Supporting Information

Divergent Total Syntheses of Five Illudalane Sesquiterpenes and

Assignment of the Absolute Configuration

Zhixiong Zeng, Yifan Zhao and Yandong Zhang*

Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, iChEM,

College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005,

China.

Email: <u>ydzhang@xmu.edu.cn</u>

Table of Contents

1. General Information	S2
2. Experimental Procedures	S3
2.1. Synthesis of symmetrical terminal diyne 9	S3
2.2. Synthesis of unsymmetrical diyne S6	S4
2.3. Intermolecular [2+2+2] cycloaddition with unsymmetrical diyne	S5
2.4. Synthesis of intermediate 12	S6
2.5. Divergent total syntheses of five illudalane sesquiterpenes	S9
2.6. Asymmetric synthesis of (+)-radulactone (1) and assignment of ab	solute
configuration	S16
2.7. Synthesis of illudalane analogues	S19
3. X-Ray Crystallographic Data	S22
4. References	S23
5. NMR Spectra Data	S24

1. General Information

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise stated. All the chemicals were purchased commercially and used without further purification, unless otherwise stated. The boiling point of petroleum ether (PE) is between 60-90 °C. Tetrahydrofuran (THF) was distilled from sodium-benzophenone. Dichloromethane (CH2Cl2) and diethyl ether (Et₂O) were distilled from calcium hydride under argon atmosphere. Toluene was distilled from sodium under argon atmosphere. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm Qingdao silica gel plates (60F-254) using UV lights as the visualizing agent and KMnO₄. Flash column chromatography was performed over Qingdao silica gel (200-300 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR380 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). High resolution mass spectra (HRMS) were recorded on a Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization. HPLC analyses were performed on a Shimadzu LC-16A instrument using a Daicel Chiralcel IF Column. NMR spectra were recorded on Bruker AV-400, Bruker AV-500 and Bruker AV-600 instruments and were calibrated using residual undeuterated solvents (CHCl₃, $\delta_{\rm H}$ = 7.26; DMSO- d_6 , $\delta_{\rm H}$ = 2.50) and deuterated solvents (CDCl₃, $\delta_C = 77.0$; DMSO-*d*₆, $\delta_C = 39.6$) as internal references. The data for ¹H NMR are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet), coupling constants (Hz) and integration.

2. Experimental Procedures

2.1. Synthesis of symmetrical terminal diyne 9^{1, 2}

A modified synthetic route toward diyne 9

To a solution of **S2** (17.52 g, 64.3 mmol) in THF (100 mL) at -78 °C was added KHMDS (77.16 mL, 1 M in THF, 77.16 mmol). The reaction mixture was stirred at this temperature for 1.5 h before the addition of a solution of PhNTf₂ (29.86 g, 83.59 mmol) in THF (100 mL). The reaction mixture was stirred at -78 °C for 30 min, and at rt for 5 h, then quenched with saturated NH4Cl solution and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO4 and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 150:1) afforded **S4** (22.37 g, 86% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 – 7.64 (m, 2H), 7.44 – 7.37 (m, 3H), 5.22 (d, *J* = 3.3 Hz, 1H), 5.01 (d, *J* = 3.3 Hz, 1H), 2.44 (s, 2H), 2.27 (s, 2H), 1.11 (s, 6H), 0.45 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 154.5, 137.4, 133.6, 129.3, 127.8, 118.5 (q, *J* = 318.1 Hz), 107.6, 106.0, 85.6, 44.8, 34.1, 32.9, 26.8, -0.8; **IR** (KBr, cm⁻¹) 2963, 2175, 1664, 1420, 1211, 703; **HRMS** (ESI, m/z) calcd for C₁₈H₂₃F₃O₃SSi [M+Na]⁺: 427.0981, found: 427.0977.

To a solution of S4 (5.00 g, 12.36 mmol) in THF (10 mL) at 30 °C was added TBAF (37.08 mL, 1 M in THF, 37.08 mmol). The reaction mixture was stirred at this temperature for 13 h before being quenched with H₂O and extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo* carefully at 10 °C. Purification of the residue by distillation afforded **9** (0.891 g, 60% yield) as a colorless oil. The spectroscopic data of **9** matched those reported.²

¹**H NMR** (400 MHz, CDCl₃) δ 2.21 (d, *J* = 2.7 Hz, 4H), 2.01 (t, *J* = 2.7 Hz, 2H), 1.07 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 81.8, 70.2, 33.6, 30.8, 26.2.

2.2. Synthesis of unsymmetrical diyne S6

To a solution of S4 (0.505 g, 1.25 mmol) in DMF (4 mL) was added LiCl (0.212 g, 5.00 mmol). The reaction mixture was stirred at rt for 20 h, then diluted with EtOAc, washed with H₂O, extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 150:1) afforded S3 (0.236 g, 74% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 2H), 7.43 – 7.37 (m, 3H), 2.33 (s, 2H), 2.25 (d, *J* = 2.7 Hz, 2H), 2.04 (t, *J* = 2.7 Hz, 1H), 1.12 (s, 6H), 0.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 133.6, 129.2, 127.8, 106.7, 84.6, 81.9, 70.3, 33.9, 32.4, 31.0, 26.2, -0.6; **IR** (KBr, cm⁻¹) 3307, 2962, 2174, 1250, 817; **HRMS** (ESI, m/z) calcd for C₁₇H₂₂Si [M+Na]⁺: 277.1383, found: 277.1379.

To a solution of **S3** (0.550 g, 2.346 mmol) in THF (20 mL) at -78 °C was added *n*-BuLi (1.10 mL, 2.5 M in hexane, 2.815 mmol). The reaction mixture was stirred at this temperature for 30 min before the addition of MeI (0.37 mL, 5.865 mmol). The reaction mixture was stirred at -78 °C for 1 h, then allowed to warm to rt and stirred overnight. The reaction was quenched with saturated NH₄Cl solution and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo* to afford crude product.

To a solution of the crude product in THF (10 mL) was added TBAF (3.52 mL, 1 M in THF, 3.519 mmol). The reaction mixture was stirred at rt for 1 h before being quenched with H₂O and extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo* carefully at 10 °C. Purification of the residue by flash chromatography (PE) afforded **S6** (0.167 g, 53% yield over 2 steps) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 2.18 (d, J = 2.7 Hz, 2H), 2.13 (q, J = 2.5 Hz, 2H), 1.99 (t, J = 2.7 Hz, 1H), 1.80 (t, J = 2.5 Hz, 3H), 1.04 (s, 6H); ¹³**C** NMR (100 MHz, CDCl₃) δ 82.3, 77.5, 76.4, 70.0, 33.8, 31.4, 30.8, 26.2, 3.5, **IR** (KBr, cm⁻¹) 2958, 1428, 1255, 1119, 791.

2.3. Intermolecular [2+2+2] cycloaddition with unsymmetrical diyne

To a solution of diyne **S6** (0.134 g, 1.00 mmol) and ethyl 5-hydroxypent-2-ynoate **10** (0.569 g, 4.00 mmol) in EtOH (7 mL) was added Rh(PPh₃)₃Cl (0.0463 g, 0.05 mmol). The reaction mixture was heated to reflux for 19 h. The reaction mixture was cooled to rt, then the solvent was removed *in vacuo*. To the residue in THF (10 mL) at 0 °C was added NaH (0.18 g, 60% dispersion in mineral oil, 4.50 mmol). The mixture was stirred at 0 °C for 15 min and at rt for 30 min, then quenched with 1 N HCl aqueous solution carefully and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 20:1) afforded **4** (0.038 g, 16.5% yield) and S7 (0.053 g, 23.0% yield) as a white solid.

S7: $Mp = 85-86 \text{ °C}; {}^{1}H \text{ NMR}$ (400 MHz, CDCl₃) δ 6.89 (s, 1H), 4.39 (t, J = 5.8 Hz, 2H), 2.96 (t, J = 5.8 Hz, 2H), 2.75 (s, 2H), 2.71 (s, 2H), 2.54 (s, 3H), 1.16 (s, 6H); {}^{13}C \text{ NMR} (100 MHz, CDCl₃) δ 165.1, 148.8, 143.4, 139.3, 138.8, 121.9, 121.0, 66.7, 48.3, 46.6, 39.4, 29.4, 28.9, 18.0; IR (KBr, cm⁻¹) 2922, 1701, 1242, 1082, 793; HRMS (ESI, m/z) calcd for C₁₅H₁₈O₂ [M+Na]⁺: 253.1199, found: 253.1201.

2.4. Synthesis of intermediate 12

Synthesis of lactone 8

To a solution of diyne 9 (1.00 g, 8.32 mmol) and ethyl 5-hydroxypent-2-ynoate 10 (4.73 g, 33.28 mmol) in EtOH (40 mL) was added Rh(PPh₃)₃Cl (0.385 g, 0.416 mmol). The reaction mixture was heated to reflux for 18 h. The reaction mixture was cooled to rt, then the solvent was removed *in vacuo*. To the residue in THF (40 mL) at -20 °C was added NaH (1.50 g, 60% dispersion in mineral oil, 37.44 mmol). The mixture was stirred at -20 °C for 15 min, then quenched with 1 N HCl aqueous solution carefully and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO4 and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 15:1) afforded 8 (1.08 g, 60% yield) as a white solid.

Mp = 86-88 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.03 (s, 1H), 4.46 (t, J = 6.0 Hz, 2H), 2.97 (t, J = 6.0 Hz, 2H), 2.72 (s, 4H), 1.12 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.7, 150.5, 143.3, 137.8, 126.3, 123.4, 123.2, 67.2, 47.7, 46.9, 40.4, 28.4, 27.9; **IR** (KBr, cm⁻¹) 2953, 1716, 1242, 1080, 786; **HRMS** (ESI, m/z) calcd for C₁₄H₁₆O₂ [M+Na]⁺: 239.1043, found: 239.1039.

Synthesis of phenol 7 through C–H oxygenation

To a screw-capped tube were added **8** (0.533 g, 2.47 mmol), [RuCl₂(*p*-cymene)]₂ (75.5 mg, 0.123 mmol), Ag₂CO₃ (0.680 g, 2.47 mmol), PhI(CF₃CO₂)₂ (2.121 g, 4.93 mmol)

and trifluoroacetic anhydride (35 mL). Trifluoroacetic acid (0.92 ml) was added to the mixture. The reaction mixture was heated to 80 °C and stirred for 20 h, then cooled to rt and diluted with Et₂O. To the mixture at 0 °C was added NaHCO₃ solid slowly. Then the mixture was acidified by 1 N HCl aqueous solution at 0 °C, and extracted with Et₂O. The combined organic layer was concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 20:1) afforded 7 (0.425 g, 74% yield) as a white solid.

 $\mathbf{Mp} = 88-90 \text{ °C}; \ ^{1}\mathbf{H} \text{ NMR} (500 \text{ MHz}, \text{CDCl}_{3}) \delta 10.99 \text{ (s, 1H)}, 6.57 \text{ (s, 1H)}, 4.53 \text{ (t, } J = 6.1 \text{ Hz}, 2\text{H}), 3.00 \text{ (t, } J = 6.1 \text{ Hz}, 2\text{H}), 2.71 \text{ (s, 4H)}, 1.17 \text{ (s, 6H)}; \ ^{13}\mathbf{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_{3}) \delta 170.0, 158.7, 153.6, 138.2, 129.1, 114.6, 106.5, 68.1, 48.7, 43.4, 40.0, 28.8, 27.8; \mathbf{IR} \text{ (KBr, cm}^{-1)} 2952, 1673, 1256, 1143, 804; \mathbf{HRMS} \text{ (ESI, m/z) calcd for } C_{14}H_{16}O_{3} \text{ [M+Na]}^{+}: 255.0992, \text{ found: } 255.0991.$

Synthesis of phenyl bromide S8

To a solution of 7 (100 mg, 0.431 mmol) in MeCN (5 mL) was added NBS (84.4 mg, 0.474 mmol). The reaction mixture was stirred at rt for 1 h, then quenched with saturated Na₂SO₃ solution, extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 4:1) afforded S8 (133 mg, 99 % yield) as a white solid.

Mp = 130-131 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 11.08 (s, 1H), 4.52 (t, J = 6.2 Hz, 2H), 3.07 (t, J = 6.2 Hz, 2H), 2.80 (s, 2H), 2.78 (s, 2H), 1.17 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 169.4, 157.9, 153.3, 136.9, 130.6, 109.1, 108.1, 67.4, 50.5, 44.5, 39.0, 28.9, 27.8; **IR** (KBr, cm⁻¹) 2954, 1678, 1432, 1154, 802; **HRMS** (ESI, m/z) calcd for C₁₄H₁₅BrO₃ [M+Na]⁺: 333.0097, found: 333.0094.

Synthesis of compound 11

To a solution of S8 (105 mg, 0.337 mmol) in dioxane (7 mL) and H₂O (1.75 mL) were added MeBF₃-K⁺ (61.7 mg, 0.506 mmol), Pd(dppf)Cl₂ (12.3 mg, 0.0168 mmol) and KOH (56.7 mg, 1.01 mmol) in sequence. The reaction mixture was heated to reflux for 72 h. Then reaction mixture was cooled to rt, diluted with EtOAc and washed with H₂O. The aqueous layer was extracted with EtOAc twice. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 20:1) afforded **11** (67.8 mg, 82% yield) as a white solid.

Mp = 109-111 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 10.99 (s, 1H), 4.51 (t, J = 6.1 Hz, 2H), 2.93 (t, J = 6.1 Hz, 2H), 2.74 (s, 2H), 2.70 (s, 2H), 2.07 (s, 3H), 1.17 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 170.4, 156.9, 152.9, 135.6, 128.5, 121.3, 106.6, 67.6, 48.0, 43.8, 39.3, 29.2, 24.9, 14.6; **IR** (KBr, cm⁻¹) 2922, 1668, 1450, 1168, 803; **HRMS** (ESI, m/z) calcd for C₁₅H₁₈O₃ [M+Na]⁺: 269.1148, found: 269.1145.

Synthesis of phenol triflate 12

To a solution of **11** (0.500 g, 2.03 mmol) in pyridine (10 mL) at rt were added DMAP (0.125 g, 1.02 mmol) and Tf₂O (0.68 mL, 4.06 mmol) in sequence. The reaction mixture was stirred at rt for 12 h, then pyridine was removed *in vacuo*. The residue was diluted with EtOAc, washed with 1 N HCl aqueous solution and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 5:1) afforded **12** (0.724 g, 94%) as a white solid.

Mp = 91-92 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 4.47 (t, *J* = 5.9 Hz, 2H), 2.94 (t, *J* = 5.9 Hz, 2H), 2.85 (s, 2H), 2.77 (s, 2H), 2.19 (s, 3H), 1.16 (s, 6H); ¹³C **NMR** (100 MHz,

CDCl₃) δ 162.1, 151.8, 143.9, 139.7, 135.5, 131.4, 118.5 (q, *J* = 318.6 Hz), 117.1, 66.3, 47.4, 44.6, 40.1, 28.3, 26.0, 15.5; **IR** (KBr, cm⁻¹) 2957, 1730, 1206, 875, 602; **HRMS** (ESI, m/z) calcd for C₁₆H₁₇F₃O₅S [M+Na]⁺: 401.0641, found: 401.0644.

2.5. Divergent total syntheses of five illudalane sesquiterpenes

Total synthesis of granulolactone (4)

To a solution of **12** (0.724 g, 1.91 mmol) in DMF (20 mL) were added $Pd(OAc)_2$ (21.4 mg, 0.0955 mmol), dppf (52.9 mg, 0.0955 mmol) and Et₃SiH (0.556 g, 4.78 mmol) in sequence. The reaction mixture was heated at 60 °C for 3 h. Then reaction mixture was cooled to rt, diluted with EtOAc and washed with H₂O. The aqueous layer was extracted with EtOAc twice. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 10:1) afforded granulolactone (**4**) (0.410 g, 93% yield) as a white solid.

 $\mathbf{Mp} = 117-119 \text{ °C; }^{1}\mathbf{H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \delta 7.79 (s, 1H), 4.49 (t, J = 6.0 \text{ Hz}, 2H), 2.94 (t, J = 6.0 \text{ Hz}, 2H), 2.77 (s, 2H), 2.72 (s, 2H), 2.18 (s, 3H), 1.16 (s, 3H), 1.16 (s, 3H); 1^{3}\mathbf{C} \text{ NMR} (100 \text{ MHz, CDCl}_3) \delta 166.2, 149.3, 142.4, 136.1, 130.7, 124.1, 123.5, 66.7, 47.5, 47.2, 39.6, 28.8, 28.8, 25.1, 15.2; IR (KBr, cm⁻¹) 2922, 1718, 1644, 1158, 1087, 775;$ **HRMS**(ESI, m/z) calcd for C₁₅H₁₈O₂ [M+Na]⁺: 253.1199, found: 253.1198.

Table S1. NMR spectroscopic data comparison of natural and synthetic granulolactone.

granuloiacione (4)				
	Natural		Synthetic	
position	Kokubun, 2016 ³		This Report	
	(400 MHz, CD	Cl ₃)	(400 MHz, CDCl ₃)	
	$\delta H (mult, J in Hz)$	δC	$\delta H (mult, J in Hz)$	δC
1	2.77 (s, 2H)	47.6	2.77 (s, 2H)	47.5
2		39.7		39.6
3	2.72 (s, 2H)	47.3	2.72 (s, 2H)	47.2
4		130.7		130.7
5		136.2		136.1
6		123.6		123.5
7	7.79 (s, 1H)	124.2	7.79 (s, 1H)	124.1
8		142.5		142.4
9		149.3		149.3
10		166.2		166.2
11	2.94 (t, <i>J</i> = 6.0 Hz, 2H)	25.2	2.94 (t, <i>J</i> = 6.0 Hz, 2H)	25.1
12	4.48 (t, <i>J</i> = 6.1 Hz, 2H)	66.7	4.49 (t, $J = 6.0$ Hz, 2H)	66.7
13	2.18 (s, 3H)	15.3	2.18 (s, 3H)	15.2
14	1.16 (s, 3H)	28.9	1.16 (s, 3H)	28.8
15	1.16 (s, 3H)	28.9	1.16 (s, 3H)	28.8

Total Synthesis of riparol (5)

To a solution of granulolactone (4) (26.2 mg, 0.114 mmol) in CH₂Cl₂ (5 mL) at -78 °C was added Dibal-H (0.34 mL, 1 M in hexane, 0.342 mmol). The reaction mixture was stirred at -78 °C for 3 h, then allowed to warm to 0 °C and stirred for additional 2 h. Then the mixture was quenched with saturated Rochelle salt solution carefully, and

extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 1:1) afforded riparol (**5**) (25.8 g, 97% yield) as a white solid. **Mp** = 112-114 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 6.99 (s, 1H), 4.58 (s, 2H), 3.82 (t, *J* = 5.9 Hz, 2H), 3.40 (brs, 2H), 2.99 (t, *J* = 5.9 Hz, 2H), 2.72 (s, 2H), 2.67 (s, 2H), 2.19 (s, 3H), 1.15 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.4, 141.5, 137.8, 133.4, 133.0, 124.0, 64.2, 61.5, 47.8, 47.3, 39.3, 31.6, 29.2, 29.2, 16.0; **IR** (KBr, cm⁻¹) 2921, 1433, 1258, 1038, 801; **HRMS** (ESI, m/z) calcd for C₁₅H₂₂O₂ [M+Na]⁺: 6257.1512, found: 257.1515.

Table S2. NMR spectroscopic data comparison of natural and synthetic riparol B.

	Natural Anke, 2006 ⁴		Natural Synthetic	
position			This Report	
	(500 MHz, CD	Cl ₃)	(400 MHz, CDCl ₃)	
	δH (mult, J in Hz)	δC	$\delta H (mult, J in Hz)$	δC
1	2.73 (s, 2H)	47.8	2.72 (s, 2H)	47.8
2		39.3		39.3
3	2.68 (s, 2H)	47.3	2.67 (s, 2H)	47.3
4		133.1		133.0
5		133.3		133.4
6		137.9		137.8
7	7.01 (s, 1H)	124.0	6.99 (s, 1H)	124.0
8		141.6		141.5
9		143.4		143.4
10	4.62 (s, 2H)	64.3	4.58 (s, 2H)	64.2
11	3.03 (t, <i>J</i> = 5.9 Hz, 2H)	31.6	2.99 (t, <i>J</i> = 5.9 Hz, 2H)	31.6
12	3.86 (t, <i>J</i> = 5.9 Hz, 2H)	61.7	3.82 (t, <i>J</i> = 5.9 Hz, 2H)	61.5
13	2.21 (s, 3H)	16.0	2.19 (s, 3H)	16.0
14	1.16 (s, 3H)	29.2	1.15 (s, 3H)	29.2
15	1.16 (s, 3H)	29.2	1.15 (s, 3H)	29.2

Total synthesis of echinolactone A (2) and compound 13

To a solution of granulolactone (4) (0.41 g, 1.78 mmol) in acetic acid (20 mL) and H₂O (5 mL) was added CrO₃ (0.71 g, 7.12 mmol). The resultant mixture was heated at 60 °C for 40 h and then cooled to rt, quenched with saturated Na₂SO₃ solution and extracted with EtOAc. The combined organic layer was washed with saturated NaHCO₃ solution, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 5:1 to 1:1) afforded echinolactone A (2) (0.16 g, 37% yield) as a white solid and **13** (0.11 g, 25% yield) as a white solid.

Echinolactone A (2): Mp = 208-210 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 4.53 (t, *J* = 5.9 Hz, 2H), 3.08 (t, *J* = 5.9 Hz, 2H), 2.96 (s, 2H), 2.30 (s, 3H), 1.25 (s, 3H), 1.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 210.1, 164.8, 155.8, 143.9, 134.3, 133.1, 125.4, 124.9, 66.3, 45.6, 42.5, 25.8, 25.3, 25.3, 14.2; **IR** (KBr, cm⁻¹) 2917, 1719, 1637, 1263, 1090, 769; **HRMS** (ESI, m/z) calcd for C₁₅H₁₆O₃ [M+Na]⁺: 267.0992, found: 267.0998.

Compound 13: Mp = 121-122 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (s, 1H), 4.54 (t, *J* = 6.0 Hz, 2H), 3.03 (t, *J* = 6.0 Hz, 2H), 2.97 (s, 2H), 2.63 (s, 3H), 1.22 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 212.2, 165.0, 150.8, 137.6, 136.6, 136.0, 129.7, 126.1, 66.8, 46.1, 41.8, 25.3, 24.4, 13.2; **IR** (KBr, cm⁻¹) 2919, 1720, 1444, 1293, 775; **HRMS** (ESI, m/z) calcd for C₁₅H₁₆O₃ [M+Na]⁺: 267.0992, found: 267.0997.

Table S3. NMR spectroscopic data comparison of natural and synthetic echinolactone

 A.

	Natural		Synthetic	
position	Shiono, 2005 ⁵		This Report	
(400 MHz, CDCl ₃)		(400 MHz, CDCl ₃)		
	$\delta H (mult, J in Hz)$	δC	$\delta H (mult, J in Hz)$	δC
1		209.8		210.1
2		45.2		45.6
3	2.96 (s, 2H)	42.6	2.96 (s, 2H)	42.5
4		133.1		133.1
5		143.7		143.9
6		125.5		125.4
7	8.42 (s, 1H)	125.1	8.41 (s, 1H)	124.9
8		134.2		134.3
9		155.8		155.8
10		165.0		164.8
11	3.08 (t, <i>J</i> = 5.9 Hz, 2H)	25.3	3.08 (t, <i>J</i> = 5.9 Hz, 2H)	25.8
12	4.52 (t, <i>J</i> = 5.9 Hz, 2H)	66.2	4.53 (t, <i>J</i> = 5.9 Hz, 2H)	66.3
13	2.30 (s, 3H)	14.8	2.30 (s, 3H)	14.2
14	1.25 (s, 3H)	25.1	1.25 (s, 3H)	25.3
15	1.25 (s, 3H)	25.1	1.25 (s, 3H)	25.3

echinolactone A (2)

Total synthesis of (±)-radulactone (1)

To a solution of echinolactone A (2) (20 mg, 0.0819 mmol) in MeOH (5 mL) at rt was added NaBH₄ (1.6 mg, 0.041 mmol). The reaction mixture was stirred at rt for 20 min then the solvent was removed *in vacuo*. The residue was diluted with EtOAc and H₂O,

and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 2:1) afforded (\pm)-radulactone (1) (20 mg, 99% yield) as a white solid.

Mp = 146-148 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (s, 1H), 4.69 (s, 1H), 4.48 (t, J = 5.9 Hz, 2H), 2.96 (t, J = 5.9 Hz, 2H), 2.79 (d, J = 16.3 Hz, 1H), 2.61 (d, J = 16.3 Hz, 1H), 2.19 (s, 3H), 2.13 (brs, 1H), 1.17 (s, 3H), 1.05 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.9, 147.4, 143.8, 138.1, 131.2, 124.2, 124.1, 82.9, 66.6, 44.2, 44.1, 26.8, 25.2, 21.5, 14.9; **IR** (KBr, cm⁻¹) 2923, 1704, 1161, 1085, 787; **HRMS** (ESI, m/z) calcd for C₁₅H₁₈O₃ [M+Na]⁺: 269.1148, found: 269.1150.

Total synthesis of (±)-calomelanolactone (3)

To a solution of **13** (20 mg, 0.0819 mmol) in MeOH (5 mL) at rt was added NaBH₄ (1.6 mg, 0.041 mmol). The reaction mixture was stirred at rt for 15 min then the solvent was removed *in vacuo*. The residue was diluted with EtOAc and H₂O, and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 2:1) afforded (\pm)-calomelanolactone (**3**) (19.8 mg, 98% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (s, 1H), 4.64 (s, 1H), 4.55 – 4.43 (m, 2H), 2.99 – 2.92 (m, 2H), 2.93 (d, J = 15.8 Hz, 1H), 2.61 (d, J = 15.8 Hz, 1H), 2.37 (s, 3H), 1.77 (brs, 1H), 1.21 (s, 3H), 1.01 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.9, 148.5, 142.4, 137.0, 132.9, 125.4, 124.8, 82.4, 66.7, 44.5, 43.0, 27.3, 25.0, 22.0, 14.6; **IR** (KBr, cm⁻¹) 2925, 1705, 1165, 1045, 786; **HRMS** (ESI, m/z) calcd for C₁₅H₁₈O₃ [M+Na]⁺: 269.1148, found: 269.1151.

 Table S4.
 NMR spectroscopic
 data comparison of natural and synthetic calomelanolactone.

position	Natural Bardouille, 1978 ⁶	Synthetic This Report (400 MHz, CDCl ₃)		
	δH (mult, J in Hz)	δ H (mult, J in Hz)		
1a	2.83 (s, 1H)	2.93 (d, <i>J</i> = 15.8 Hz, 1H)		
1b	2.68 (s, 1H)	2.61 (d, <i>J</i> = 15.8 Hz, 1H)		
2				
3	4.62 (s, 1H)	4.64 (s, 1H)		
4				
5				
6				
7	7.73 (s, 1H)	7.80 (s, 1H)		
8				
9				
10				
11	2.93 (t, <i>J</i> = 6.0 Hz, 2H)	2.95 (m, 2H)		
12	4.47 (t, J = 6.0 Hz, 2H)	4.48 (m, 2H)		
13	2.37 (s, 3H)	2.37 (s, 3H)		
14	1.22 (s, 3H)	1.21 (s, 3H)		
15	1.02 (s, 3H)	1.05 (s, 3H)		
OH	2.0 (s, 1H)	1.77 (brs, 1H)		

(±)-calomelanolactone (3)

2.6. Asymmetric synthesis of (+)-radulactone (1) and assignment of absolute configuration

Table S5. Optimization of the asymmetric reduction condition

entry	reductant	catalyst	t/°C	yield/%	<i>ee</i> /%
1	BH3•THF (1.3 eq.)	(S)-CBS-Me (0.3 eq.)	−78 °C	no reaction	-
2	BH ₃ •THF (1.3 eq.)	(S)-CBS-Me (0.3 eq.)	0 °C to rt	27	71.2
3	BH ₃ •SMe ₂ (1.3 eq.)	(S)-CBS-Me (0.3 eq.)	0 °C to rt	38	87.2
4	BH ₃ •SMe ₂ (1.3 eq.)	(S)-CBS-Bu (0.3 eq.)	0 °C to rt	35	56.6

(HPLC analyses were performed on a Shimadzu LC-16A instrument using a Daicel Chiralcel IF Column. Flow rate: 1.1 mL/min, eluent: EtOAc/hexane = 65/35)

To a solution of BH₃•SMe₂ (0.13 mL, 2 M in THF, 0.267 mmol) and (*S*)-CBS-Me (0.06 ml, 1 M in toluene, 0.062 mmol) in THF (2 mL) at 0 °C was added echinolactone A (**2**) (50 mg, 0.205 mmol) in THF (3 mL). The reaction mixture was allowed to warm to rt and stirred overnight. The reaction was quenched with H₂O carefully, then diluted with EtOAc, washed with 1 N HCl aqueous solution, and extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 2:1) afforded (+)-radulactone (**1**) (19 mg, 38% yield) as a colorless oil.

 $[\alpha]_D^{25} = +15.5$ (c 0.5, CHCl₃); ee = 87.2%.

 Table S6. NMR spectroscopic data comparison of natural and synthetic (+)-radulactone.

	Natural		Synthetic	
position	Anke, 1998 ⁷		This Report	
	(500 MHz, CDCl ₃)		(400 MHz, CDCl ₃)	
	δ H (mult, J in Hz)	δC	δH (mult, J in Hz)	δC
1	4.69 (s, 1H)	83.0	4.69 (s, 1H)	82.9
2		44.1		44.1
3α	2.62 (d, <i>J</i> = 16.3 Hz, 1H)	11.0	2.61 (d, <i>J</i> = 16.3 Hz, 1H)	11.0
3β	2.79 (d, <i>J</i> = 16.3 Hz, 1H)	44.2	2.79 (d, <i>J</i> = 16.3 Hz, 1H)	44.2
4		131.3		131.2
5		138.2		138.1
6		124.2		124.1
7	7.99 (s, 1H)	124.2	7.99 (s, 1H)	124.2
8		143.8		143.8
9		147.4		147.4
10		165.9		165.9
11	2.96 (t, <i>J</i> = 5.9 Hz, 2H)	25.2	2.96 (t, <i>J</i> = 5.9 Hz, 2H)	25.2
12	4.48 (t, <i>J</i> = 5.9 Hz, 2H)	66.6	4.48 (t, <i>J</i> = 5.9 Hz, 2H)	66.6
13	2.18 (s, 3H)	14.9	2.19 (s, 3H)	14.9
14	1.17 (s, 3H)	26.8	1.17 (s, 3H)	26.8
15	1.05 (s, 3H)	21.5	1.05 (s, 3H)	21.5

(+)-radulactone (1)

Synthesis of *p*-bromobenzoate derivative of (+)-radulactone

To a solution of (+)-radulactone (1) (15.1 mg, 0.0613 mmol) in CH₂Cl₂ (5 mL) were added *p*-bromobenzoyl chloride **S9** (20.2 mg, 0.092 mmol) and DMAP (3.8 mg, 0.031 mmol). The reaction mixture was stirred at rt for 2 h, then quenched with H₂O, and extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 4:1) afforded **14** (24.8 mg, 94% yield) as a white solid.

[α] p^{25} = +6.0 (c 0.2, CHCl₃); **Mp** = 155-157 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.88 (d, *J* = 8.6 Hz, 2H), 7.56 (d, *J* = 8.6 Hz, 2H), 6.10 (s, 1H), 4.49 (t, *J* = 6.0 Hz, 2H), 2.98 (t, *J* = 6.0 Hz, 2H), 2.96 (d, *J* = 16.5 Hz, 1H), 2.76 (d, *J* = 16.5 Hz, 1H), 2.24 (s, 3H), 1.22 (s, 3H), 1.19 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.6, 165.4, 148.6, 140.0, 138.8, 131.7, 131.4, 131.2, 129.0, 128.2, 125.7, 124.4, 84.1, 66.5, 45.1, 43.5, 27.3, 25.3, 22.7, 15.1; **IR** (KBr, cm⁻¹) 2959, 1717, 1267, 1101, 756; **HRMS** (ESI, m/z) calcd for C₂₂H₂₁BrO₄ [M+Na]⁺: 451.0515, found: 451.0521.

2.7. Synthesis of illudalane analogues

To a tube were added **12** (25 mg, 0.066 mmol), aryl boronic acid **S10** (16.4 mg, 0.099 mmol) and Pd(PPh₃)₂Cl₂ (2.3 mg, 0.0033 mmol). The tube was degassed with argon for three times, then Na₂CO₃ (0.08 mL, 2 M aqueous solution, 0.16 mmol) and dioxane (4 mL) were added to the tube. The reaction mixture was degassed with argon again, then heated to reflux for 22 h. The reaction mixture was cooled to rt, diluted with EtOAc, and washed with H₂O. The aqueous layer was extracted with EtOAc twice. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 5:1) afforded **15a** (23 mg, 99% yield) as a white solid.

 $\mathbf{Mp} = 165-167 \text{ °C}; \ ^{1}\mathbf{H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \delta 6.82 (d, J = 7.9 \text{ Hz}, 1\text{H}), 6.66 (d, J = 1.7 \text{ Hz}, 1\text{H}), 6.60 (dd, J = 7.9, 1.7 \text{ Hz}, 1\text{H}), 5.98 (s, 2\text{H}), 4.45 (t, J = 5.8 \text{ Hz}, 2\text{H}), 2.96 (t, J = 5.8 \text{ Hz}, 2\text{H}), 2.78 (s, 2\text{H}), 2.56 (s, 2\text{H}), 2.22 (s, 3\text{H}), 1.11 (s, 6\text{H}); \ ^{13}\mathbf{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 164.4, 147.9, 147.2, 146.3, 142.6, 139.0, 137.7, 134.4, 129.7, 122.5, 1$

121.4, 109.1, 108.0, 100.9, 66.0, 47.6, 47.4, 39.1, 28.9, 26.3, 15.5; **IR** (KBr, cm⁻¹) 2924, 1723, 1457, 1227, 798; **HRMS** (ESI, m/z) calcd for C₂₂H₂₂O₄ [M+Na]⁺: 373.1410, found: 373.1413.

To a tube were added **12** (25 mg, 0.066 mmol), thiophene boronic acid **S11** (12.7 mg, 0.099 mmol) and Pd(PPh₃)₂Cl₂ (2.3 mg, 0.0033 mmol). The tube was degassed with argon for three times, then Na₂CO₃ (0.08 mL, 2 M aqueous solution, 0.16 mmol) and dioxane (4 mL) were added to the tube. The reaction mixture was degassed with argon again, then heated to reflux for 17 h. The mixture was cooled to rt, diluted with EtOAc, and washed with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 4:1) afforded **15b** (19 mg, 92% yield) as a white solid.

Mp = 151-152 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (dd, J = 4.9, 3.0 Hz, 1H), 7.04 (dd, J = 3.0, 1.3 Hz, 1H), 6.98 (dd, J = 4.9, 1.3 Hz, 1H), 4.45 (t, J = 5.8 Hz, 2H), 2.96 (t, J = 5.8 Hz, 2H), 2.78 (s, 2H), 2.60 (s, 2H), 2.22 (s, 3H), 1.12 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.3, 148.0, 143.0, 140.0, 137.9, 134.2, 129.9, 128.8, 124.3, 122.8, 121.5, 66.0, 47.6, 47.6, 39.0, 28.9, 26.3, 15.6; **IR** (KBr, cm⁻¹) 2951, 1722, 1149, 1088, 773; **HRMS** (ESI, m/z) calcd for C₁₉H₂₀O₂S [M+Na]⁺: 335.1076, found: 335.1083.

To a tube were added **12** (25 mg, 0.066 mmol), potassium vinyltrifluoroborate **S12** (17.7 mg, 0.132 mmol) and Pd(PPh₃)₂Cl₂ (2.3 mg, 0.0033 mmol). The tube was degassed with argon for three times, then Na₂CO₃ (0.10 mL, 2 M aqueous solution, 0.20 mmol) and dioxane (4 mL) were added to the tube. The reaction mixture was degassed with

argon again, then heated to reflux for 18 h. The reaction mixture was cooled to rt, diluted with EtOAc, and washed with H₂O. The aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 5:1) afforded **15c** (14.3 mg, 85% yield) as a white solid.

 $\mathbf{Mp} = 93-95 \text{ °C; }^{1}\mathbf{H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \delta 7.27 (dd, J = 17.9, 11.5 \text{ Hz}, 1\text{H}), 5.47 (dd, J = 11.5, 1.7 \text{ Hz}, 1\text{H}), 5.27 (dd, J = 17.9, 1.7 \text{ Hz}, 1\text{H}), 4.40 (t, J = 5.9 \text{ Hz}, 2\text{H}), 2.92 (t, J = 5.9 \text{ Hz}, 2\text{H}), 2.87 (s, 2\text{H}), 2.74 (s, 2\text{H}), 2.18 (s, 3\text{H}), 1.14 (s, 7\text{H}); {}^{13}\mathbf{C} \text{ NMR} (100 \text{ MHz, CDCl}_3) \delta 165.1, 148.9, 141.2, 137.6, 136.1, 135.9, 129.4, 121.7, 117.6, 66.0, 48.6, 47.4, 39.3, 28.8, 26.0, 15.6; \mathbf{IR} (KBr, cm^{-1}) 2949, 1706, 1156, 1090, 918;$ **HRMS**(ESI, m/z) calcd for C₁₇H₂₀O₂ [M+Na]⁺: 279.1356, found: 279.1361.

To a solution of **12** (26.5 mg, 0.07 mmol) in dioxane (4 mL) was added Pd(dppf)Cl₂ (2.6 mg, 0.0035 mmol). The reaction mixture was degassed with argon, and ZnEt₂ (0.04 mL, 2 M in hexane, 0.084) was added dropwise. The reaction mixture was heated to reflux for 6 h before being cooled to rt, diluted with EtOAc and washed with H₂O. The aqueous layer was extracted with EtOAc twice. The combined organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash chromatography (PE/EtOAc = 5:1) afforded **15d** (17.9 mg, 99% yield) as a white solid.

 $\mathbf{Mp} = 84-86 \text{ °C; }^{1}\mathbf{H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \delta 4.37 (t, J = 5.9 \text{ Hz, 2H}), 2.95 (q, J = 7.4 \text{ Hz, 2H}), 2.91 (t, J = 5.9 \text{ Hz, 2H}), 2.78 (s, 2H), 2.73 (s, 2H), 2.15 (s, 3H), 1.19 (t, J = 7.4 \text{ Hz, 3H}), 1.17 (s, 6H); ^{13}C \text{ NMR} (100 \text{ MHz, CDCl}_3) \delta 165.1, 148.1, 142.2, 142.1, 137.8, 127.9, 121.8, 66.0, 47.5, 46.4, 38.8, 29.2, 26.2, 24.6, 15.4, 14.4;$ **IR**(KBr, cm⁻¹) 2925, 1716, 1151, 1097, 799;**HRMS** $(ESI, m/z) calcd for <math>C_{17}H_{22}O_2$ [M+Na]⁺: 281.1512, found: 281.1520.

3. X-Ray Crystallographic Data

Fig. S1 X-ray Crystallographic Structure of 14 (CCDC 1894774)

Table S6. Crystal data and structure refinement for 14.

Identification code	exp_20218
Empirical formula	C22H21BrO4
Formula weight	429.30
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	10.35275(17)
b/Å	12.5835(2)
c/Å	15.0399(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1959.31(6)
Ζ	4
$\rho_{calc}g/cm^3$	1.455
μ/mm ⁻¹	3.064
F(000)	880.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
20 range for data collection/°	9.164 to 124.38
Index ranges	$-11 \le h \le 11, -14 \le k \le 14, -17 \le l \le 17$
Reflections collected	26160
Independent reflections	$3093 [R_{int} = 0.0731, R_{sigma} = 0.0318]$
Data/restraints/parameters	3093/0/247
Goodness-of-fit on F ²	1.054
Final R indexes [I>=2σ (I)]	$R_1 = 0.0313, wR_2 = 0.0834$
Final R indexes [all data]	$R_1 = 0.0321, wR_2 = 0.0848$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.54
Flack parameter	-0.020(11)

4. References

- 1. D. Felix, J. Schreiber, G. Ohloff and A. Eschenmoser, *Helv. Chim. Acta*, 1971, **54**, 2896-2912.
- 2. I. Fleming and E. Martínez de Marigorta, *Journal of the Chemical Society, Perkin Transactions 1*, 1999, 889-900.
- 3. T. Kokubun, A. Scott-Brown, G. C. Kite and M. S. J. Simmonds, *J. Nat. Prod.*, 2016, **79**, 1698-1701.
- 4. D. Weber, G. Erosa, O. Sterner and T. Anke, in *Zeitschrift für Naturforschung C*, 2006, vol. 61, p. 663.
- 5. S. Suzuki, T. Murayama and Y. Shiono, Phytochemistry, 2005, 66, 2329-2333.
- 6. V. Bardouille, B. S. Mootoo, K. Hirotsu and J. Clardy, *Phytochemistry*, 1978, **17**, 275-277.
- 7. K. Fabian, T. J. M. Anke, O. Sterner and K. Lorenzen, *Zeitschrift Fur Naturforschung C A Journal of Biosciences*, 1998, **53**, 939-945.

5. NMR Spectra Data

