Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Enhanced sodium storage by hetero-interface effect in BiOCl/TiO₂ p-n junctions

Wei Song, Hanqing Zhao*, Hanting Shen, Jianqi Ye, Dan Zhao, Zhong Li*

Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China

Corresponding Authers *E-mail: <u>zhaohanqing@tyut.edu.cn</u> *E-mail: <u>lizhong@tyut.edu.cn</u>

Experiment

A series of BiOCl/TiO₂ p-n junctions with different mass ratio were synthesized via a facile sol-gel method and followed by heat treatment. Certain amount of BiCl₃ was dissolved into 25 mL glycol to form a uniform yellowish solution. 2.5 g titanium butoxide was added dropwise to the solution under magnetic stirring. After that, the gel was dried at 180 °C to remove the solvent and then calcined at 500 °C for 2 h in air. The product was washed by water and ethanol for several times and dried at 60 °C. Pure-phased TiO₂ and BiOCl were also synthesized for comparison according to similar procedure. BiOCl/TiO₂ p-n junctions are named as 7%-BiOCl/TiO₂, 14%-BiOCl/TiO₂ and titanium butoxide (2.5 g).

X-ray diffraction (XRD) was measured using Rigaku MiniFlex600. Transmission electron microscopy (TEM) was performed on JEOL JEM2100F. X-ray absorption spectroscopy (XAS) was carried out in Photoelectron Spectroscopy Station (4B9B, Beijing Synchrotron Radiation Facility). Ultraviolet-visible spectroscopy (UV-Vis) was obtained utilizing U-3900 (Hitachi). X-ray photoelectron spectroscopy (XPS) was recorded by Escalab 250Xi (Thermo Fisher Scientific). N₂ adsorption-desorption isotherms were conducted by BeiShiDe (3H-2000 PS2).

The electrodes were prepared in a conventional way by mixing the active materials with Super P and a sodium alginate binder and then tested in coin cell. The electrolyte was consisted of 1 M NaClO₄ in ethylene carbonate (EC) and propylene carbonate (PC) with a volume ratio of 1:1 and 5% fluorinated ethylene carbonate (FEC) as an electrolyte additive. The discharge-charge measurements were collected on a battery tester (Land CT2001A, China) in the voltage range between 0.01 V and 3 V. The CV curves of the TiO₂, 14%-BiOCl/TiO₂ and BiOCl electrodes were recorded between 0.01 V and 3 V at different scan rates from 0.1 mV s⁻¹ to 1.0 mV s⁻¹ on CHI1000C electrochemical workstation. Electrochemical impedance spectra (EIS) were analyzed on an electrochemical workstation (CHI660E, China), collecting by 5.0 mV amplitude over the range from 10^{-1} Hz to 10^{5} Hz.

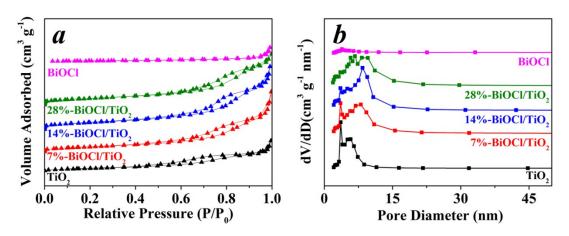


Fig. S1 (a) N_2 absorption-desorption isotherms and (b) pore size distribution of BiOCl/TiO₂ p-n junctions, pure TiO₂ and pure BiOCl

samples	BET surface area (m ² g ⁻¹)	pore volume (ml g ⁻¹)	average pore diameter (nm)
TiO ₂	30.0219	0.1165	8.15
7%-BiOCl/TiO ₂	48.3393	0.2158	11.24
14%-BiOCl/TiO ₂	59.7670	0.2256	10.06
28%-BiOCl/TiO ₂	53.7416	0.1813	9.09
BiOCl	4.1618	0.0479	20.25

Table.1 BET surface area, pore volume and average pore diameter of BiOCl/TiO₂ p-n junctions, pure TiO₂ and pure BiOCl

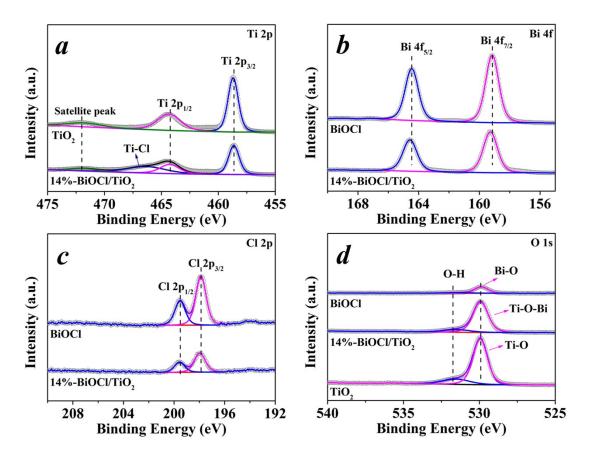


Fig. S2 XPS spectra of 14%-BiOCl/TiO₂, pure TiO₂ and pure BiOCl

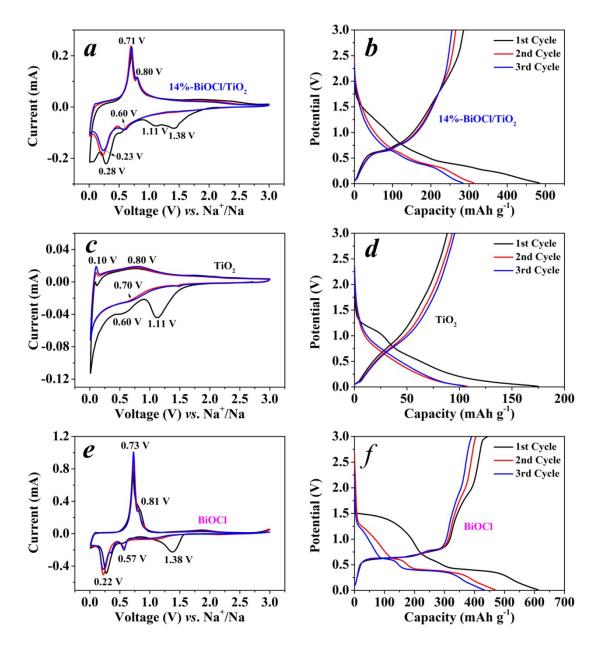


Fig. S3 CV and charge-discharge curves of 14%-BiOCl/TiO₂, pure TiO₂ and pure BiOCl

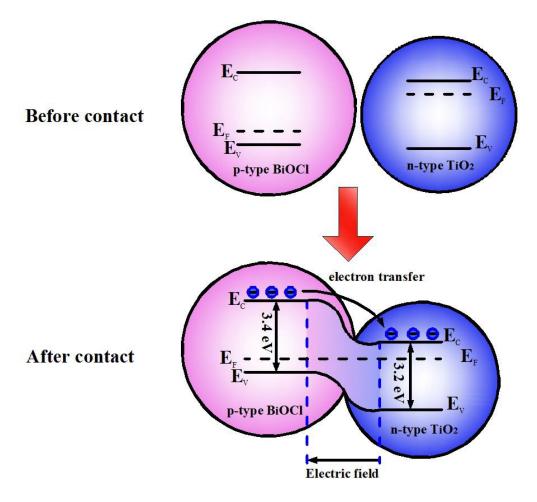


Fig. S4 the formation scheme of BiOCl/TiO₂ p-n junctions

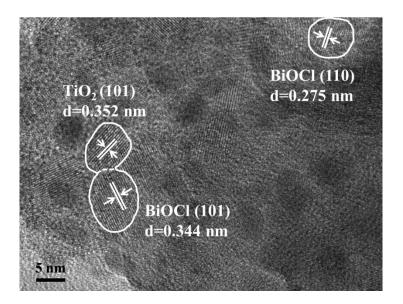


Fig. S5 HRTEM image of 14%-BiOCl/TiO₂ electrode after 100 cycles

materials	Rate performance	Reference	
140/ D:OCI/T:O	154 mAh g ⁻¹ at 1 A g ⁻¹	this work	
14%-BiOCl/TiO ₂	124 mAh g ⁻¹ at 2 A g ⁻¹		
Oxygen Deficient Anatase	124.6 m A h g-l ot 1. A g-l	1	
TiO ₂	124.6 mAh g ⁻¹ at 1 A g ⁻¹		
Niobium-doped anatase	108.8 mAh g ⁻¹ at 5 C	2	
TiO ₂	(1 C=330 mA g ⁻¹)		
N/S co-doped TiO ₂	75 m Alt al 1 A 1	3	
nanoparticles	75 mAh g ⁻¹ at 1 A g ⁻¹		
pinecone-like carbon-	139.7 mAh g ⁻¹ at 5 C		
coupled TiO ₂	(1 C=336 mA g ⁻¹)	4	
TiO ₂ /C nanopowders	93 mAh g ⁻¹ at 2 A g ⁻¹	5	
Anatase TiO ₂ @C	111.1 mAh g ⁻¹ at 1 A g ⁻¹	6	
composites			
Carbon coated anatase	113.3 mAh g ⁻¹ at 10 C		
TiO ₂ mesocrystals	(1 C=168 mA g ⁻¹)	7	
Carbon-coated rutile	86.8 mAh g ⁻¹ at 10 C		
titanium dioxide	(1 C=168 mA g ⁻¹)	8	
TOONL	140 mAh g ⁻¹ at 5 C		
TiO ₂ @N-doped graphene	(1 C=335 mA g ⁻¹)	9	

Table. 2 Comparison of rate performance for 14%-BiOCl/TiO₂ with some TiO₂-based anodes modified by carbon coating and heteroatoms doping

Reference

- 1 W. Wang, M. Wu, P. Han, Y. Liu, L. He, Q. Huang, J. Wang, W. Yan, L. Fu, and Y. Wu, ACS Appl. Mater. Interfaces, 2018, **11**, 3061.
- 2 F. Zhao, B. Wang, Y. Tang, H. Ge, Z. Huang and H. Liu, *J. Mater. Chem. A*, 2015,
 3, 22969.
- 3 W. Song, H. Zhao, L. Wang, S. Liu, and Z. Li, ChemElectroChem, 2018, 5,316.
- 4 J. Chen, G. Zou, H. Hou, Y. Zhang, Z. Huang and X. Ji, *J. Mater. Chem. A*, 2016, **4**, 12591.
- 5 C. Ding, T. Nohira and R. Hagiwara, J. Mater. Chem. A., 2015, 3, 20767.
- 6 X. Shi, Z. Zhang, K. Du, Y. Lai, J. Fang and J. Li, J. Power Sources, 2016, 330, 2.
- 7 W. Zhang, T. Lan, T. Ding, N. Wu and M. Wei, J. Power Sources, 2017, 359, 64.
- 8 G. Zou, J. Chen, Y. Zhang, C. Wang, Z. Huang, S. Li, H. Liao, J. Wang and X. Ji, J. Power Sources, 2016, **325**, 25.
- 9 B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng and Y. Qian, *Adv. Mater.*, 2018,
 1705788, 1.