Carbon Quantum Dots and Carbon Layer Double Protected Cuprous Oxide for Efficient Visible Light CO₂ Reduction

Haitao Li*, Yadan Deng, Youdi Liu, Xin Zeng, Dianne Wiley, Jun Huang*

School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2006, Australia

*Corresponding author: Dr Haitao Li Tel: +61 2 93513397 E-mail: <u>Haitao.li01@sydney.edu.au</u> A/Prof Jun Huang Tel: +61 2 9351 7483 E-mail: <u>Jun.Huang@sydney.edu.au</u>

Experimental Section

1. Preparation of Cu₂O, CQD/Cu₂O and CL@CQD/Cu₂O composite:

All chemicals were purchased from Sigma-Aldrich and analytical grade, used without further purification. We use a mild, single-step ultrasonic approach to produce Cu₂O/CQD by developing our former reported work. The preparation of Cu₂O and Cu₂O/CQD composites in this experiment applied their method with modifications. Firstly, 75ml of NaOH solution (1M) is added into 75mL of CuSO₄ solution (0.1M) drop by drop to form suspension. After ultrasonically treated for 15min, 10ml of polyvinylpyrrolidone (50g/L, molecular weight~30000) followed by 50mL of glucose solution (1M) is added into the mixture with continuous stirring. Then further 1-hour ultrasonic treatment is carried out for the mixture. Afterward, some of the precipitate is directly taken out for washing, while some precipitate is transferred into a Teflon-lined autoclave to be heated at 150°C for 18hr (for CL@CQD/Cu₂O). The rest precipitate is kept in the beaker for 18-hours ageing (for CQD/Cu₂O). Finally, the products are respectively washed and centrifuged with deionized water followed by ethanol, and oven dried at 60°C for 12hr. Final obtained products are Cu₂O, Cu₂O/CQD and CL@CQD/Cu₂O, respectively.

Figure S1 (a) The SEM image of the obtained Cu_2O and (b) $CQDs/Cu_2O$ from ultrasonic method

Based on the former research and this work the formation of $CL@CQD/Cu_2O$ can be divided into 3 steps: Firstly, the substrate solution of glucose, NaOH and Cu₂SO₄ is given a ultrasonic treatment, the small Cu₂O particles will be formed in a short time in the solution, meanwhile, due the excessive glucose and NaOH in the solution, the small amount of CQDs are formed; Secondly, with ultrasonic treatment time going, more CQDs formed and the small Cu₂O particle grows bigger; Thirdly, the mixture is moved to a autoclave to be treated by hydrothermal method, then the glucose will form a carbon layer on the surface of Cu₂O particle, also the CQDs near the Cu₂O are capsuled by the carbon layer.

Figure S2 The formation process of the CL@CQDs/Cu₂O particle

2. Material characterization

Scanning electron micrograph (SEM) images and energy-dispersive X-ray (EDS) element analysis were achieved by using Zeiss Ultra while transmission electron micrographs (TEM) and high-resolution TEM (HRTEM) images were taken on JEOL 2200FS Transmission Electron Microscope. X-ray powder diffraction (XRD) was recorded on Shimadzu S6000 X- Ray Diffractometer which using Cu K α (λ =0.154nm) radiation with resolution of 0.02°. Shimadzu UV-3600 Spectrophotometer and Renishaw inVia Raman Microscope was used to obtain the UV/Vis spectra and Raman spectroscopy, respectively. Photoluminscence spectra were tested in Horiba Fluo-Max 4.

3. Photocatalytic activity test

The photocatalytic performances of as-obtained catalysts for the CO₂ reduction were tested. Initially, 20mg of prepared photocatalyst and 10ml of deionised water was added into the highpressure photocatalytic reactor (YANZHENG INSTRUMENT YZPR-100(S)). Then 1ml of triethanolamine as a hole scavenge is added into the solution to further reduce recombination and partly prevent the hole to react with H₂O to produce O₂. After air removal and CO₂ saturation in the reactor by purging with CO₂ for 10 times, a pressure of 2 bars was given to the close reactor by injecting a certain amount of CO₂. Afterward, a 300W Xe lamp (YANZHENG INSTRUMENT YZXBO-PE300) was used as excitation source to irradiate the mixture from topside of reactor. The lamp gave continuous light output with intensity of about 100mW/cm² in the visible range by using an AM1.5 filter. It is noted that the solution in the reactor was continuously stirred during the irradiation. After 2.5-hours light irradiation, gaseous products in the reactor was sampled and injected into a gas chromatography (VARIAN Inc. CP-4900 Micro Gas Chromatography), which equipped with a MolSieve 5A and a PoraPLOT Q column, for composition analysis. The experimental apparatus of the photocatalytic reaction is shown in Figure in supporting information.

4. Photoelectrochemical measurements

To investigate the photoelectrochemical(PEC) activity of the photocatalysts, the CL@CQDs/ Cu₂O modified electrodes was obtained as following method: Firstly, the indium tin oxide glass (ITO, 2.5 cm \times 1 cm) was washed in 1 M NaOH water solution and acetone for 20 mins under ultrasonic condition, respectively. Then washed the ITO with water and dried before using. Secondly, put 3mg of catalyst into a mixture of ethanol (0.3 ml) and ethylene glycol (0.3ml) to form a suspension, followed with ultrasonic treatment to obtain uniform colloidal dispersion. Take 30µl of solution to drop onto a piece of ITO slice with fixed area of 0.5 cm² and dried in air naturally at room temperature to obtain the electrode. All the PEC tests were conducted at a constant potential and used the phosphate buffer solution as electrolyte. The tests were performed on a CHI660E which used Pt wire as counter electrode, ITO as working electrode and Ag/AgCl as reference electrode. A 300W Xe lamp supplied the light source on the measurement.

5. Experimental setup and bandgap calculation:

With above UV-Vis spectrum, Kubelka-Munk equations shown below is normally used to estimate the bandgap of samples.

$$(\alpha hv)^{n} = A(hv - E\mathbb{Z}_{g})$$
$$\alpha = \frac{(1-R)^{2}}{2R}$$
$$hv = \frac{hc}{\lambda}$$

Where α is the optical absorption coefficient; R is reflectance obtained from the UV-Vis reflectance spectrum of Cu₂O and Cu₂O/CQD; A is a constant; n is equal to 2 for allowed direct transition of Cu₂O; h is Planck's constant; c is the speed of light; hc is calculated as a constant, 1240eV.

Experimental set-up of photocatalytic reaction tests

6. Charge transfer characterization:

As Fig.2d shown, CL@CQD/Cu₂O shows a lower PL emission peak than CQDs/Cu₂O and pure Cu₂O under 400 nm excitation. Such significant quenching indicates that CL@CQD/Cu₂O catalyst has a much lower recombination rate of photoexcited electron/hole pairs during light irradiation, which proves that CL@CQD act as excellent electron reservoirs and can prevent the recombination of photo-induced carriers in Cu₂O. We also tested the electrochemical impedance spectroscopy (EIS) of pure Cu₂O and CL@CQDs/Cu₂O, as Fig. S8 shown, the Nyquist plot of CL@CQDs/Cu₂O has an obviously smaller radius than the pure Cu₂O one. The semicircle in a Nyquist plot at high frequencies is characteristic of the charge transfer process, and the diameter of the semicircle is an indicator of the charge transfer resistance. The smaller resistance of CL@CQDs/Cu₂O material further confirms that the CL@CQDs can improve the conductivity, also does not block electron transfer but facilitates electron migration.

Figure S3 The EDX spectrum of the CL@CQDs/Cu₂O (use Si chip as substrate and coat the sample with Au particle)

Figure S4 FT-IR spectrum of CQDs/Cu2O after ageing

Figure S5 FT-IR spectrum of CL@CQDs/Cu2O after hydrothermal treatment

*Figure S6 The decreased methanol yield change of different catalysts for CO*₂ *reduction in 5 cycles.*

Figure S7 The XRD, XPS (Cu 2p) and SEM of the CL@CQDs/Cu₂O catalyst after 3rd reaction

Figure S8 The EIS of pure Cu₂O and CL@CQDs/Cu₂O decorated electrodes

Table S1 The results of photocatalytic CO₂ reduction by using CQDs, CL@CQDs, CL@CQDs/Cu₂O

Catalysts (including C element)	CQDs	CL@CQDs	CL@CQDs/Cu ₂ O
Products from reducing reaction	Not detected	Not detected	Not detected

Catalyst	Light source	System	Yield of main products	Ref
CQDs/Cu ₂ O	Xe Lamp(300W)	Dry ice (1g), high pressure	CH₃OH, 56µmol/g∙h	[1]
Cuboid-Cu ₂ O	Xe lamp (300 W)	CO ₂ saturated H ₂ O with scavenger	CO,up to 20 ppm/g·h, H ₂ , up to 133 ppm/g·h,	[2]
Foam-like Cu ₂ O	Hg lamp, with filters to tune λ	Purified CO ₂ (g) with moisture	CH ₃ CHO, 8.2 µmol/g·h, CH ₄ , 19.2 µmol/g·h,	[3]
C-doped Cu ₂ O mesoporous nanorod	Xe lamp (350 W, λ>420 nm)	CO ₂ purged through KHCO ₃ (aq) (0.1 M)	CH ₄ , 0.0133 μmol/g·h, C ₂ H ₄ , 0.0167 μmol/h,	[4]
Cu/C ₃ N ₄	Xe lamp (350 W)	KHCO ₃ (aq) (0.1 M), 0.2 bar CO ₂ with moisture, 100 °C	CH ₄ , 109 μ mol/g·h, CH ₃ OH, 20 μ mol/g·h, C ₂ H ₄ , 1.5 μ mol/g·h, C ₂ H ₆ , 0.65 μ mol/g·h	[5]
c-Cu ₂ O/gC ₃ N ₄	LED lamp (8 W)	~1 bar CO ₂ with moisture	CO, 0.002 μmol/g·h	[6]
Cu ₂ O/reduced GO	150 W Xe lamp	sodium sulphite(0.7M) as scavenger	CO, 50ppm/ g∙h	[7]
Cu ₂ O/C- nanoparticle	Xe lamp (300 W)	CO ₂ purged through NaOH(aq) (1M)	CH ₃ OH, 19.40 µmol/g·h	[8]
CL@CQDs/Cu ₂ O	Xe lamp (300 W)	CO ₂ , 2 bar, scavenger	CH ₃ OH, 99.60 µmol/g·h	This work

Figure S9 The Up-conversion PL spectrum of CQDs excited under 980nm

Reference:

- [1] H. Li, X. Zhang, D. R. MacFarlane, Advanced Energy Materials 2015, 5, 1401077.
- [2] A. D. Handoko, J. Tang, *International Journal of Hydrogen Energy* 2013, 38, 13017-13022.
- [3] M. L. Ovcharov, A. M. Mishura, N. D. Shcherban, S. M. Filonenko, V. M. Granchak, Solar Energy 2016, 139, 452-457.
- [4] L. Yu, G. Li, X. Zhang, X. Ba, G. Shi, Y. Li, P. K. Wong, J. C. Yu, Y. Yu, ACS Catalysis 2016, 6, 6444-6454.
- [5] B. Tahir, M. Tahir, N. A. S. Amin, *Applied Surface Science* 2017, 419, 875-885.
- [6] P.-Y. Chang, I. H. Tseng, *Journal of CO*₂ Utilization **2018**, *26*, 511-521.
- [7] X. An, K. Li, J. Tang, *ChemSusChem* **2014**, *7*, 1086-1093.
- [8] Z. Dedong, H. Maimaiti, A. Awati, G. Yisilamu, S. Fengchang, W. Ming, *Chemical Physics Letters* 2018, 700, 27-35.