), 7.02 (dd, *J* = 3.2 Hz, 8.8 Hz, 1H), 6.86 (d, *J* = 8.8 Hz, 1H), 5.90-5.20 (m, 1H), 4.16 (d, *J* = 7.2 Hz, 2H), 1.28-1.22 (m, 1H), 0.65-0.61 (m, 2H), 0.38-0.35 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 169.9, 155.7, 147.9, 124.0, 118.4, 114.9, 112.5, 70.2, 9.7, 3.4;
 HRMS ESI Calcd for C₁₁H₁₂O₄Na [M+Na]⁺: 231.0628, Found: 231.0626.

4.6 Synthesis of the Substrate S16

Preparation according to the general procedure B from **S10** (1.5 g, 9.7 mmol, 1 equiv.) and cyclobutyl bromide (3.65 mL, 38.8 mmol, 4 equiv.) afforded **S16** as a colorless oil (1.532 g, 7.37 mmol, 76% yield).

¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 1H), 7.31 (d, J = 3.2 Hz, 1H), 7.01 (dd, J = 3.2 Hz, 4.8 Hz, 1H),
6.86 (d, J = 8.8Hz, 1H), 5.20 (t, J = 7.6 Hz, 1H), 2.48-2.41 (m, 2H), 2.38-2.18 (m, 2H), 1.92-1.84 (m, 1H), 1.74-1.67 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 155.7, 147.8, 124.0, 118.4, 114.8, 112.3, 69.9, 30.2, 13.5.
 HRMS ESI Calcd for C₁₁H₁₂O₄Na [M+Na]⁺: 231.0628, Found: 231.0630.

4.7 Synthesis of the Substrate S17

Preparation according to the general procedure B from **S10** (1.5 g, 9.7 mmol, 1 equiv.) and cyclopentyl bromide (4.20 mL, 38.8 mmol, 4 equiv.) afforded **S17** as a colorless oil (1.486 g, 6.69 mmol, 69% yield).

¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 7.27 (s, 1H), 7.01-6.98 (m, 1H), 6.88-6.86 (m, 1H), 5.42 (t, J = 2.8 Hz, 1H), 1.98-1.95 (m, 2H), 1.86-1.79 (m, 4H), 1.73-1.10 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 155.6, 147.7, 123.8, 118.3, 114.80, 114.78, 112.8, 78.6, 32.7, 23.7;

HRMS ESI Calcd for C₁₂H₁₄O₄Na [M+Na]⁺: 245.0784, Found: 245.0788.

4.8 Synthesis of the Substrate S18

Preparation according to the general procedure B from **S10** (1.5 g, 9.7 mmol, 1 equiv.) and cyclohexyl bromide (4.77 mL, 38.8 mmol, 4 equiv.) afforded **S18** as a colorless oil (1.488 g, 6.30 mmol, 65% yield).

¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 7.31 (d, *J* = 3.2 Hz, 1H), 7.00 (dd, *J* = 3.2 Hz, 9.2 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 1H), 5.08-5.02 (m, 1H), 1.92-1.78 (m, 2H), 1.77-1.64 (m, 2H), 1.61-1.49 (m, 2H), 1.46-1.24 (m, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 155.9, 147.6, 123.7, 118.4, 114.8, 112.9, 73.9, 31.5, 25.3, 23.5;
 HRMS ESI Calcd for C₁₃H₁₆O₄Na [M+Na]⁺: 259.0941, Found: 259.0941.

General procedure C: Synthesis of 2-alkoxycarbonyl-1,4-benzoquinone from 1,4-dihydroxybenzene-2-carboxylate.

Silver oxide (1.392 g, 6.0 mmol, 3.0 equiv.) and magnesium sulfate (0.72 g, 6.0 mmol, 3.0 equiv.) were added to a solution of 1,4-dihydroxybenzene-2-carboxylate (2.0 mmol, 1 equiv.) in diethyl ether (20 mL). The reaction mixture was stirred at 25 °C for 1.5 h. After filtration, the filtrate was evaporated in vacuo to furnish the desired quinone $\mathbf{2}$.

4.9 Synthesis of the Substrate 2m

Preparation according to the general procedure C from **S11** (0.42 g, 2 mmol) afforded **2m** as a red oil (0.391 g, 1.88 mmol, 92% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.05 (s, 1H), 6.79 (s, 2H), 4.05 (d, *J* = 6.8 Hz, 2H), 2.03-1.97 (m, 1H), 0.95 (d, *J* = 6.8 Hz, 6H);

 $^{13}\text{C}\,\text{NMR}\,(100\,\,\text{MHz},\,\text{CDCI}_3)\,\delta$ 186.9, 182.9, 162.6, 137.4, 136.8, 136.00, 135.96, 72.2, 27.6, 18.9;

HRMS ESI Calcd for $C_{11}H_{12}O_4Na$ [M+Na]⁺: 231.0628, Found: 231.0626.

Preparation according to the general procedure C from **S12** (0.388 g, 2 mmol) afforded **2n** as a red oil (0.365 g, 1.9 mmol, 95% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.10 (dd, J = 0.8 Hz, 1.6 Hz, 1H), 6.81 (d, J = 2.4 Hz, 2H), 5.99-5.91 (m, 1H), 5.43 (d, J = 1.6 Hz, 1H), 5.31 (dd, J = 0.8 Hz, 10.4 Hz, 1H), 4.79 (td, J = 1.2 Hz, 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 182.9, 162.3, 137.1, 136.9, 136.4, 136.1, 130.9, 119.5, 66.7; HRMS ESI Calcd for C₁₀H₈O₄Na [M+Na]⁺: 215.0315, Found: 215.0312.

4.11 Synthesis of the Substrate 20

Preparation according to the general procedure C from **S13** (0.42 g, 2 mmol) afforded **20** as a red oil (0.383 g, 1.86 mmol, 93% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.05 (s, 1H), 6.85 (dd, *J* = 1.2 Hz, 8.8 Hz, 1H), 5.85-5.78 (m, 2H), 5.18-5.08 (m, 2H), 4.37 (dt, *J* = 2.0 Hz, 6.8 Hz, 2H), 2.52-2.47 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 186.9, 182.9, 162.5, 137.2, 136.86, 136.85, 136.1, 133.3, 117.8, 65.2, 32.8;

HRMS ESI Calcd for C₁₁H₁₀O₄Na [M+Na]⁺: 229.0471, Found: 229.0471.

Preparation according to the general procedure C from **S14** (0.412 g, 2 mmol) afforded **2p** as a red oil (0.347 g, 1.70 mmol, 85% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 2.0 Hz, 1H), 6.81 (d, *J* = 2.0 Hz, 2H), 4.82 (q, *J* = 2.4 Hz, 2H), 1.83 (t, *J* = 2.4 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 186.7, 182.7, 161.8, 136.8, 136.7, 136.4, 136.1, 84.5, 71.9, 54.4, 3.6;
 HRMS ESI Calcd for C₁₁H₈O₄Na [M+Na]⁺: 227.0315, Found: 227.0304.

4.13 Synthesis of the Substrate 2r

Preparation according to the general procedure C from **S15** (0.415 g, 2 mmol) afforded **2r** as a red oil (0.376 g, 1.83 mmol, 92% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.07 (s, 1H), 6.80 (s, 2H), 4.11 (d, *J* = 7.2 Hz, 2H), 1.22-1.15 (m, 1H), 0.61 (dd, *J* = 5.6 Hz, 13.2 Hz, 2H), 0.32 (dd, *J* = 5.6 Hz, 10.0 Hz, 2H);

 ^{13}C NMR (100 MHz, CDCl₃) δ 186.9, 183.0, 162.6, 137.3, 136.8, 136.02, 135.99, 71.1, 9.5, 3.4;

HRMS ESI Calcd for $C_{11}H_{10}O_4Na$ [M+Na]⁺: 229.0471, Found: 229.0461.

4.14 Synthesis of the Substrate 2s

Preparation according to the general procedure C from **S16** (0.417 g, 2 mmol) afforded **2s** as a red oil (0.391 g, 1.88 mmol, 94% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, *J* = 1.6 Hz, 1H), 6.80 (d, *J* = 2.4 Hz, 2H), 5.20-5.13 (m, 1H), 2.46-2.38 (m, 2H), 2.22-2.11 (m, 2H), 1.90-1.81 (m, 1H), 1.73-1.61 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 186.9, 183.0, 161.9, 137.2, 136.9, 136.04, 136.02, 70.7, 30.2, 13.5;
 HRMS ESI Calcd for C₁₁H₁₀O₄Na [M+Na]⁺: 229.0471, Found: 229.0463.

4.15 Synthesis of the Substrate 2t

Preparation according to the general procedure C from **S17** (0.444 g, 2 mmol) afforded **2t** as a red oil (0.42 g, 1.90 mmol, 95% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, *J* = 2.0 Hz, 1H), 6.79 (d, *J* = 2.4 Hz, 2H), 5.38 (dt, *J* = 2.8 Hz, 5.6 Hz, 1H), 1.95-1.90 (m, 2H), 1.81-1.73 (m, 4H), 1.64-1.61 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 187.0, 183.1, 162.4, 137.7, 136.8, 136.0, 135.6, 79.6, 32.6, 23.6;

HRMS ESI Calcd for C₁₂H₁₂O₄Na [M+Na]⁺: 243.0628, Found: 243.0624.

4.16 Synthesis of the Substrate 2u

Preparation according to the general procedure C from **S18** (0.471 g, 2 mmol) afforded **2u** as a red oil (0.441 g, 1.88 mmol, 94% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.04 (dd, *J* = 0.4 Hz, 2.0 Hz, 1H), 6.81 (d, *J* = 2.0 Hz, 2H), 5.04-4.98 (m, 1H), 1.94-1.89 (m, 2H), 1.80-1.74 (m, 2H), 1.60-1.51 (m, 3H), 1.47-1.25 (m, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 187.0, 183.1, 162.1, 137.8, 136.9, 136.0, 135.6, 75.1, 31.3, 25.2, 23.4; HRMS ESI Calcd for C₁₃H₁₁₄O₄Na [M+Na]⁺: 257.0784, Found: 257.0784.

5. Synthesis of the Ligand L5

To a solution of **S19** (750 mg 2.82 mmol) in THF (50 mL) in a flame-dried round-bottom flask was added NaH (338 mg, 60 % dispersion in mineral oil, 8.46 mmol, 3 equiv.) at 0 °C. The mixture was stirred at the same temperature for 30 min, and iodomethane (526 μ L, 8.46 mmol, 3.0 equiv) was added via syringe. After the addition, the cold bath was removed and the mixture was allowed to stir at room temperature for an additional 6 h. Next, the reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography to give **L5** as a colorless solid (581 mg, 1.97 mmol, 71% yield).

¹H NMR (400 MHz, CDCl₃) δ 4.14-4.03 (m, 4H), 3.83 (dt, *J* = 2.8 Hz, 10.0 Hz, 2H), 1.484 (s, 3H), 1.478 (s, 3H), 0.843 (s, 9H), 0.838 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 75.2, 68.9, 38.5, 33.9, 25.6, 24.4.

6. Experimental Procedures of the [3+2] Cyclization and Spectroscopic Data of Products (3a as an example)

A mixture of Cu(ClO₄)₂·6H₂O (3.7 mg, 0.01 mmol, 0.1 equiv.) and ligand L5 (3.5 mg, 0.012 mmol, 0.12 equiv.) in THF (1.0 mL) with activated 5Å MS (50 mg) was stirred at room temperature for 2 h under an argon atmosphere. Then the mixture was cooled down to -78 °C for 30 minutes, and substituted benzoquinone 2a (24.9 mg, 0.15 mmol, 1.5 equiv.) was added followed by allylic alcohol 1a (15.4 mg, 0.1 mmol, 1 equiv.) in THF (0.5 mL). The resulting solution was stirred until 1a was completely consumed (monitored by TLC, PE/EtOAc = 2/1). Then the mixture was passed through a short silica gel column and eluted with EtOAc (20 mL). The combined elution was concentrated under reduced pressure, which was further purified by flash chromatography on silica gel (PE/EtOAc = 15/1) to give compound 3a as a colorless oil (28.2 mg, 0.088 mmol, 88%).

¹H NMR (400 MHz, CDCl₃) δ 10.51 (s, 1H), 6.96 (d, J = 8.8 Hz, 1H), 6.79 (d, J = 8.8 Hz, 1H), 3.94 (s, 3H), 3.90-3.77 (m, 3H), 2.55-2.50 (m, 1H), 2.37 (d, J = 8.8 Hz, 1H), 2.08-2.00 (m, 1H), 1.98-1.87 (m, 3H), 1.86-1.76 (m, 2H), 1.71-1.53 (m, 2H), 1.38-1.23 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 170.2, 156.5, 151.4, 130.5, 117.1, 116.2, 112.4, 109.2, 78.6, 60.2, 52.2, 40.1, 30.4, 29.2, 23.4, 18.3, 12.9;

HRMS ESI Calcd for C₁₇H₂₀O₆Na [M+Na]⁺: 343.1152, Found: 343.1144;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 8.409 min, t_{minor} =10.195 min, 91% ee; $[\alpha]_D^{26.1}$ = 28.0 (c = 5.0, CHCl₃).

Preparation according to the general procedure of **3a** from **1d** (30.6 mg, 0.1 mmol) and **2a** (24.9 mg, 0.15 mmol) afforded **3d** as a colorless solid (42.2 mg, 0.090 mmol, 90%).

Mp 69.3-72.1 °C;

¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 7.31-7.21 (m, 5H), 7.19-7.06 (m, 5H), 6.66 (d, J = 8.8 Hz, 1H), 6.28 (d, J = 8.8 Hz, 1H), 3.91 (s, 3H), 3.86-3.71 (m, 2H), 3.53-3.50 (m, 1H), 1.94-1.90 (m, 1H), 1.75-1.70(m, 1H), 1.56-1.51(m, 2H), 1.33-1.26 (m, 3H), 0.9-0.83 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 156.6, 151.0, 150.6, 149.0, 130.2, 128.2, 128.1, 126.4, 126.3, 125.4, 125.2, 117.0, 116.8, 111.7, 108.9, 74.4, 60.5, 52.2, 44.3, 42.9, 42.8, 40.1, 26.9, 23.6, 18.4;
HRMS ESI Calcd for C₂₉H₂₈O₆Na [M+Na]⁺: 495.1778, Found: 495.1757;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 27.313 min, t_{minor} = 30.269 min, 87% ee; [α]_D^{26.0} = 30.0 (c = 2.0, CHCl₃).

7. Experimental Procedures of the One-Pot [3+2] Cyclization/Semipinacol Rearrangement Cascade and Spectroscopic Data of Products

General procedure D: Experimental Procedures of the One-Pot [3+2] Cyclization/Semipinacol Rearrangement Cascade (using **4a** as an example)

A mixture of Cu(ClO₆)₂ 6H₂O (3.7 mg, 0.01 mmol, 0.1 equiv.) and ligand **L5** (3.5 mg, 0.012 mmol, 0.12 equiv.) in THF (1.0 mL) with activated 5Å MS (50 mg) was stirred at room temperature for 2 h under an argon atmosphere. Then the mixture was cooled down to -78 °C for 30 minutes, and substituted benzoquinone **2a** (24.9 mg, 0.15 mmol, 1.5 equiv.) was added followed by allylic alcohol **1a** (15.4 mg, 0.1 mmol, 1 equiv.) in THF (0.5 mL). The resulting solution was stirred until **1a** was completely consumed (monitored by TLC, PE/EtOAc = 2/1). Then the mixture was passed through a short silica gel column and eluted with EtOAc (20 mL). The combined elution was concentrated under reduced pressure, and then was added dry DCM (4.0 mL) and cooled down to -20 °C for 10 minutes, SnCl₄ (0.20 mL, 0.2 mmol, 1 mol/L in DCM, 2.0 equiv.) was added and stirred at this temperature until **3a** was completely consumed (monitored by TLC, PE/EtOAc = 2/1). And then MeOH (2.0 mL) and NaBH₄ (15.4 mg, 0.4 mmol, 4.0 equiv.) was added and stirred at this temperature for 2 h before it was quenched with the saturated aqueous NH₄Cl. The organic layer was washed with brine, dried over MgSO₄ and concentrated under vacuum, which was further purified by flash chromatography on silica gel (PE/EtOAc = 2/1) to give compound **4a** as a colorless oil (19.5

mg, 0.0609 mmol, 61%, dr = 7.2:1).

Preparation according to the general procedure D from **1a** (154.1 mg, 1 mmol) and **2a** (249.0 mg, 1.5 mmol) afforded **4a** as a colorless oil (174.1 mg, 0.54 mmol, 54% yield, dr = 7.2:1).

¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 4.36 (t, *J* = 7.2 Hz, 1H), 3.96 (s, 3H), 3.54 (t, *J* = 5.6 Hz, 2H), 3.45 (dd, *J* = 2.4 Hz, 7.6 Hz, 1H), 2.65 (br, 1H), 2.18-2.16 (m, 1H), 2.04-1.98 (m, 2H), 1.97-1.80 (m, 3H), 1.63-1.54 (m, 4H), 1.46-1.32 (m, 1H);
¹³C NMR (100 MHz, CDCl₃) δ 170.4, 156.6, 150.1, 132.4, 118.0, 117.0, 109.3, 97.0, 73.4, 62.5, 52.2, 50.2, 37.6, 33.0, 30.5, 27.2, 18.6;

HRMS ESI Calcd for C₁₇H₂₂O₆Na [M+Na]⁺: 345.1309, Found: 345.1324;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 15.416 min, t_{minor} = 23.265 min, 91% ee; [α]_D^{17.4} = 4.8 (c = 6.2, CHCl₃).

Preparation according to the general procedure D from **1b** (20.9 mg, 0.1 mmol) and **2a** (24.9 mg, 0.15 mmol) afforded **4b** as a colorless oil (15.3 mg, 0.041 mmol, 41% yield, dr = 10:1).

Preparation according to the general procedure D from **1b** (208.8 mg, 1 mmol) and **2a** (249.0 mg, 1.5 mmol) afforded **4b** as a colorless oil (124.2 mg, 0.33 mmol, 33% yield, dr = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 6.92 (d, J = 8.8 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 4.38 (br, 1H), 3.93 (s, 3H), 3.52-3.46 (m, 2H), 3.37 (d, J = 1.6 Hz, 1H), 2.75-2.25 (m, 1H), 2.10-1.96 (m, 3H), 1.84 (d, J = 14.8 Hz, 1H), 1.72 (dd, J = 10.8 Hz, 12.4 Hz, 1H), 1.58-1.49 (m, 2H), 1.47-1.40 (m, 2H), 1.39-1.26 (m, 3H), 1.22 (t, J = 11.2 Hz, 1H), 0.76 (t, J = 7.2 Hz, 3H), 0.72 (t, J = 7.6 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 156.5, 149.7, 132.8, 118.0, 116.9, 109.1, 97.6, 72.7, 62.3, 52.2, 50.7, 49.4, 45.0, 39.3, 32.4, 32.0, 30.8, 27.2, 8.7, 8.6;

HRMS ESI Calcd for C₂₁H₃₀O₆Na [M+Na]⁺: 401.1935, Found: 401.1942;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 13.494 min, t_{minor} = 20.138 min, 91% ee; $[\alpha]_D^{19.8}$ = -10.0 (c = 1.0, CHCl₃).

Preparation according to the general procedure D from **1c** (31.8 mg, 0.1 mmol) and **2a** (24.9 mg, 0.15 mmol) afforded **4c** as a colorless oil (19.4 mg, 0.040 mmol, 40% yield, dr > 20:1).

Preparation according to the general procedure D from **1c** (319.4 mg, 1 mmol) and **2a** (249.0 mg, 1.5 mmol) afforded **4c** as a colorless oil (180.1 mg, 0.37 mmol, 37% yield, dr > 20:1).

¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.80 (d, *J* = 8.8 Hz, 1H), 4.37 (t, *J* = 9.2 Hz, 1H), 3.98 (s, 3H), 3.97-3.91 (m, 1H), 3.56 (t, *J* = 8 Hz, 2H), 3.41 (dd, *J* = 2.0 Hz, 8.4 Hz, 1H), 2.47 (br, 1H), 3.13-2.01 (m, 1H), 1.85-1.76 (m, 10H), 1.69-1.57 (m, 10H), 1.55-1.45 (m, 2H), 1.89-1.06 (m, 4H), 0.91-0.81 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 170.5, 156.6, 149.4, 133.4, 118.1, 117.0, 109.2, 94.4, 77.2, 73.4, 62.5, 52.3, 51.1, 45.1, 44.0, 43.3, 43.1, 39.9, 30.9, 29.7, 28.1, 27.9, 27.8, 27.4, 27.3, 27.1, 27.0, 26.8, 26.7;

HRMS ESI Calcd for C₂₉H₄₂O₆Na [M+Na]⁺: 509.2874, Found: 509.2862;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 13.962 min, t_{minor} = 25.945 min, 89% ee; [α]_D^{20.2} = -16.7 (c = 1.2, CHCl₃).

Preparation according to the general procedure D from **1d** (30.0 mg, 0.1 mmol) and **2a** (24.9 mg, 0.15 mmol) afforded **4d** as a colorless oil (30.9 mg, 0.067 mmol, 67% yield, dr = 15.5:1).

¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 7.32-7.24 (m, 5H), 7.22-7.16 (m, 2H), 7.14-7.12 (m, 3H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 1H), 4.52-4.48 (m, 1H), 3.94 (s, 3H), 3.51-3.46 (m, 2H), 3.16 (dd, *J* = 6.0 Hz, 12.4 Hz, 1H), 2.90 (d, *J* = 14.8 Hz, 1H), 2.89 (br, 1H), 2.75 (d, *J* = 14.8 Hz, 1H), 2.55 (dd, *J* = 2.8 Hz, 8.4 Hz, 1H), 2.32-2.26 (m, 1H), 2.04 (s, 1H), 1.97-1.87 (m, 1H), 1.68 (br, 1H), 1.57-1.42 (m, 1H), 1.32-1.23 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 156.8, 149.8, 149.6, 148.3, 132.3, 128.5, 128.1, 126.7, 126.5, 126.0, 125.7, 118.1, 117.2, 109.3, 96.4, 72.1, 62.4, 60.4, 52.9, 52.2, 51.6, 49.3, 46.7, 30.3, 27.2, 14.1;

HRMS ESI Calcd for C₂₉H₃₀O₆Na [M+Na]⁺: 497.1935, Found: 497.1938;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 23.816 min, t_{minor} = 30.598 min, 92% ee; [α]_D^{20.3} = -72.7 (c = 1.1, CHCl₃).

Preparation according to the general procedure D from **1e** (20.9 mg, 0.1 mmol) and **2a** (24.9 mg, 0.15 mmol) afforded **4e** as a colorless oil (17.3 mg, 0.047 mmol, 47% yield, dr > 20:1).

Preparation according to the general procedure D from **1e** (208.8 mg, 1 mmol) and **2a** (249.0 mg, 1.5 mmol) afforded **4e** as a colorless oil (165.0 mg, 0.44 mmol, 44% yield, dr > 20:1).

¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 6.80 (d, *J* = 8.8 Hz, 1H), 4.46-4.41 (m, 1H), 3.97 (s, 3H), 3.57-3.52 (m, 2H), 3.45 (dd, *J* = 2.4 Hz, 8.0 Hz, 1H), 2.46 (d, *J* = 9.6 Hz, 1H), 2.10-1.98 (m, 3H), 1.89-1.78 (m, 2H), 1.67-1.44 (m, 10H), 1.28-1.24 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 156.7, 150.0, 132.6, 118.1, 117.1, 109.3, 97.5, 73.2, 62.6, 52.2, 51.5, 50.9, 46.8, 44.3, 41.8, 41.7, 30.8, 27.2, 23.8, 23.6;

HRMS ESI Calcd for C₂₁H₂₈O₆Na [M+Na]⁺: 399.1778, Found: 399.1771;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 16.083 min, t_{minor} = 23.715 min, 86% ee; [α]_D^{20.0} = -22.2 (c = 0.9, CHCl₃).

Preparation according to the general procedure D from 1f (22.1 mg, 0.1 mmol) and 2a (24.9 mg, 0.15 mmol) afforded 4f as a colorless oil (19.6 mg, 0.051 mmol, 51% yield, dr > 20:1).

¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 4.45-4.43 (m, 1H), 3.97 (s, 3H), 3.57 (t, *J* = 5.6 Hz, 2H), 3.45 (dd, *J* = 2.4 Hz, 5.6 Hz, 1H), 2.40 (br, 1H), 2.18-2.09 (m, 1H), 2.05 (d, *J* = 14.0 Hz, 1H), 1.96 (d, *J* = 14.8 Hz, 1H), 1.88-1.78 (m, 1H), 1.75-1.65 (m, 1H), 1.63-1.47 (m, 6H), 1.47-1.25 (m, 8H);

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 156.6, 149.8, 132.7, 118.1, 117.0, 109.2, 97.4, 72.6, 62.5, 52.2, 50.8, 40.5, 40.4, 36.9, 30.9, 27.2, 25.7, 23.3, 23.2;

HRMS ESI Calcd for C₂₂H₃₀O₆Na [M+Na]⁺: 413.1935, Found: 413.1917;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 15.517 min, t_{minor} = 22.968 min, 88% ee; [α]_D^{20.1} = -12.5 (c = 1.6, CHCl₃).

Preparation according to the general procedure D from **1g** (23.7 mg, 0.1 mmol) and **2a** (24.9 mg, 0.15 mmol) afforded **4g** as a colorless oil (22.4 mg, 0.056 mmol, 56% yield, dr > 20:1). Preparation according to the general procedure D from **1g** (235.7 mg, 1 mmol) and **2a** (249.0 mg, 1.5 mmol) afforded **4g** as a colorless oil (190.0 mg, 0.47 mmol, 47% yield, dr > 20:1). ¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6,79 (d, *J* = 8.8 Hz, 1H), 4.41 (dd, *J* = 7.6 Hz, 10.4 Hz, 1H), 3.97-3.94 (m, 1H), 3.96 (s, 3H), 3.57 (t, *J* = 5.6 Hz, 2H), 3.43 (dd, *J* = 2.4 Hz, 8.0 Hz, 1H), 2.17-2.05 (m, 2H), 2.00 (d, *J* = 14.4 Hz, 1H), 1.74 (dd, *J* = 10.8 Hz, 12.4 Hz, 2H), 1.66-1.52 (m, 8H), 1.51-1.37 (m, 8H);

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 156.6, 149.8, 132.7, 118.1, 117.0, 109.2, 97.6, 72.6, 62.5, 52.6, 52.2, 50.9, 47.9, 44.0, 43.5, 40.0, 30.9, 29.0, 28.9, 27.2, 23.6, 23.4;

HRMS ESI Calcd for C₂₃H₃₂O₆Na [M+Na]⁺: 427.2091, Found: 427.2072;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 16.898 min, t_{minor} = 25.782 min, 92% ee; [α]_D^{20.2} = -18.2 (c = 1.1, CHCl₃).

Preparation according to the general procedure D from **1h** (24.9 mg, 0.1 mmol) and **2a** (24.9 mg, 0.15 mmol) afforded **4h** as a colorless oil (22.8 mg, 0.055 mmol, 55% yield, dr > 20:1).

Preparation according to the general procedure D from **1h** (249.4 mg, 1 mmol) and **2a** (249.0 mg, 1.5 mmol) afforded **4h** as a colorless oil (199.7 mg, 0.48 mmol, 48% yield, dr > 20:1).

¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 1H), 4.43 (br, 1H), 3.96 (s, 3H), 3.56 (t, *J* = 5.6 Hz, 2H), 3.42 (dd, *J* = 2.4 Hz, 8.4 Hz, 1H), 2.48 (br, 1H), 2.18-2.01 (m, 3H), 1.97 (d, *J* = 10.8 Hz, 1H), 1.70 (dd, *J* = 10.8 Hz, 12.8 Hz, 3H), 1.61-1.60 (m, 3H), 1.60-1.56 (m, 1H), 1.56-1.45 (m, 9H), 1.44-1.35 (m, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 156.6, 149.8, 132.8, 118.0, 117.0, 109.2, 97.7, 72.6, 62.4, 52.2, 52.1, 50.9, 47.3, 39.9, 38.5, 38.1, 30.9, 28.6, 28.3, 27.3, 24.7, 23.2, 23.1;

HRMS ESI Calcd for C₂₄H₃₄O₆Na [M+Na]⁺: 441.2248, Found: 441.2235;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 19.329 min, t_{minor} = 25.994 min, 92% ee; [α]_D^{20.3} = -14.3 (c = 1.4, CHCl₃).

Preparation according to the general procedure D from **1e** (20.7 mg, 0.1 mmol) and **2b** (27.0 mg, 0.15 mmol) afforded **4i** as a colorless oil (19.7 mg, 0.051 mmol, 51% yield, dr > 20:1).

¹H NMR (400 MHz, CDCl₃) δ 10.60 (s, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 6.69 (d, *J* = 8.8 Hz, 1H), 4.48-4.41 (m, 3H), 3.56 (t, *J* = 5.6 Hz, 2H), 3.46 (dd, *J* = 2.0 Hz, 8.4 Hz, 1H), 2.09-2.02 (m, 2H), 2.00 (d, *J* = 14.4 Hz, 1H), 1.91-1.88 (m, 1H), 1.67-1.46 (m, 12H), 1.46 (t, *J* = 7.2 Hz, 5H);

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 156.8, 149.9, 132.5, 117.9, 117.1, 109.5, 97.4, 73.2, 62.6, 61.6,

51.3, 50.8, 46.7, 41.8, 30.5, 27.1, 23.8, 23.6, 14.3;

HRMS ESI Calcd for C₂₂H₃₀O₆Na [M+Na]⁺: 413.1935, Found: 413.1944;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 13.789 min, t_{minor} = 23.829 min, 75% ee; [α]_D^{20.1} = -15.4 (c = 1.3, CHCl₃).

Preparation according to the general procedure D from **1h** (25.0 mg, 0.1 mmol) and **2b** (27.0 mg, 0.15 mmol) afforded **4i** as a colorless oil (22.5 mg, 0.051 mmol, 53% yield, dr > 20:1).

¹H NMR (400 MHz, CDCl₃) δ 10.60 (s, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 4.48-4.40 (m, 3H), 3.56 (t, *J* = 5.6 Hz, 2H), 3.44 (dd, *J* = 2.0 Hz, 8.8 Hz, 1H), 2.53-2.32 (m, 1H), 2.16-2.047 (m, 1H), 2.02-1.96 (m, 2H), 1.92-1.79 (m, 1H), 1.73-1.56 (m, 8H), 1.56-1.52 (m, 2H), 1.46-1.41 (m, 8H), 1.37-1.33 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 156.7, 149.7, 132.7, 118.0, 117.0, 109.4, 97.7, 72.7, 62.6, 61.6, 51.9, 50.9, 47.3, 40.0, 38.5, 38.2, 30.7, 28.6, 28.3, 27.2, 24.7, 23.24, 23.15, 14.3;

HRMS ESI Calcd for C₂₅H₃₆O₆Na [M+Na]⁺: 455.2404, Found: 455.2403;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 16.813 min, t_{minor} = 27.576 min, 86% ee; [α]_D^{20.2} = -13.3 (c = 1.5, CHCl₃).

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2b** (27.0 mg, 0.15 mmol) afforded **4k** as a colorless oil (20.2 mg, 0.06 mmol, 60% yield, dr = 12.6:1).

¹H NMR (400 MHz, CDCl₃) δ 10.62 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 4.49-4.37 (m, 3H), 3.54 (t, *J* = 6.0 Hz, 2H), 3.47 (dd, *J* = 2.4 Hz, 8.0 Hz, 1H), 2.57 (br, 1H), 2.20-2.12 (m, 1H), 2.04-1.86 (m, 3H), 1.84-1.64 (m, 2H), 1.63-1.50 (m, 4H), 1.43 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 156.8, 150.1, 132.4, 117.9, 117.1, 109.5, 97.0, 73.4, 62.6, 61.7, 50.2, 37.6, 33.0, 30.3, 27.1, 18.5, 14.3;

HRMS ESI Calcd for C₁₈H₂₄O₆Na [M+Na]⁺: 359.1465, Found: 359.1454;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 14.317 min, t_{minor} = 23.956 min, 88% ee; [α]_D^{17.9} = -8.3 (c = 1.0, CHCl₃).

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2c** (29.2 mg, 0.15 mmol) afforded **4** as a colorless oil (19.7 mg, 0.057 mmol, 57% yield, dr = 9.4:1).

¹H NMR (400 MHz, CDCl₃) δ 10.73 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 5.37-5.31 (m, 1H), 4.40 (t, *J* = 7.2 Hz, 1H), 3.54 (t, *J* = 6.0 Hz, 2H), 3.47 (dd, *J* = 2.0 Hz, 8.0 Hz, 1H), 2.47 (br, 1H), 2.20-2.16 (m, 1H), 2.05-2.00 (m, 2H), 1.85-1.77 (m, 2H), 1.66-1.56 (m, 5H), 1.42 (d, *J* = 4.8 Hz, 3H), 1.41 (d, *J* = 5.2 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 169.3, 156.9, 150.0, 132.3, 117.8, 117.1, 109.9, 96.9, 73.5, 67.9, 62.6, 50.1, 37.5, 33.0, 30.2, 27.1, 22.0, 21.8, 18.5;

HRMS ESI Calcd for C₁₉H₂₆O₆Na [M+Na]⁺: 373.1622, Found: 373.1617;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 13.468 min, t_{minor} = 20.366 min, 80% ee; [α]_D^{18.2} = -14.3 (c = 0.7, CHCl₃).

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2m** (31.4 mg, 0.15 mmol) afforded **4m** as a colorless oil (19.4 mg, 0.054 mmol, 54% yield, dr = 4.7:1).

¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.78 (d, *J* = 8.8 Hz, 1H), 4.37 (t, *J* = 7.2 Hz, 1H), 4.78 (dd, *J* = 3.2 Hz, 10.8 Hz, 1H), 4.08 (d, *J* = 6.4 Hz, 1H), 3.51 (t, *J* = 6.4 Hz, 3H), 2.75 (br, 1H), 2.17-2.08 (m, 2H), 2.03-1.84 (m, 2H), 1.83-1.62 (m, 3H), 1.61-1.53 (m, 4H), 1.30-1.25 (m, 1H), 1.03 (d, *J* = 2.8 Hz, 3H), 1.01 (d, *J* = 3.2 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 156.7, 150.2, 132.2, 117.8, 117.1, 109.6, 97.0, 73.3, 71.8, 62.5, 50.1, 37.4, 32.9, 29.8, 27.8, 27.1, 19.4, 19.2, 18.5;

HRMS ESI Calcd for C₂₀H₂₈O₆Na [M+Na]⁺: 387.1778, Found: 387.1769;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{maior} = 11.103 min, t_{minor} = 18.840 min, 80% ee; $[\alpha]_D^{19.1}$ = 7.1 (c = 1.4, CHCl₃).

Preparation according to the general procedure D from 1a (15.4 mg, 0.1 mmol) and 2n (28.7 mg,

0.15 mmol) afforded **4n** as a colorless oil (17.7 mg, 0.051 mmol, 51% yield, dr = 4.7:1).

¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 6.80 (d, *J* = 8.8 Hz, 1H), 6.11-6.04 (m, 1H), 5.37 (dt, *J* = 1.2 Hz, 7.6 Hz, 2H), 4.92-4.89 (m, 1H), 4.39 (d, *J* = 7.2 Hz, 2H), 3.55-3.51 (m, 2H), 3.47 (dd, *J* = 2.0 Hz, 8.0 Hz, 1H), 2.20-2.14 (m, 1H), 2.05-1.90 (m, 2H), 1.86-1.77 (m, 4H), 1.66-1.54 (m, 4H), 1.43-1.26 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 156.9, 150.1, 132.5, 131.4, 120.1, 118.1, 117.1, 109.3, 97.0, 66.4, 62.6, 50.2, 37.6, 33.0, 30.4, 27.1, 18.6;

HRMS ESI Calcd for C₁₉H₂₄O₆Na [M+Na]⁺: 371.1465, Found: 371.1459;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 13.772 min, t_{minor} = 22.585 min, 84% ee; [α]_D^{19.4} -14.3 (c = 1.4, CHCl₃).

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2o** (31.2 mg, 0.15 mmol) afforded **4o** as a colorless oil (19.8 mg, 0.055 mmol, 55% yield, dr = 4.6:1).

¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 1H), 6.78 (d, *J* = 8.8 Hz, 1H), 5.87-5.79 (m, 1H), 5.20 (m, 2H), 4.52-4.42 (m, 1H), 4.41-4.35 (m, 2H), 3.55-3.48 (m, 2H), 2.57-2.52 (m, 2H), 2.23-2.12 (m, 1H), 2.04-1.88 (m, 2H), 1.87-1.63 (m, 4H), 1.63-1.53 (m, 4H), 1.42-1.40 (m, 1H), 1.25 (t, *J* = 7.2 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 156.7, 150.2, 132.3, 117.94, 117.87, 117.1, 109.5, 97.1, 77.3,
 73.4, 64.6, 62.5, 50.0, 37.3, 33.0, 32.9, 29.9, 27.0, 18.5;

HRMS ESI Calcd for C₂₀H₂₆O₆K [M+K]⁺: 401.1361, Found: 401.1382;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 13.119 min, t_{minor} = 21.234 min, 83% ee; [α]_D^{20.6} = -10.0 (c = 2.0, CHCl₃).

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2p** (30.5 mg, 0.15 mmol) afforded **4p** as a colorless oil (18.8 mg, 0.057 mmol, 52% yield, dr = 3.9:1).

¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 5.05-4.95 (m, 1H), 4.88-4.80 (m, 1H), 4.39 (t, *J* = 7.2 Hz, 1H), 3.58-3.45 (m, 3H), 2.76 (br, 1H), 2.21-2.05 (m, 2H), 2.03-1.93 (m, 1H), 1.88-1.80 (m, 3H), 1.87 (s, 3H), 1.74-1.44 (m, 5H);

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.4, 156.8, 156.4, 150.5, 150.1, 133.2, 132.7, 118.2, 118.1, 117.0, 116.8, 109.2, 109.0, 101.1, 97.0, 84.3, 84.1, 73.4, 72.5, 63.0, 62.6, 53.6, 53.4, 50.3, 47.8, 37.6, 35.2, 33.7, 32.9, 30.7, 29.2, 27.7, 27.3, 19.5, 18.5, 3.61, 3.58;

HRMS ESI Calcd for C₂₀H₂₅O₆ [M+H]⁺: 361.1646, Found: 361.1633;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 14.961 min, t_{minor} = 25.074 min, 86% ee; [α]_D^{19.2} = -9.1 (c = 2.2, CHCl₃).

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2q** (48.1 mg, 0.15 mmol) afforded **4q** as a colorless oil (22.2 mg, 0.047 mmol, 47% yield, dr = 11.4:1). **1**H NMR (400 MHz, CDCl₃) δ 10.54 (s, 1H), 7.65-7.60 (m, 1H), 7.52-7.46 (m, 1H), 7.37 (dt, *J* = 0.8 Hz, 7.6 Hz, 1H), 7.28 (dd, *J* = 0.8 Hz, 2 Hz, 1H), 6.95 (d, *J* = 9.6 Hz, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 5.48 (d, *J* = 3.2 Hz, 2H), 4.30 (t, *J* = 7.2 Hz, 1H), 3.41 (dd, *J* = 2.0 Hz, 8.4 Hz, 1H), 3.33 (t, *J* = 6.0 Hz, 2H), 2.17-2.08 (m, 1H), 2.02-1.90 (m, 2H), 1.86-1.68 (m, 4H), 1.60-1.52 (m, 2H), 1.45-1.36 (m, 1H); **13**C NMR (100 MHz, CDCl₃) δ 169.7, 156.9, 150.1, 134.3, 133.3, 132.8, 131.7, 130.8, 127.8, 124.8, 118.2, 117.0, 109.0, 97.0, 73.2, 67.0, 62.5, 50.0, 37.1, 32.8, 30.0, 27.0, 18.4; HRMS ESI Calcd for C₂₃H₂₅BrO₆Na [M+Na]⁺: 499.0727, Found: 499.0717; HPI C: Chiralpack IE 2 colump. p. boxano/isopropage1 = 00/10. flow rate = 1.0 ml (min.) = 25.4 nm

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 18.563 min, t_{minor} = 37.175 min, 74% ee; [α]_D^{20.8} = -3.8 (c = 2.6, CHCl₃).

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2r** (30.6 mg, 0.15 mmol) afforded **4r** as a colorless oil (18.6 mg, 0.052 mmol, 52% yield, dr = 4.7:1).

¹H NMR (400 MHz, CDCl₃) δ 10.62 (s, 1H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.77 (d, *J* = 8.8 Hz, 1H), 4.37 (t, *J* = 6.8 Hz, 1H), 4.25-4.11 (m, 2H), 3.50 (m, 3H), 2.88 (br, 1H), 2.61 (br, 1H), 2.20-1.82 (m, 3H), 1.81-1.75 (m, 3H), 1.70-1.42 (m, 3H), 1.28-1.25 (m, 1H), 1.24-1.22 (m, 1H), 0.67-0.61 (m, 2H), 0.36 (dd, *J* = 4.8 Hz, 9.6 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 156.7, 150.1, 132.4, 117.8, 116.9, 109.5, 100.8, 97.0, 73.3, 70.6, 62.5, 50.2, 37.5, 32.8, 30.1, 27.1, 18.5, 9.7, 3.7;

HRMS ESI Calcd for C₂₀H₂₆O₆Na [M+Na]⁺: 385.1622, Found: 385.1627;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm,

retention time: $t_{major} = 13.792 \text{ min}, t_{minor} = 23.171 \text{ min}, 78\% \text{ ee}; [\alpha]_D^{19.5} = -5.0 (c = 2.0, CHCl_3).$

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2s** (30.6 mg, 0.15 mmol) afforded **4s** as a colorless oil (20.9 mg, 0.057 mmol, 57% yield, dr = 7.8:1). **¹H NMR** (400 MHz, CDCl₃) δ 10.61 (s, 1H), 6.94 (d, *J* = 8.8 Hz, 1H), 6.77 (d, *J* = 8.8 Hz, 1H), 5.24 (t, *J* = 7.6 Hz, 1H), 4.39 (t, *J* = 7.6 Hz, 1H), 3.54 (t, *J* = 5.6 Hz, 2H), 3.50 (dd, *J* = 2.4 Hz, 8.0 Hz, 1H), 2.52-2.44 (m, 2H), 2.27-2.12 (m, 3H), 2.11-1.98 (m, 2H), 1.95-1.79 (m, 3H), 1.78-1.69 (m, 1H), 1.68-1.54 (m, 4H), 1.48-1.37 (m, 1H), 1.29-1.23 (m, 1H), 0.93-0.84 (m, 1H); **¹³C NMR** (100 MHz, CDCl₃) δ 169.5, 156.8, 150.0, 132.3, 117.9, 117.0, 109.4, 96.9, 73.4, 70.1, 62.6, 50.2, 37.6, 33.0, 30.5, 30.31, 30.29, 27.2, 18.5, 13.7;

HRMS ESI Calcd for C₂₀H₂₆O₆Na [M+Na]⁺: 385.1622, Found: 385.1634;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 14.345 min, t_{minor} = 24.116 min, 77% ee; [α]_D^{20.4} = -9.5 (c = 2.1, CHCl₃).

Preparation according to the general procedure D from **1a** (15.4 mg, 0.1 mmol) and **2t** (32.8 mg, 0.15 mmol) afforded **4t** as a colorless oil (20.2 mg, 0.054 mmol, 54% yield, dr = 6.7:1).

¹H NMR (400 MHz, CDCl₃) δ 10.69 (s, 1H), 6.94 (d, *J* = 8.8 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 5.49-5.43 (m, 1H), 4.38 (t, *J* = 7.2 Hz, 1H), 3.54-3.48 (m, 2H), 3.46 (dd, *J* = 2.8 Hz, 8 Hz, 1H), 2.21-2.14 (m, 1H), 2.03-1.93 (m, 4H), 1.89-1.78 (m, 6H), 1.76-1.61 (m, 6H), 1.59-1.50 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 170.0, 156.7, 150.1, 132.0, 117.7, 117.1, 109.8, 96.9, 79.0, 73.3, 62.5, 50.1, 37.4, 32.9, 32.8, 32.5, 29.6, 27.0, 23.9, 23.7, 18.5;

HRMS ESI Calcd for C₂₁H₂₈O₆Na [M+Na]⁺: 399.1778, Found: 399.1791;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 13.156 min, t_{minor} = 21.162 min, 81% ee; [α]_D^{20.5} = -21.4 (c = 1.4, CHCl₃).

Preparation according to the general procedure D from 1a (15.4 mg, 0.1 mmol) and 2u (35.2 mg,

0.15 mmol) afforded **4u** as a colorless oil (22.3 mg, 0.057 mmol, 57% yield, dr = 5.4:1).

¹H NMR (400 MHz, CDCl₃) δ 10.70 (s, 1H), 6.92 (d, *J* = 8.8 Hz, 1H), 6.76 (d, *J* = 8.8 Hz, 1H), 5.09-5.02 (m, 1H), 4.37 (t, *J* = 7.2 Hz, 1H), 3.52-3.47 (m, 3H), 2.85 (br, 1H), 2.12-2.06 (m, 1H), 2.11-1.98 (m, 5H), 1.83-1.75 (m, 5H), 1.64-1.54 (m, 6H), 1.54-1.24 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 169.5, 156.7, 150.1, 132.2, 117.7, 117.0, 109.8, 96.9, 74.9, 73.3, 62.5, 50.1, 37.4, 32.9, 31.8, 31.7, 29.8, 27.1, 25.2, 24.1, 24.0, 18.5;

HRMS ESI Calcd for C₂₂H₃₀O₆Na [M+Na]⁺: 413.1935, Found: 413.1942;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 11.736 min, t_{minor} = 20.430 min, 78% ee; [α]_D^{19.7} = -3.7 (c = 2.7, CHCl₃).

To a stirred solution of **4a** (30.1 mg, 0.093 mmol, 1 equiv.) in dry DCM (2 mL) was added DMAP (11.4 mg, 1.0 equiv.), Et₃N (52.0 μ L, 4.0 equiv.) and bromobenzoyl chloride (82.1 mg, 4.0 equiv.) successively at r.t. and stirred overnight before it was quenched with the saturated aqueous NaHCO₃. The organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated under vacuum. The residue was purified via column chromatography on silica gel to give product compound **5a** as a colorless solid (58.3 mg, 0.067 mmol, 72% yield).

Mp 159.9-162.3 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.05-8.02 (m, 2H), 7.76 (dd, *J* = 0.2 Hz, 8.0 Hz, 4H), 7.67-7.65 (m, 2H), 7.56-7.50 (m, 4H), 7.03 (d, *J* = 8.4 Hz, 11.6Hz, 2H), 5.50 (t, *J* = 6.8Hz, 1H), 4.13-4.08 (m, 2H), 3.74 (q, *J* = 3.6 Hz, 1H), 3.62 (s, 3H), 2.51-2.27 (m, 2H), 2.14-1.90 (m, 4H), 1.86-1.64 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 165.6, 165.2, 165.0, 156.4, 143.2, 133.1, 132.0, 131.8, 131.6, 131.1, 131.0, 128.9, 128.8, 128.7, 128.2, 123.5, 113.6, 97.6, 75.3, 64.9, 52.1, 47.9, 36.5, 29.7, 29.1, 27.2, 26.2, 18.6;

HRMS ESI Calcd for C₃₈H₃₁Br₃O₉Na [M+Na]⁺: 890.9410, Found: 890.9399;

HPLC: Chiralpak IF-3 column, n-hexane/isopropanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm,

retention time: $t_{major} = 30.810 \text{ min}, t_{minor} = 36.724 \text{ min}, 94\% \text{ ee}; [\alpha]_D^{20.7} = 42.9 (c = 1.4, CHCl_3).$

8. X-Ray Ellipsoid Plots of 3d and 5a

The crystal structure of **3d** and **5a** have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers (CCDC number): 1883807 and 1883805.

9. Proposed Reaction Mechanism

10. References

- [1] Q.-W. Zhang, C.-A. Fan, H.-J. Zhang, Y.-Q. Tu, Y.-M. Zhao, P. Gu, and Z.-M. Chen, Angew. Chem. Int. Ed. 2009, 48, 8572-8574.
- [2] Y.-H. Chen, D.-J. Cheng, J. Zhang, Y. Wang, X.-Y. Liu, B. Tan, J. Am. Chem. Soc., 2015, 137, 15062–15065.

mm4m0/8/9m01869	-12-45-10-460-000-01-200	+86666666666666°	NH009/9000000000000000000000000000000000
0100004-0000000000000000000000000000000	Ⴢ <i>ႦႦႦႦႦ</i> Ⴇ <i>ႯႦ</i> ႳႹႹႹႳႦჾჁჿჁ) 4 4 c	0010400808040008
××××××××××××××××××××××××××××××××××××××	-00000000000000000	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0000444000000000000
	visional and a state of a state o		

986	2020
205	2007

0

1c

ЮH

Су

Ċу

-158.949

-94.281

-70.318-66.569

792	123	301	110	915	724	584	531	338	146	179	103	453	416	055	665
, 39.	<u>₹</u> 39.	<u>,</u> 30.	∕_30.	- √29.	-\29.	-\29.	-29.	L29.	-29.	-28.	-28.	-27.	-27.	-23.	L20.

		' '	, , ,		'	· 1		·	' 1	'	'	·			'			1	' '	· 1		·	1	
220	210	200	190	180	170	160	150	140	130	120	110	100 \$35	90	80	70	60	50	40	30	20	10	0	-10	-20
												555												

$\begin{array}{c} 4414\\ 4117\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3396\\ 3339\\ 3339\\ 3396\\ 3339\\$	$\begin{array}{c} 964 \\ 856 \\ 844 \\ 831 \end{array}$	$\begin{array}{c} 350\\ 318\\ \end{array}$	891 859	$\begin{array}{c} 883\\ 873\\ 867\\ 851\\ 861\\ 661\\ 661\\ 619\\ 603\\ 603\\ 603\\ 603\\ 603\\ 603\\ 603\\ 603$
			2. 2.	

icon_5_LZU_LLin_20180613_S8

PROTON Acetone {E:\data} ROOT 8

4240854890088855873585	S
80000000000000000000000000000000000	ň
	-
	L

-3.998 -3.986 -3.973 -3.787

4.842 4.833 4.824

icon_5_LZU_LLin_20180613_S10

PROTON Acetone {E:\data} ROOT 6

991 978 965 767	832	1155 1125 0066 0060 0050 0050 0024 0018 881 0028 881 0028 881 7769 993 8866 692 7766 993 8666 692 7725 692 7725 692
က်က်က်	N.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

626 522 459

 $\overline{}$

339

4.827 4.818 4.809

icon_5_LZH LLin_20180613_S10 C13CPD Ace one {E:\data} ROOT 6			70.488 66.630	45.792 38.140 38.140 34.150 30.279 20.007 29.895 29.317 29.125 29.867 29.125 29.867 23.079 22.993 22.993
		a a di la agonta da sa da agonta da sa da agonta da sa d Manganganganganganganganganganganganganga		
20 210 200 190 180 170	160 150 140 130 120 110 100 f1 (ppn S45	90 80 1)	70 60 50) 40 30 20 10 0 -10

$$\begin{array}{c} 4.\ 103\\ 4.\ 087\\ 2.\ 091\\ 2.\ 074\\ 2.\ 074\\ 2.\ 074\\ 2.\ 041\\ 2.\ 024\\ 2.\ 024\\ 2.\ 024\\ 0.\ 991 \end{array}$$

321 321 321 321 321 321 321 321 321 321	417 420 315 315 315 291 289 820 820 820

			I		
	1		8		
Manifustral purch is to four films of a single statement of a solar statement of a solar succession of a solar				munituu un valuuri ta tata ta tataba () fanta a statuna tau Nava hau sahanta maatari maatari maatari	in 10 for a state of the strategy soul divides
220 210 200 190	180 170 160 150	140 130 120 110 1	00 90 80 70 60 551	50 40 30 20 10 0	-10 -20

354 354 022 999 854 854 854 854 854 854 854	869 815 815 815 815 815 132 338 338 338 338 338 338 338 338 338 338 338 338 338 338 338 338 3199 151
2.2.2.2.2.2.2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	

OH O OH O OH S16	-169.242	—155.720 —147.765	\sim 123. 965 \sim 118. 379 \sim 114. 846 \sim 112. 329	77. 318 77. 000 76. 682 ~69. 944	-30.231 -13.542	
				m 1		
						1 7-1 -1-2-1-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

—169.583	—155.635 —147.749	123.760 118.323 114.795 114.787 112.771	

110 100 S59

313 305 305 260 011 003 989 981 8881 8881 858	$\begin{array}{c} 081\\ 072\\ 061\\ 050\\ 040\\ 028\\ 019\\ 019 \end{array}$	$\begin{array}{c} 920\\ 920\\ 795\\ 795\\ 787\\ 787\\ 787\\ 787\\ 787\\ 787\\ 787\\ 78$

S61

arrayood a may stradardy at the strategy age	n, depektion generation of historican spectra water	and a second state of the		

0 0 0 20	$-186.856 \\ -182.922$	—162. 494	$ \begin{bmatrix} 137. \ 152 \\ 136. \ 855 \\ 136. \ 060 \\ 133. \ 286 \end{bmatrix} $	—117.769		$\frac{77.\ 318}{77.\ 000}$	65. 177		-32.780					
dading springer and design and an entropy of the springer springer springer springer springer springer springer		wanyunan Jawa ku ku ya atau	where approved and the providence of the	bandarija generations	undersengen son ander	ייין דיאליזיבן אונאראיייטן וועמייטאיינואנע	adalay di mandananananana	in (na staty and gains)	المراجع والمراجع وال	Jour Tray Two and the state of the	halawayan har	a Raha nifa Myrayna	and and a state of the second	Anton Marajak
220 210 2	1 1 1 1 1 1 00 190 180	1 · · · · · · · · · · · · · · · · · · ·		120 110	100 90				40	30 20		·	-10	-20

S67

	I				
, 		 		 	

9.54 3.35

-161.867

77. 318 77. 000 76. 682 70. 721

-13.477

-30.160

Т	- I - I	<u> </u>	- T	- T	- I - '	- I - I	1	· · · · ·	· · · ·	' I	·	·	· · · ·	·	· I	· I	·	· · · ·	· · · · ·	· · · ·	· · · ·	<u> </u>	T
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1(
											S	573											

$\begin{array}{c} 388\\ 380\\ 373\\ 356\\ 359\\ \end{array}$	352
	<u>_</u> 5.

44210000077748488800
666688887777799999

-186.992-183.129

-162.407

79. 626 77. 318 77. 000 76. 681

--32. 617 --23. 611

210 200	190 180	170 160 I	150 140 130	10111111111111111111111111111111111111	90 80 70	60 50	40 30	20 10	

			1	
1.				

.10

162

1

77.32 77.00 76.68 75.12

31.28 25.19 23.40 $\backslash /$

icon_5_LZU_LLin_20180612_P1	43	-98 -41	18	68 30 52	N © © N	ფ <u>ღ</u>	o.	04004
C13CPD CDC13 {E:\data} ROOT 7	170.2	156.4 151.4	130.5	117.0 116.2 112.4 109.1	78.62 77.31 77.00 76.68	30.18 52.19	40.12	30.35 29.17 23.44 18.27 12.88
MeO ₂ C OH				\$277		ĨĬ		
H								
O OH								
3a								

C13CPD CDC13 {E:\data} ROOT 1

-170.294

000 997 964	231 194 194 194 194 194 194 194 194 194 19
0,0,0,0	
4 0 0 0	87775666688888
$\overline{\langle}$	$\leftarrow \leftarrow $

77.318 77.000 74.372 --60.536

44.317 42.894 42.805	40.093
----------------------------	--------

~26.892 ~23.622 ~18.354

6			
10282910189419	x513x202038448020203	0	48-866666666666666666666666666666666666
-000-000-000-000-	-0~5~3~3~3~3~3~3~3~3~3~3~3~3~3~3~3~3~3~3~	1-054626666666666666666666666666666666666	100100000000000000000000000000000000000
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	vorund44wwr400000	17766666644488888800	00044444000888
• • • • • • • • • • • • •			
	, w w w w w w w w w w w w w w w w w w w	100	

—				
408080404080040	180928182448011L	0047084008098	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	408802602648
500000000000000000000000000000000000000	·00040818741087,	-0046-2-06866	-000400-00820	000-00400-000
	100000000444000044	4400001110000	$6 \times \times$	0000000000440
• • • • • • • • • • • • • • • •				
コククククククククククククク	.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~		
	ור ו ד מרוחד ור וו			

-8-1020-0-100-8-0	4020000000	0222649767326	00480000000000004	002842000028800
000000000000000000000000000000000000000	0-1004400-0	008777000004cc	0	00000004000000
20066444488888888	0444441000	\circ	08888777777777788888	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	8.423	1792840.003	51.738	175776
2	10.082	1672395.158	48.262	131378

4.747

92423

RetTime (min) Area (μV*S) Area (%) Height (μV) 1 8.409 20647135.691 95.253 1877227

1029046.778

2 10.195

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	27.007	13780336.166	49.849	304233
2	28.956	13863744.802	50.151	299443

	Retlime	Area	Area	Height
	(min)	(µV*S_)	(%)	(µV)
1	27.313	17021892.191	93.486	280036
2	30.269	1186013.144	6.514	24603

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	15.325	34076912.804	49.955	1316017
2	22.875	34138291.791	50.045	1011606

RetTime Δrea

	RetTime	Area	Area	Height
	(min)	(µV*S_)	(%)	(µV)
1	15.419	60225242.981	95.404	2245084
2	23.265	2901615.567	4.596	103391

Sample Information

2019/2/21 16:03:54 CST

но ба

ÇO₂Me

	RetTime (min)	Area (µV*S)	Area (%)	Height (µV)
1	14.991	4312807.627	95.107	166151
2	22.521	221896.209	4.893	7162

RetTime Height Area Area (min) (µV*S) (%) (µV) 13.209 1029518.176 49.954 44988 1 2 19.430 1031422.731 50.046 38880

95.421

4.579

164704

7689

13.494

2 20.138

1

3906930.236

187475.789

S136

Sample Information

2019/2/21 16:34:49 CST

4b (1 mmol scale) 10.00 ul Wave Length:

PDA 254 nm

	RetTime (min)	Area (µV*S)	Area (%)	Height (µV)
1	13.360	24877492.542	95.610	987389
2	19.829	1142344.137	4.390	42121

2179845.825 49.931

2185858.346 50.069

95136

63084

14.043

2 25.985

1

S138

Wave Length: PDA 254 nm

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	13.962	1402808.198	94.650	64603
2	25.945	79292.152	5.350	2716

4c

Sample Information

2019/2/21 17:02:06 CST

Peak Information:

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	13.450	9061835.833	93.851	395104
2	24.542	593763.960	6.149	21304

S140

RetTime Height Area Area (min) (µV*S) (%) (µV) 84027973.697 23.817 95.863 1681745 1 2 30.605 3626505.197 4.137 99298

	(min)	(µV*S)	(%)	(µV)
1	15.265	1571150.017	50.015	62681
2	22.522	1570222.247	49.985	53852

RetTime Area

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	16.086	10432703.879	92.865	347459
2	23.718	801613.460	7.135	28908

Sample Information

2019/2/21 18:13:29 CST

279360.275

6.365

8731

2 22.819

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	36.855	977696.305	50.192	15381
2	58.089	970228.898	49.808	14366

10.00 ul

Wave Length: PDA 254 nm

	RetTime (min)	Area (µV*S)	Area (%)	Height (µV)
1	38.869	2540269.039	93.894	34727
2	62.324	165194.234	6.106	2681

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	16.922	1479067.415	50.071	51131
2	25.668	1474864.437	49.929	43925

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	16.898	18014229.865	95.917	607962
2	25.785	766763.260	4.083	24253

Sample Information

2019/2/21 18:44:11 CST

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	16.852	5889494.928	95.615	182672
2	25.591	270120.267	4.385	8463

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	18.448	4539503.975	49.772	109924
2	24.447	4581045.852	50.228	136754

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	19.329	7395252.364	95.848	158741
2	25.994	320372.181	4.152	10845

2019/2/21 19:14:52 CST

30.00

	RetTime (min)	Area (µV*S)	Area (%)	Height (µV)
1	19.696	5102531.106	94.761	101134
2	26.134	282101.096	5.239	8738

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	13.883	663309.241	49.830	32451
2	23.902	667828.803	50.170	23966

11486

304019.061

2 23.829

	(min)	(µV*S)	(%)	(µV)
1	17.165	2967333.124	50.089	92985
2	28.146	2956799.620	49.911	82836

	Retime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	16.813	2349475.329	92.948	81506
2	27.582	178246.132	7.052	5926

	Retime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	14.413	2776633.743	50.021	121418
2	23.932	2774288.533	49.979	89423

6.192

21783

2 24.240

S159

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	12.556	14834610.284	50.083	726490
2	20.337	14785611.804	49.917	538905

	Retime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	12.466	17455492.174	89.833	822711
2	20.362	1975451.642	10.167	76637

206546

2 18.771

374850

36001

10.651

11.103 7403126.473 89.349 2 18.840 882510.661

1

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	13.681	2519354.239	49.995	114075
2	22.347	2519892.671	50.005	87156

	Netrinie	Alea	Alea	riergin
	(min)	(µV*S)	(%)	(µV)
1	13.772	3949836.133	91.914	177759
2	22.585	347476.858	8.086	12574

135511

2 21.130

	Retime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	13.116	63101618.153	91.516	2430432
2	21.231	5849544.457	8.484	205636

195302

2 24.914

	Retime	Alea	Alea	neight
	(min)	(µV*S)	(%)	(µV)
1	14.961	14945157.820	93.084	615974
2	25.074	1110454.297	6.916	38201

	RetTime (min)	Area (μV*S)	Area (%)	Height (µV)
1	18.511	2510695	49.41	93528
2	37.026	2570163	50.59	56176

	RetTime (min)	Area (µV*S)	Area (%)	Height (µV)
1	18.563	3502751	86.80	126891
2	37.175	532642	13.20	13529

	(min)	(µV*S)	(%)	(µV)
1	13.862	2578133.577	50.457	105991
2	23.017	2531408.469	49.543	84867

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	13.792	14089218.211	88.253	572798
2	23.171	1875434.940	11.747	65144

217190

2 23.992

1547286

163167

37110036.273 88.353

11.647

4891996.030

14.341

2 24.110

1

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	13.201	6866809.017	50.459	319985
2	23.028	6741962.430	49.541	218346

PDA 254 nm

Peak Information:

4t

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	13.156	12347927.869	90.565	561633
2	23.162	1286419.999	9.435	48300

	RetTime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	12.164	3426936.987	50.159	170376
2	21.687	3405262.470	49.841	119052

	Retime	Area	Area	Height
	(min)	(µV*S)	(%)	(µV)
1	11.734	10081317.903	88.362	485878
2	20.426	1327789.476	11.638	51017

	RetTime (min)	Area (μV*S)	Area (%)	Height (µV)
1	31.242	12379456	49.95	265110
2	36.545	12403999	50.05	215831

Peak Information:

	RetTime (min)	Area (µV*S)	Area (%)	Height (µV)
1	30.810	54542601	97.04	1077964
2	36.724	1665753	2.96	25449