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Experimental section 

 

Materials 

Vinyl acetate (VAc) (TCI, >99.0%), styrene (St) (TCI, >99.0%), methyl acrylate (MA) (TCI, 

>99.0%), and triethylsilane (TCI, >98.0%) were distilled over calcium hydride under reduced 

pressure before use.  Triphenylsilane (TCI, >96.0%) and 1-dodecanethiol (TCI, >95.0%) 

were utilized as received.  Cumyl dithiobenzoate (3),1 S-2-cyano-2-propyl S’-2-ethyl 

trithiocarbonate (4),2 and S,S’-bis(α,α’-dimethyl-α’’-acetic acid)trithiocarbonate (5)3 were 

synthesized according to the literature.  2,2’-Azobis(isobutyronitrile) (AIBN) (Kishida, 

>99%) was purified by recrystallization from methanol.  

Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) (TCI, >98.0%) was purified by 

recrystallization from the mixture of n-hexane and acetone (8:1).  Toluene (KANTO, 

>99.5%; H2O <10 ppm) was dried and deoxygenized by passage through a column of Glass 

Contour Systems before use. 

 

Synthesis of S,S'-(((cyclohexane-1,4-diylbis(methylene))bis(oxy))bis(ethane-1,1-diyl)) 

O,O'-diethyl bis(xanthate) (1) 

1 was synthesized by the reaction between potassium xanthate and the HCl adduct of 

1,4-cyclohexanedimethanol divinyl ether (CHDDVE) (CHDDVE-HCl).  CHDDVE-HCl 

was prepared by adding 1.0 M Et2O solution of hydrogen chloride (110 mL, 110 mmol) 

dropwise into Et2O solution of CHDMVE (9.21 mL, 50.0 mmol) at –78 ºC.  Into an Et2O 

solution of potassium xanthate (19.82 g, 111 mmol) was added dropwise the CHDDVE-HCl 

solution (50 mmol) at 0 ºC over 30 min.  After stirring for 1.0 h at 0 ºC and then 1.5 h at 

ambient temperature, the reaction was quenched by diluting with Et2O.  The solution was 

washed with 5wt% NaHCO3 aqueous solution, brine, and water.  The solvent was removed 

by the evaporation and the obtained product was purified by column chromatography on silica 

gel column with n-hexane/Et2O (19/1) as an eluent.  The difunctional xanthate was obtained 

as pale colorless liquid (12.3 g, 28.0 mmol, 56%yield).  1H NMR (CDCl3) (Fig. S1): 0.94, 

1.27-1.52, and 1.78 (m, 10H, CHCH2CH2), 1.43(m, 6H, OCH2CH3), 1.67 (d, 6H, CH3CH, J = 

6.4 Hz), 3.31 and 3.51, 3.40 and 3.61 (dd, 4H, OCH2CH(CH3))2,  Jvic = 6.4 and 6.8 Hz, Jgem = 

–9.2 Hz), 4.65 (m, 4H, C(S)OCH2CH3), 5.57 and 5.58 (q, 2H, CH3CH, J = 6.4 Hz). 13C NMR 

(CDCl3, r.t.): 13.8 (OCH2CH3), 22.8 (CH3CH), 25.5-25.7 and 29.2 (CH2CH2), 35.2 and 37.8 

(OCH2CH), 69.5 (C(S)OCH2CH3), 72.5 and 74.9 (OCH2CH), 88.5 (CH3CH), 213.9 

(SC(S)O). 
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Synthesis of S-(1-acetoxyethyl) O-ethyl xanthate (2) 

2 was synthesized by the reaction between potassium xanthate and 1-acetoxyethyl iodide.  

1-acetoxyethyl iodide was prepared by adding 1.0 M Et2O solution of hydrogen chloride (110 

mL, 110 mmol) and 1.1 M acetone solution of NaI (50 mL, 55 mmol) dropwise into Et2O 

solution of VAc (9.21 mL, 50.0 mmol) at –78 ºC and then the solution was gradually warmed 

up to 0 ºC.  Into an Et2O solution of potassium xanthate (8.82 g, 55 mmol) was added 

dropwise the 1-acetoxyethyl iodide solution (50 mmol) at 0 ºC for more than 30 min.  After 

stirring for 1.0 h at 0 ºC and then 1.0 h at ambient temperature, the reaction was quenched by 

diluting with Et2O.  The solution was washed with 5 wt% NaHCO3 aqueous solution, brine, 

and water.  The solvent was removed by the evaporation, and the obtained product was 

purified by column chromatography on silica gel column with n-hexane/Et2O (9/1) as an 

eluent.  The xanthate was obtained as a pale colorless liquid (7.13 g, 34.2 mmol, 68%yield).  
1H NMR (CDCl3) (Fig. S5): 1.42 (t, 3H, OCH2CH3, J = 6.8 Hz), 1.62 (d, 3H, CH3CH, J = 6.9 

Hz), 2.08 (s, 3H, OC(O)CH3), 4.64 (m, 2H, C(S)OCH2CH3), 6.66 (q, 1H, CH3CH, J = 6.9 Hz). 
13C NMR (CDCl3, r.t.): 13.6 (OCH2CH3), 19.9 (CH3CH), 20.9 (OC(O)CH3), 70.1 

(C(S)OCH2CH3), 77.2 (CH3CH), 169.4 (OC(O)CH3), 210.3 (SC(S)O). 

 

RAFT polymerization of vinyl acetate 

The RAFT polymerization of VAc was performed by a syringe technique in dry nitrogen in 

baked glass tubes equipped with a three-way stopcock.  A typical example for the 

polymerization procedure is described as follows:  In a 25 mL round-bottomed flask, VAc 

(22.4 mL, 243 mmol), 1 (3.80 mL of 362 mM in EtOAc, 1.38 mmol), AIBN solution of VAc 

(3.00 mL of 230 mM in VAc, AIBN: 0.69 mmol and VAc: 31.3 mmol), and EtOAc (0.76 mL) 

were placed at room temperature.  The total volume of the reaction mixture was 30.0 mL.  

After mixing, the flask was immersed in thermostatic oil bath at 40 ºC.  In predetermined 

intervals, a small aliquot of the solution was sampled and terminated by cooling to –78 ºC.  

The monomer conversion was determined from the concentration of residual monomer 

measured by the 1H NMR with EtOAc as internal standard (13 h, Conv. 23%).  The 

quenched reaction mixture was evaporated and purified by precipitation with n-hexane to give 

poly(VAc) (Mn=4600, Mw/Mn=1.13) (Fig. S2). 

 

RAFT polymerization of styrene 

The RAFT polymerization of St was performed by the syringe technique in dry nitrogen in 

baked glass tubes equipped with a three-way stopcock.  A typical example for the 

polymerization procedure is described as follows:  In a 25 mL round-bottomed flask, St 
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(5.00 mL, 43.5 mmol) and 3 (0.12 g, 0.44 mmol) were placed at room temperature.  The 

total volume of the reaction mixture was 5.12 mL.  After mixing, the flask was immersed in 

a thermostatic oil bath at 110 ºC.  In predetermined intervals, a small aliquot of the solution 

was sampled and terminated by cooling to –78 ºC.  The monomer conversion was 

determined from the concentration of residual monomer measured by the 1H NMR (16 h, 

Conv. 55%).  The quenched reaction mixture was evaporated and purified by precipitation 

with methanol to yield polystyrene (Mn=5300, Mw/Mn=1.08) (Fig. S11). 

 

RAFT polymerization of methyl acrylate 

The RAFT polymerization of MA was performed by the syringe technique in dry nitrogen in 

baked glass tubes equipped with a three-way stopcock.  A typical example for the 

polymerization procedure is described as follows:  In a 100 mL round-bottomed flask, MA 

(10.7 mL, 119 mmol), 4 (0.334 g, 1.18 mmol), toluene (46.9 mL), and AIBN solution of 

toluene (1.18 mL of 100 mM solution of toluene, 0.12 mmol) were placed at room 

temperature.  The total volume of the reaction mixture was 59.1 mL.  After mixing, the 

flask was immersed in thermostatic oil bath at 60 ºC.  In predetermined intervals, a small 

aliquot of the solution was sampled and terminated by cooling to –78 ºC.  The monomer 

conversion was determined from the concentration of residual monomer measured by the 1H 

NMR (3 h, Conv. 52%).  The quenched reaction mixture was evaporated and purified by 

precipitation with methanol at –78 ºC to afford poly(MA) (Mn=5400, Mw/Mn=1.06) (Fig. 

S14). 

 

Reduction of RAFT chain end 

The reduction of the RAFT chain end was performed by the syringe technique in dry nitrogen 

in baked glass tubes equipped with a three-way stopcock.  A typical example for the 

reduction procedure is described as follows:  In a 25 mL Schlenk flask, poly(VAc) that was 

previously prepared (Mn = 4600, Mw/Mm = 1.13) (184 mg, 0.04 mmol), triphenylsilane (42.0 

mg, 0.16 mmol), 1-dodecanethiol (0.20 mL of 200 mM in toluene, 0.04 mmol), AIBN (0.80 

mL of 50 mM in toluene, 0.04 mmol), and toluene (0.77 mL) were placed at room 

temperature.  The total volume of the reaction mixture was 2.0 mL.  After mixing, the 

solution was charged in five glass tubes, and the tubes were sealed by flame in a nitrogen 

atmosphere.  The tubes ware immersed in a thermostatic oil bath at 80 ºC.  In 

predetermined intervals, the reaction was terminated by cooling of the reaction mixtures to –

78 ºC.  The hydride chain end ratio was determined from comparison to the residual RAFT 

chain end by the 1H NMR.  The quenched reaction mixture was evaporated and purified by 
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preparative SEC (column: Shodex K2002 in CHCl3) (hydride chain end: 97%). 

 

Measurement 
1H NMR spectra were recorded on a JEOL ECS-400 spectrometer that operates at 400 MHz.  

MALDI-TOF-MS spectra were measured on a Shimadzu AXIMA-CFR Plus mass 

spectrometer (linear mode) with dithranol as the ionizing matrix and sodium trifluoroacetate 

as the ion source.  The number-average molecular weight (Mn) and the molecular weight 

distribution (Mw/Mn) of the product polymer were determined by size-exclusion 

chromatography (SEC) in THF at 40 ºC on two polystyrene gel columns [TSKgel 

MultiporeHXL-M (7.8 mm i.d. x 30 cm)] that were connected to a JASCO PU-2080 precision 

pump and JASCO RI-2031 detector.  The columns were calibrated against 10 standard 

polystyrene samples (Varian; Mp = 575–2783000, Mw/Mn = 1.02–1.23) and 10 standard 

poly(methyl methacrylate) samples (Varian; Mp = 202–1677000, Mw/Mn = 1.02–1.09).  

Photoreaction was conducted using blue LED lamp (CCS, LDR2-70BL2, λmax = 470 nm) or 

UV LED lamp (CCS, LDR2-120UV365, λmax = 365 nm) with a controller (CCS, 

PD3-5024-4-PI).  The light intensity was measured by optical power meter (ADCMT 8230E 

Optical Power Meter). 
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Table S1. Cooperative reduction of RAFT terminal of poly(vinyl acetate) and poly(methyl acrylate) 

entry polymer-RAFT group radical source 
[C12H25SH]0/ 
[polymer]0 

time 
(h) 

hydride terminal 
or removal of  

RAFT group (%)a 
Mn(SEC)b Mw/Mn

b 

1 PVAc-xanthatec AIBNd 0.25  90  90 4600 1.14 

2 PVAc-xanthatec
 AIBNd 0.10  34  68 – – 

3e PVAc-xanthatec AIBNd 0.50  90  20 4300 1.13 

4 PMA-trithiocarbonatetef AIBNc 1.0 100 >99 3000 1.08 

5 PMA-trithiocarbonatetef TPO/blue LEDg 1.0 120  93 2900 1.12 

6 PMA-trithiocarbonatetef UV LEDh 1.0  70 >99 2800 1.09 
 

a Determined by 1H NMR.  b Determined by SEC.  c [RAFT group]0/[Ph3SiH]0 = 40/80 mM in toluene, PVAc-xanthate: Mn = 4600, Mw/Mn 
= 1.13.   d [AIBN]0 = 20 mM at 80 °C.  e Et3SiH was used in place of Ph3SiH.  f [RAFT group]0/[Ph3SiH]0 = 40/80 mM in toluene, 
PMA-trithiocarbonate: Mn = 2900, Mw/Mn = 1.09.  g [TPO]0 = 20 mM under blue LED (470 nm, 70 mW/cm2) at 20 °C.   h UV LED (365 
nm, 0.70 mW/cm2) at 80 °C. 

 

 

 
Scheme S1. Cooperative reduction of RAFT chain end using hydrosilane as reducing agent 

and thiol as polarity reversal catalyst in radical conditions. 
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Fig. S1. 1H (A) and 13C (B) spectra of S,S'-(((cyclohexane-1,4-diylbis(methylene))- 

bis(oxy))bis(ethane-1,1-diyl)) O,O'-diethyl bis(xanthate) (1) in CDCl3 at r.t. 

 

 
Fig. S2. SEC curve (A) and 1H NMR spectrum (in CDCl3 at 55 °C) (B) of PVAc-xanthate 

obtained by RAFT polymerization of VAc using 1 in EtOAc at 40 °C: [VAc]0/[1]0/[AIBN]0 = 

9200/46/23 mM. 
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Fig. S3.  Reduction of PVAc-xanthate using Ph3SiH and/or C12H25SH in the presence of 

AIBN in toluene at 80 °C: [xanthate]0/[Ph3SiH]0/[C12H25SH]0/[AIBN]0 = 40/80/20/20, 

40/80/0/20, or 40/0/80/20 mM. 

 

 

 

Fig. S4. 1H NMR spectra (A) and SEC curves (B) for reduction of PVAc-xanthate for the 

same experiments as those for Fig. S3: [xanthate]0/[Ph3SiH]0/[C12H25SH]0/[AIBN]0 = 

40/80/0/20 or 40/0/80/20 mM. 
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Fig. S5. 1H (A) and 13C (B) spectra of S-(1-acetoxyethyl) O-ethyl xanthate (2) in CDCl3 at r.t. 
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Fig. S6. 1H NMR spectra of model reaction for cooperative reduction of 2 using combination 

of hydrosilane and thiol in toluene-d8 at 80 °C: [2]0/[Ph3SiH]0/[C12H25SH]0/[AIBN]0 = 

40/80/20/20 mM. 

 

 
Fig. S7. Model reaction for cooperative reduction of 2 using combination of hydrosilane and 

thiol in toluene-d8 at 80 °C: [xanthate]0/[Ph3SiH]0/[C12H25SH]0/[AIBN]0 = 40/80/20/20 mM. 
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Fig. S8. Effect of [C12H25SH]0/[xanthate]0 on cooperative reduction of PVAc-xanthate in 

toluene at 80 °C: [xanthate]0/[Ph3SiH]0/[C12H25SH]0/[AIBN]0 = 40/80/4–20/20 mM. 

 

 

 
Fig. S9. Effect of radical sources on cooperative reduction of PVAc-xanthate in toluene: 

[xanthate]0/[Ph3SiH]0/[C12H25SH]0 = 40/80/20 mM, [AIBN]0 = 20 mM at 80 °C, [TPO]0= 20 

mM under blue LED (470 nm, 70 mW/cm2) at 20 °C, or under UV LED ( 365 nm, 0.70 

mW/cm2) at 80 °C. 
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Fig. S10. 1H NMR spectra (A) and SEC curves (B) for cooperative reduction of PVAc- 

xanthate under UV LED or using TPO under blue LED in the same experiments as Fig. S9: 

[xanthate]0/[Ph3SiH]0/[C12H25SH]0 = 40/80/20 mM, [TPO]0 = 20 mM under blue LED (470 

nm, 70 mW/cm2) at 20 °C, or under UV LED (365 nm, 0.70 mW/cm2) at 80 °C. 
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Fig. S11. MALDI-TOF-MS spectra for cooperative reduction of PVAc-xanthate under UV 

LED in the same experiments as Fig. S9: [xanthate]0/[Ph3SiH]0/[C12H25SH]0 = 40/80/20 mM, 

under UV LED (365 nm, 0.70 mW/cm2) at 80 °C. 
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Fig. S12. SEC curve (A) and 1H NMR spectrum (in CDCl3 at 55 °C) (B) of 

PSt-dithiobenzoate obtained by RAFT polymerization of St using 3 in bulk at 110 °C: 

[St]0/[3]0 = 8500/85 mM. 
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Fig. S13. 1H NMR spectra (A) and SEC curves (B) for cooperative reduction of 

PSt-dithiobenzoate using AIBN, TPO under blue LED, or under UV LED in toluene: 

[dithiobenzoate]0/[Ph3SiH]0/[C12H25SH]0 = 20/40/10 mM, [AIBN]0 = 20 mM at 80 °C, 

[TPO]0 = 20 mM under blue LED (470 nm, 70 mW/cm2) at 20 °C, or under UV LED (365 nm, 

0.70 mW/cm2) at 80 °C. 
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Fig. S14. Effect of radical sources on cooperative reduction of PSt-dithiobenzoate using 

AIBN, TPO under blue LED, or under UV LED in toluene: 

[dithiobenzoate]0/[Ph3SiH]0/[C12H25SH]0 = 20/40/10 mM, [AIBN]0 = 20 mM at 80 °C, 

[TPO]0 = 20 mM under blue LED (470 nm, 70 mW/cm2) at 20 °C, or under UV LED (365 nm, 

0.70 mW/cm2) at 80 °C. 

 

 

 

 

Fig. S15. SEC curve (A) and 1H NMR spectrum (in CDCl3 at 55 °C) (B) of 

PMA-trithiocarbonate by RAFT polymerization of MA using 4 in toluene at 60 °C: 

[MA]0/[4]0/[AIBN]0 = 2000/40/2.0 mM. 
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Fig. S16. 1H NMR spectra (A) and SEC curves (B) for cooperative reduction of 

PMA-trithiocarbonate using AIBN, TPO under blue LED, or under UV LED in toluene: 

[trithiocarbonate]0/[Ph3SiH]0/[C12H25SH]0 = 40/80/40 mM, [AIBN]0 = 20 mM at 80 °C, 

[TPO]0 = 20 mM under blue LED (470 nm, 70 mW/cm2) at 20 °C, or under UV LED (365 nm, 

0.70 mW/cm2) at 80 °C. 
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Fig. S17. Effect of radical sources on cooperative reduction of PMA-trithiocarbonate using 

AIBN, TPO under blue LED, or under UV LED in toluene: 

[trithiocarbonate]0/[Ph3SiH]0/[C12H25SH]0 = 40/80/40 mM, [AIBN]0 = 20 mM at 80 °C, 

[TPO]0 = 20 mM under blue LED (470 nm, 70 mW/cm2) at 20 °C, or under UV LED (365 nm, 

0.70 mW/cm2) at 80 °C. 

 

 

 

 
Fig. 18. Effect of radical sources on cooperative reduction of PMA-trithiocarbonate using 

AIBN, TPO under blue LED, or under UV LED in toluene: 

[trithiocarbonate]0/[Ph3SiH]0/[C12H25SH]0 = 40/80/20 mM, [AIBN]0 = 20 mM at 80 °C, 

[TPO]0 = 20 mM under blue LED (470 nm, 70 mW/cm2) at 20 °C, or under UV LED (365 nm, 

0.70 mW/cm2) at 80 °C. 
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Fig. S19. SEC curve (A) and 1H NMR spectrum (in CDCl3 at 55 °C) (B) of 

PMA-trithiocarbonate-PMA by RAFT polymerization of MA using 5 in toluene at 60 °C: 

[MA]0/[5]0/[AIBN]0 = 2000/20/2.0 mM. 

 

 

 

 
Fig. S20. 1H NMR spectra for cooperative reduction of PMA-trithiocarbonate-PMA: 

2[trithiocarbonate]0/[Ph3SiH]0/[C12H25SH]0 = 40/80/40 mM in toluene at 80 °C under UV 

LED (365 nm, 0.70 mW/cm2). 
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