Supporting Information

One-pot synthesis of benzo[b]fluorenones via a cobalt-catalyzed MHP-directed [3+2] annulation/ring-opening/dehydration sequence

Shuxian Qiu,^a Shengxian Zhai,^c Huifei Wang,^d Xiaoming Chen,^a and Hongbin Zhai*^{a,b,e}

^aState Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Pe king University Shenzhen Graduate School, Shenzhen 518055, China.
^bThe State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
^cCollege of Chemistry & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China.
^dSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
^eCollaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.

Email: zhaihb@pku.edu.cn

Table of Contents

1.	Materials and Methods	2
2.	General Procedure for the Preparation of Starting Materials	2
3.	General Procedure for the [3+2] Annulation/Ring-Opening/Dehydration Sequence	6
4.	Details of Optimization Studies	6
5.	Analytical Data of Products	8
6.	Preliminary Mechanistic Experiments	24
7.	References	.25
8.	¹ H, ¹³ C and ¹⁹ F NMR Spectra	

1. Materials and Methods

All reactions were carried out under Argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All the chemicals were purchased commercially, and used without further purification. Anhydrous THF was distilled from sodium-benzophenone. Dichloromethane was distilled from calcium hydride. TFE and HFIP were used directly without distillation. Thin-layer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or stained with potassium permanganate. Flash column chromatography was performed on Tsingdao silica gel (200-300 mesh) and neutral aluminum oxide (200-300 mesh). ¹H NMR spectra were recorded on Bruker spectrometers (at 400 or 500 MHz) and reported relative to deuterated solvent signals or tetramethylsilane internal standard signals. Data for ¹H NMR spectra were reported as follows: chemical shift (δ /ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.), coupling constant (J/Hz), and integration. ¹³C NMR spectra were recorded on Bruker Spectrometers (100 or 125 MHz). Data for ¹³C NMR spectra were reported in terms of chemical shift. ¹⁹F NMR spectra were recorded on Bruker Spectrometers (376 MHz). High-resolution mass spectrometry (HRMS) was conducted on Bruker Apex IV RTMS.

2. General Procedure for the Preparation of Starting Materials

Hydrazides **1a-1v** and $[D_5]$ -**1a** were known compounds and the spectral data matched those reported in the literature.¹

Representative method A: (1a, 1b, 1c, 1e, 1f, 1h, 1i, 1j, 1k, 1l, 1m, 1n, 1o, 1p, 1r, 1s, 1u)

$$H_2N \xrightarrow{N} N \xrightarrow{N} DCM, 0 \ ^{\circ}C \text{ to rt, 6 h} \qquad R \xrightarrow{O} N \xrightarrow{N} N \xrightarrow{N} N$$

To a stirred mixture of 2-(1-methylhydrazinyl)pyridine (5.0 mmol) and Et_3N (25.0 mmol) in dry CH_2Cl_2 (20 mL) was added benzoyl chloride (5.5 mmol) dropwise under Ar atmosphere at 0 °C. After stirring at ambient temperature

for 6 h, the resulting mixture was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on neutral alumina (eluting with *n*-hexanes/EtOAc = 3:1 to 1:1) to give the desired product.

Representative method B:² (1d, 1g, 1q, 1t, [D₅]-1a)

A mixture of 2-(1-methylhydrazinyl)pyridine (5.0 mmol), carboxylic acid (5.5 mmol), EDCI (5.5 mmol), and HOBT (5.5 mmol) in anhydrous DMF (20 mL) was stirred at room temperature overnight. Water (100 mL) was added and the mixture was extracted with EtOAc (20 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on neutral alumina (eluting with *n*-hexanes/EtOAc = 3:1 to 1:1) to give the desired product.

Representative method C: (1v)

A solution of isonicotinic acid (5.0 mmol) was refluxed in SOCl₂ (5 mL) for 2 h and cooled to ambient temperature. The excess of SOCl₂ was removed under vacuum to give the corresponding acid choloride. The acid choloride was then dissolved in dry CH₂Cl₂ (5 mL) and added dropwise to a dry CH₂Cl₂ (20 mL) solution containing 2-(1-methylhydrazinyl)pyridine (5.0 mmol) and Et₃N (25.0 mmol) at 0 °C. After stirring at ambient temperature for 6 h, the resulting mixture was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on neutral alumina (eluting with *n*-hexanes/EtOAc = 3:1 to 1:1) to afford the corresponding product.

General procedure for the synthesis of substituted 1,4-dihydro-1,4epoxynaphthalenes

Compounds **2b-2g** were prepared according to known literature procedures.³ Compounds **2b-2g** were known compounds and the spectral data matched those reported in the literature.⁴

To a stirred solution of substituted 1,2-dibromobenzene (7.0 mmol) in anhydrous THF (15 mL) under Ar and freshly distilled furan (15 mL) at -78 °C was added *n*-BuLi (2.5 M in hexane, 3.4 mL, 8.4 mmol, 1.2 equiv) dropwise. The solution was stirred at -78 °C for 1.5 h. Then, distillated water (20 mL) was added to the reaction mixture, which was left to warm up to room temperature. Et₂O was added to the reaction mixture and the organic phase was separated. The aqueous solution was dried over MgSO₄. The Et₂O was then removed in vacuo and the resulting mixture was purified by a flash silica gel column using a mixture of *n*-hexane/EtOAc as eluent to give the desired pure product. Note that freshly prepared LDA was used rather than *n*-BuLi for compound **2d** and anhydrous toluene was used as the solvent for

compound 2g.

3. General Procedure for the [3+2] Annulation/Ring-Opening/Dehydration Sequence

A 25-mL oven-dried sealed tube was charged with hydrazide **1** (0.40 mmol), bicyclic alkene **2** (0.20 mmol), $Co(OAc)_2$ (10.6 mg, 0.06 mmol), and Cs_2CO_3 (325.8 mg, 1.00 mmol). The tube was evacuated and filled with O_2 (1 atm), and TFE (2.0 mL) was added. The tube was stirred at 140 °C for 36 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (5.0 mL), filtered through a plug of *Celite*, and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with *n*-hexanes/EtOAc (40:1, v/v) to afford corresponding product **3**.

4. Details of Optimization Studies

Table S1. Optimization Studies to Find Suitable Co Salt^a

2	$Co(acac)_2$	71	ND
3	$Co(acac)_3$	71	ND
4	CoC_2O_4	67	trace
5	CoCl ₂	68	ND
6	CoBr ₂	70	ND
7	CoI ₂	66	trace

^{*a*}Reaction conditions: **1a** (0.4 mmol), **2a** (0.2 mmol), Co salt (30 mol %), Cs_2CO_3 (5.0 equiv), TFE (2.0 mL), O_2 (1 atm), 140 °C, 36 h, sealed tube. ^{*b*}Isolated yield. ND = not detectable.

Table S2. Optimization Studies to Find Suitable Solvent^a

	$\frac{1}{N} + \frac{1}{N}$ $1a \qquad 2$	Co(OAc) ₂ (30 mol %) Cs ₂ CO ₃ (5.0 equiv) solvent (0.1 M), O ₂ 140 °C, 36 h sealed tube	3aa 4aa
entry	solvent	yield of 3aa $(\%)^b$	yield of 4aa (%) ^{b}
1	TFE	81	ND
2	EtOH	trace	ND
3 ^c	HFIP	13	58
4	CH ₃ CN	trace	ND
5	DCE	trace	5
6	THF	trace	ND
7	toluene	ND	ND
8	DMF	trace	ND

^{*a*}Reaction conditions: **1a** (0.4 mmol), **2a** (0.2 mmol), Co(OAc)₂ (30 mol %), Cs₂CO₃ (5.0 equiv), solvent (2.0 mL), O₂ (1 atm), 140 °C, 36 h, sealed tube. ^{*b*}Isolated yield. ^{*c*}We recently carried out the base-promoted ringopening/dehydration (or aromatization) reaction of dihydroepoxybenzofluorenone **4aa** under the optimal reaction conditions with HFIP instead of TFE as the solvent and found that only **3aa** was isolated in 11% yield with the recovery of most of the unreacted **4aa**. By comparison, the yield of **3aa** was 97% when TFE was used as the solvent (see Scheme 4c-1). We speculate that the ring-opening/dehydration sequence was less effective in HFIP, due to lowered basicity of Cs_2CO_3 in this solvent. ND = not detectable.

5. Analytical Data of Products

4b,**5**,**10**,**10a**-**Tetrahydro**-**11***H*-**5**,**10**-**epoxybenzo**[*b*]**fluoren**-**11**-**one** (**4aa**), a light yellow solid, mp 169.1–171.6 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.71–7.68 (m, 2H), 7.46–7.42 (m, 2H), 7.38–7.36 (m, 1H), 7.24–7.23 (m, 2H), 5.63 (s, 1H), 5.34 (s, 1H), 3.55 (d, *J* = 6.0 Hz, 1H), 2.89 (d, *J* = 5.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 204.3, 154.3, 145.4, 144.6, 139.9, 135.3, 128.4, 127.3, 127.1, 126.0, 124.0, 119.7, 119.6, 83.1, 82.2, 55.3, 48.5 MS (*m*/*z*) [M⁺⁺, 248.10] (M⁺, 3%), (M⁺1, 1%), 247.10 (4%), 231.10 (12%), 220.10 (7%), 219.10 (7%), 203.10 (5%), 202.10 (6%), 192.10 (6%), 191.05 (19%), 190.20 (8%), 189.10 (23%), 165.10 (15%), 164.10 (4%), 163.10 (5%), 119.05 (9%), 118.10 (100%), 115.10 (5%), 102.10 (6%), 90.10 (11%), 89.05 (13%), 76.00 (4%), 63.00 (6%). HRMS calculated for C₁₇H₁₂NaO₂ (M + Na⁺): 271.0730, found 271.0727.

11*H***-Benzo[***b***]fluoren-11-one (3aa), a yellow solid (37.2 mg, 81%), mp 148.5–150.6 °C. ¹H NMR (400 MHz, CDCl₃) \delta 8.12 (s, 1H), 7.84 (d,** *J* **= 8.0 Hz, 1H), 7.79–7.77 (m, 2H), 7.72 (d,** *J* **= 7.2 Hz, 1H), 7.66 (d,** *J* **= 7.6 Hz, 1H), 7.54–7.50 (m, 2H), 7.46–7.42 (m, 1H), 7.31 (t,** *J* **= 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 193.0, 144.7, 138.3, 136.8, 136.0, 134.9, 133.5, 132.7, 130.7, 129.1, 128.9, 128.7, 126.8, 125.6, 124.3, 120.9, 119.0. MS (***m/z***) [M⁺⁺, 230.10] (M⁺, 100%), (M+1, 19%), 202.10 (28%), 201.00 (17%), 200.00 (21%), 175.10 (5%). HRMS calculated for C₁₇H₁₁O (M + H⁺): 231.0804, found 231.0805.**

3-Methyl-11*H***-benzo[***b***]fluoren-11-one (3ba), a yellow solid (40.0 mg, 82%), mp 138.0–139.6 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.09 (s, 1H), 7.84 (d,** *J* **= 8.0 Hz, 1H), 7.78–7.76 (m, 2H), 7.60 (d,** *J* **= 7.5 Hz, 1H), 7.51 (t,** *J* **= 7.0 Hz, 1H), 7.45–7.42 (m, 2H), 7.10 (d,** *J* **= 7.5 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) \delta 192.6, 146.1, 145.2, 138.4, 136.8, 134.0, 133.7, 133.4, 130.7, 130.0, 128.8, 128.7, 126.8, 125.3, 124.3, 121.6, 118.8, 22.2. MS (***m***/***z***) [M⁺⁺, 244.10] (M⁺, 100%), (M+1, 19%), 216.10 (11%), 215.10 (59%), 214.20 (7%), 213.10 (18%). 189.10 (10%), 187.10 (5%). HRMS calculated for C₁₈H₁₃O (M + H⁺): 245.0961, found 245.0960.**

3-Methoxy-11*H***-benzo[***b***]fluoren-11-one (3ca), a yellow solid (29.1 mg, 56%), mp 134.0–136.9 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.06 (s, 1H), 7.84 (d,** *J* **= 8.0 Hz, 1H), 7.78–7.75 (m, 2H), 7.66 (d,** *J* **= 8.5 Hz, 1H), 7.51 (t,** *J* **= 7.0 Hz, 1H), 7.44 (t,** *J* **= 7.0 Hz, 1H), 7.11 (d,** *J* **= 2.0 Hz, 1H), 6.78 (dd,** *J* **= 8.0, 2.0 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) \delta 191.5, 165.6, 147.4, 137.8, 136.6, 133.9, 133.8, 130.6, 129.5, 128.7, 128.7, 126.9, 126.3, 124.9, 118.9, 114.6, 106.3, 55.8. MS (***m***/***z***) [M⁺⁺, 260.10] (M⁺, 100%), (M+1, 17%), 231.10 (9%), 230.10 (11%), 217.10 (18%), 203.10 (5%). 202.10 (11%), 201.10 (4%), 200.00 (5%), 190.10 (7%), 189.10 (45%), 188.10 (11%), 187.00 (12%). HRMS calculated for C₁₈H₁₃O₂ (M + H⁺): 261.0910, found 261.0914.**

3-Phenoxy-11*H***-benzo[***b***]fluoren-11-one (3da), a yellow solid (38.0 mg, 59%), mp 151.0–152.2 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.85 (d,** *J* **= 8.0 Hz, 1H), 7.76 (d,** *J* **= 8.0 Hz, 1H), 7.71–7.69 (m, 2H), 7.53–7.50 (m, 1H), 7.47–7.44 (m, 3H), 7.28–7.25 (m, 1H), 7.21 (d,** *J* **= 2.0 Hz, 1H), 7.16 (d,** *J* **= 7.5 Hz, 2H), 6.88 (dd,** *J* **= 8.0, 2.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 191.4, 164.1, 155.5, 147.4, 137.6, 136.7, 133.8, 133.6, 131.0, 130.7, 130.2, 128.8, 128.8, 127.0, 126.4, 125.2, 124.8, 120.3, 119.2, 118.1, 109.9. MS (***m***/***z***) [M⁺⁺, 322.10] (M⁺, 100%), (M+1, 23%), 321.20 (10%),**

294.15 (8%), 293.10 (7%), 266.10 (8%). 265.05 (29%), 264.10 (3%), 263.10 (8%), 201.10 (8%), 200.00 (12%), 189.10 (16%), 188.10 (6%), 187.10 (8%), 77.10 (5%). HRMS calculated for $C_{23}H_{15}O_2$ (M + H⁺): 323.1067, found 323.1065.

3-(Trifluoromethoxy)-11*H*-benzo[*b*]fluoren-11-one (3ea), a yellow solid (48.8 mg, 78%), mp 162.1–165.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.86–7.83 (m, 2H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.57 (td, *J* = 8.0, 1.0 Hz, 1H), 7.52–7.48 (m, 2H), 7.15 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 191.2, 154.3, 147.1, 136.9, 136.8, 134.2, 133.9, 132.7, 130.9, 129.3, 129.0, 127.4, 126.1, 126.0, 121.0, 120.4 (q, *J* = 256.2 Hz), 119.8, 113.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.4. MS (*m*/*z*) [M⁺⁺, 314.10] (M⁺, 100%), (M+1, 19%), 229.00 (2%), 217.10 (14%), 190.10 (6%), 189.10 (40%), 188.10 (10%), 187.10 (14%), 69.00 (8%). HRMS calculated for C₁₈H₁₀F₃O₂ (M + H⁺): 315.0627, found 315.0630.

3-(*tert***-Butyl)-11***H***-benzo[***b***]fluoren-11-one (3**fa), a yellow solid (38.3 mg, 67%), mp 154.2–155.7 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 7.86–7.85 (m, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 1.0 Hz, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.54–7.51 (m, 1H), 7.46–7.43 (m, 1H), 7.38 (dd, *J* = 7.5, 1.5 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 192.7, 159.4, 145.0,

138.7, 136.9, 134.0, 133.7, 133.5, 130.7, 128.8, 128.7, 126.8, 126.5, 125.3, 124.2, 118.7, 117.9, 35.6, 31.2. MS (m/z) [M⁺⁺, 286.10] (M⁺, 83%), (M+1, 18%), 272.10 (20%), 271.10 (100%), 253.10 (5%), 244.10 (7%). 243.10 (35%), 239.10 (9%), 231.10 (10%), 230.20 (11%), 229.10 (18%), 228.10 (28%), 227.10 (8%), 226.10 (18%), 215.10 (16%), 214.10 (3%), 213.10 (5%), 203.10 (5%), 202.10 (18%), 201.10 (8%), 200.10 (13%), 121.60 (13%). HRMS calculated for C₂₁H₁₉O (M + H⁺): 287.1430, found 287.1429.

3-(Methylthio)-11*H***-benzo[***b***]fluoren-11-one (3ga), a yellow solid (39.7 mg, 72%), mp 151.4–153.0 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.05 (s, 1H), 7.81 (d,** *J* **= 8.0 Hz, 1H), 7.75–7.72 (m, 2H), 7.57 (d,** *J* **= 7.5 Hz, 1H), 7.50 (t,** *J* **= 7.0 Hz, 1H), 7.44–7.40 (m, 2H), 7.06 (d,** *J* **= 7.5 Hz, 1H), 2.56 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) \delta 191.8, 148.4, 145.2, 137.7, 136.6, 133.8, 133.4, 132.8, 130.7, 128.8, 128.7, 127.0, 125.3, 124.5, 119.0, 117.2, 15.0. MS (***m***/***z***) [M⁺⁺, 276.10] (M⁺, 100%), (M+1, 22%), (M+2, 8%), 260.90 (10%), 244.10 (5%), 243.10 (23%), 233.10 (8%), 232.00 (15%), 231.10 (4%), 230.10 (10%), 229.10 (1%), 215.20 (7%), 202.20 (8%), 201.10 (8%), 200.10 (14%), 189.10 (20%), 188.10 (6%), 187.10 (9%). HRMS calculated for C₁₈H₁₃OS (M + H⁺): 277.0682, found 277.0682.**

3-Phenyl-11H-benzo[b]fluoren-11-one (3ha), a yellow solid (46.4 mg,

76%), mp 171.0–174.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.82 (s, 3H), 7.78 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 7.0 Hz, 2H), 7.53–7.49 (m, 4H), 7.46–7.42 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 192.5, 148.0, 145.5, 140.2, 138.2, 136.9, 135.0, 133.7, 133.3, 130.8, 129.0, 128.9, 128.8, 128.5, 128.1, 127.3, 126.9, 125.5, 124.8, 119.6, 119.0. MS (*m/z*) [M⁺⁺, 306.05] (M⁺, 100%), (M+1, 24%), 278.10 (5%), 277.10 (8%), 276.10 (26%), 275.15 (3%), 274.05 (8%). HRMS calculated for C₂₃H₁₅O (M + H⁺): 307.1117, found 307.1119.

3-Chloro-11*H***-benzo[***b***]fluoren-11-one (3ia), a yellow solid (44.3 mg, 84%), mp 218.0–220.0 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.18 (s, 1H), 7.90 (d,** *J* **= 8.0 Hz, 1H), 7.85–7.83 (m, 2H), 7.68–7.67 (m, 2H), 7.58 (t,** *J* **= 7.0 Hz, 1H), 7.50 (t,** *J* **= 7.0 Hz, 1H), 7.31 (d,** *J* **= 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) \delta 191.6, 146.4, 141.4, 137.1, 136.8, 134.5, 133.9, 132.7, 130.9, 129.3, 129.2, 128.9, 127.4, 126.0, 125.5, 121.5, 119.7. MS (***m/z***) [M⁺⁺, 264.00] (M⁺, 100%), (M+1, 18%), (M+2, 33%), (M+3, 8%), 238.10 (8%), 237.00 (4%), 236.10 (18%), 229.00 (1%), 229.90 (1%), 201.00 (17%), 200.10 (31%), 199.10 (7%), 198.00 (5%), 174.10 (5%). HRMS calculated for C₁₇H₁₀ClO (M + H⁺): 265.0415, found 265.0415.**

57%), mp 228.0–231.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.86–7.83 (m, 3H), 7.61–7.56 (m, 2H), 7.52–7.47 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 191.5, 146.5, 137.1, 136.8, 134.8, 133.9, 132.6, 132.2, 130.9, 130.1, 129.3, 128.9, 127.4, 126.1, 125.7, 124.4, 119.7. MS (*m/z*) [M⁺⁺, 308.00] (M⁺, 100%), (M+1, 18%), (M+2, 98%), (M+3, 16%), 229.10 (2%), 230.10 (1%), 202.10 (7%), 201.10 (46%), 200.10 (53%), 199.10 (11%), 198.00 (7%), 175.00 (5%), 174.10 (7%), 100.10 (5%). HRMS calculated for C₁₇H₁₀BrO (M + H⁺): 308.9910, found 308.9902.

3-Iodo-11*H***-benzo[***b***]fluoren-11-one (3ka), a yellow solid (53.4 mg, 75%), mp 223.1–226.0 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.16 (s, 1H), 8.07 (s, 1H), 7.88 (d,** *J* **= 8.0 Hz, 1H), 7.82–7.81 (m, 2H), 7.70 (dd,** *J* **= 7.5, 1.0 Hz, 1H), 7.57 (td,** *J* **= 7.5, 0.5 Hz, 1H), 7.49 (t,** *J* **= 7.5 Hz, 1H), 7.44 (d,** *J* **= 7.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) \delta 192.1, 146.2, 138.2, 137.0, 136.7, 135.4, 133.8, 132.3, 130.9, 130.4, 129.2, 128.9, 127.3, 126.1, 125.5, 119.6, 102.9. MS (***m***/***z***) [M⁺⁺, 356.00] (M⁺, 100%), (M+1, 18%), 230.10 (2%), 229.10 (7%), 202.10 (6%), 201.10 (39%), 200.10 (35%), 199.10 (7%), 198.10 (5%), 175.10 (3%), 174.10 (4%). HRMS calculated for C₁₇H₁₀IO (M + H⁺): 356.9771, found 356.9765.**

3-(Trifluoromethyl)-11H-benzo[b]fluoren-11-one (3la), a yellow solid

(45.3 mg, 76%), mp 204.0–207.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.92–7.89 (m, 3H), 7.84 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.60–7.57 (m, 2H), 7.50 (t, J = 7.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 191.7, 145.2, 138.5, 137.0, 136.9, 136.3 (q, J = 31.2 Hz), 133.8, 132.2, 131.0, 129.5, 129.0, 127.5, 126.4, 126.1 (q, J = 3.8 Hz), 124.6, 123.6 (q, J = 271.2 Hz), 112.0, 118.0 (q, J = 3.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2. MS (*m/z*) [M⁺⁺, 298.10] (M⁺, 100%), (M+1, 18%), 279.10 (5%), 270.00 (12%), 269.05 (14%), 251.10 (8%), 250.10 (2%), 249.00 (6%), 229.00 (1%), 220.10 (9%), 200.10 (9%). HRMS calculated for C₁₈H₁₀F₃O (M + H⁺): 299.0678, found 299.0677.

2-Methyl-11*H***-benzo[***b***]fluoren-11-one (3ma), a yellow solid (38.0 mg, 78%), mp 152.2–155.0 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.06 (s, 1H), 7.81 (d,** *J* **= 8.0 Hz, 1H), 7.73 (d,** *J* **= 8.0 Hz, 1H), 7.69 (s, 1H), 7.50–7.48 (m, 3H), 7.41 (t,** *J* **= 7.5 Hz, 1H), 7.29 (d,** *J* **= 8.0 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) \delta 193.2, 142.3, 139.4, 138.5, 137.0, 136.4, 135.6, 133.4, 133.1, 130.7, 128.8, 128.6, 126.6, 125.4, 124.8, 120.8, 118.5, 21.4. MS (***m/z***) [M⁺⁺, 244.10] (M⁺, 100%), (M+1, 19%), 243.10 (17%), 216.10 (17%), 215.10 (69%), 214.10 (8%), 213.10 (17%), 189.05 (11%), 188.00 (3%), 187.10 (5%). HRMS calculated for C₁₈H₁₃O (M + H⁺): 245.0961, found 245.0965.**

1-Methyl-11*H***-benzo[***b***]fluoren-11-one (3na), a yellow solid (30.7 mg, 63%), mp 151.0–153.2 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.10 (s, 1H), 7.87 (d,** *J* **= 8.0 Hz, 1H), 7.80–7.79 (m, 2H), 7.54–7.51 (m, 2H), 7.45 (td,** *J* **= 8.0, 1.0 Hz, 1H), 7.39 (t,** *J* **= 7.5 Hz, 1H), 7.07 (d,** *J* **= 7.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) \delta 194.2, 145.3, 139.6, 138.1, 136.9, 134.3, 133.7, 133.2, 133.1, 131.7, 130.7, 128.7, 126.7, 125.0, 118.7, 118.4, 18.0. MS (***m/z***) [M⁺⁺, 244.10] (M⁺, 100%), (M+1, 20%), 243.20 (9%), 216.10 (12%), 215.10 (58%), 214.10 (7%), 213.10 (19%), 189.10 (10%), 188.10 (3%), 187.00 (5%). HRMS calculated for C₁₈H₁₃O (M + H⁺): 245.0961, found 245.0961.**

1-Methoxy-11*H***-benzo[***b***]fluoren-11-one (3oa), a yellow solid (35.9 mg, 69%), mp 197.0–200.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (s, 1H), 7.86 (d,** *J* **= 8.0 Hz, 1H), 7.82 (s, 1H), 7.80 (d,** *J* **= 8.0 Hz, 1H), 7.53–7.48 (m, 2H), 7.45 (td,** *J* **= 8.0, 1.0 Hz, 1H), 7.29 (d,** *J* **= 7.0 Hz, 1H), 6.83 (d,** *J* **= 8.5 Hz, 1H), 4.00 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 191.0, 158.6, 146.9, 137.6, 137.0, 136.6, 133.8, 133.2, 130.6, 128.7, 128.6, 126.8, 125.0, 122.8, 119.1, 113.3, 112.5, 56.0. MS (***m***/***z***) [M⁺⁺, 260.10] (M⁺, 69%), (M+1, 12%), 259.10 (28%), 232.10 (21%), 231.00 (100%), 230.00 (19%). 229.00 (2%), 214.20 (13%), 213.10 (6%), 203.00 (21%), 202.10 (44%), 201.00 (24%), 200.00 (24%), 189.10 (13%), 188.00 (8%), 187.10 (15%), 101.00 (5%). HRMS**

calculated for $C_{18}H_{13}O_2$ (M + H⁺): 261.0910, found 261.0913.

1-Chloro-11*H***-benzo[***b***]fluoren-11-one (3pa), a yellow solid (35.3 mg, 67%), mp 206.4–209.1 °C. ¹H NMR (400 MHz, CDCl₃) \delta 8.14 (s, 1H), 7.87 (d,** *J* **= 8.0 Hz, 1H), 7.83 (s, 1H), 7.80 (d,** *J* **= 8.0 Hz, 1H), 7.58 (d,** *J* **= 7.2 Hz, 1H), 7.54 (td,** *J* **= 7.6, 1.2 Hz, 1H), 7.49–7.41 (m, 2H), 7.23 (d,** *J* **= 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) \delta 190.0, 146.8, 136.7, 136.5, 135.3, 133.7, 132.8, 132.3, 131.4, 130.8, 130.7, 129.0, 128.8, 127.1, 125.8, 119.4, 119.2. MS (***m***/***z***) [M⁺⁺, 264.00] (M⁺, 100%), (M+1, 20%), (M+2, 35%), (M+3, 6%), 238.10 (7%), 237.10 (3%), 236.00 (20%), 229.10 (1%), 201.10 (23%), 200.10 (38%), 199.10 (9%), 198.10 (5%), 174.00 (5%). HRMS calculated for C₁₇H₁₀ClO (M + H⁺): 265.0415, found 265.0416.**

2-Iodo-3-methoxy-11*H***-benzo[***b***]fluoren-11-one (3qa), a yellow solid (48.6 mg, 63%), mp 258.1–261.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.10 (s, 1H), 7.88 (d,** *J* **= 8.0 Hz, 1H), 7.85 (s, 1H), 7.82 (d,** *J* **= 8.0 Hz, 1H), 7.55 (td,** *J* **= 7.6, 1.2 Hz, 1H), 7.48 (td,** *J* **= 7.6, 1.2 Hz, 1H), 7.10 (s, 1H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 163.2, 147.5, 137.2, 136.5, 135.9, 133.8, 133.0, 130.7, 130.6, 128.9, 128.7, 127.1, 125.3, 119.0, 102.7, 86.4, 56.8. MS (***m***/***z***) [M⁺⁺, 386.00] (M⁺, 100%), (M+1, 19%), 343.00 (5%), 260.15 (1%), 244.00 (19%), 230.10 (4%), 229.10 (8%), 227.90 (1%),**

216.10 (5%), 202.10 (7%), 201.10 (19%), 200.10 (15%), 188.10 (10%), 187.10 (15%). HRMS calculated for $C_{18}H_{12}IO_2$ (M + H⁺): 386.9876, found 386.9879.

2,4-Dimethyl-11*H***-benzo**[*b*]**fluoren-11-one** (**3ra**), a yellow solid (45.4 mg, 88%), mp 175.0–177.6 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.63 (s, 1H), 7.44 (t, *J* = 7.0 Hz, 1H), 7.37 (t, *J* = 7.0 Hz, 1H), 7.26 (s, 1H), 6.98 (s, 1H), 2.50 (s, 3H), 2.27 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 193.3, 140.0, 139.2, 138.9, 138.0, 137.0, 136.8, 134.1, 133.4, 132.7, 130.4, 128.9, 128.6, 126.6, 125.0, 122.4, 121.6, 21.1, 20.3. MS (*m*/*z*) [M⁺⁺, 258.10] (M⁺, 100%), (M+1, 23%), 243.10 (17%), 230.10 (5%), 229.10 (19%), 228.10 (22%), 227.10 (10%), 226.10 (14%), 216.10 (9%), 215.10 (51%), 213.10 (8%), 202.10 (9%), 189.10 (5%). HRMS calculated for C₁₉H₁₅O (M + H⁺): 259.1117, found 259.1119.

2,4-Dichloro-11*H***-benzo**[*b*]**fluoren-11-one** (**3sa**), a yellow solid (55.4 mg, 93%), mp 197.2–199.3 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H), 8.08 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1 H), 7.55 (t, *J* = 7.0 Hz, 1H), 7.49–7.47 (m, 2H), 7.38 (d, *J* = 1.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 190.3, 139.3, 139.0, 136.8, 135.9, 135.2, 135.2, 133.2, 132.0, 130.6, 130.6, 129.4, 127.7, 126.3, 123.6, 123.0. MS (*m/z*) [M⁺⁺, 298.00] (M⁺,

100%), (M+1, 18%), (M+2, 66%), (M+3, 12%), (M+4, 11%), 272.00 (10%), 271.10 (3%), 270.00 (15%), 264.10 (1%), 262.90 (1%), 234.95 (7%), 234.10 (6%), 201.00 (7%), 200.00 (38%), 199.10 (14%), 198.00 (12%). HRMS calculated for $C_{17}H_9Cl_2O$ (M + H⁺): 299.0025, found 299.0027.

2,3,4-Trimethoxy-11*H***-benzo[***b***]fluoren-11-one (3ta), a yellow solid (56.3 mg, 88%), mp 194.5–197.0 °C. ¹H NMR (500 MHz, CDCl₃) \delta 8.04 (s, 1H), 7.99 (s, 1H), 7.81 (d,** *J* **= 8.0 Hz, 1H), 7.78 (d,** *J* **= 8.0 Hz, 1H), 7.50 (td,** *J* **= 8.0, 1.0 Hz, 1H), 7.41 (td,** *J* **= 8.0, 1.0 Hz, 1H), 7.09 (s, 1H), 4.10 (s, 3H), 4.00 (s, 3H), 3.91 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) \delta 192.2, 154.9, 149.8, 148.4, 137.3, 137.0, 133.2, 132.9, 131.9, 130.9, 130.6, 128.8, 128.8, 126.6, 125.2, 121.4, 103.5, 61.1, 60.6, 56.4. MS (***m***/***z***) [M⁺⁺, 320.10] (M⁺, 100%), (M+1, 23%), 305.10 (19%), 290.10 (8%), 277.10 (13%), 263.00 (6%), 262.00 (35%), 247.10 (24%), 234.10 (5%), 219.10 (10%), 218.20 (5%), 217.10 (12%), 191.00 (17%), 190.00 (3%), 189.05 (7%), 188.10 (3%), 187.10 (6%), 163.10 (22%), 162.10 (5%). HRMS calculated for C₂₀H₁₇O₄ (M + H⁺): 321.1121, found 321.1122.**

13*H***-Dibenzo**[*a*,*h*]**fluoren-13-one** (**3ua**), a yellow solid (34.7 mg, 62%), mp 202.0–205.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.03 (d, *J* = 8.5 Hz, 1H),

8.02 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.75 (t, J = 8.5 Hz, 2H), 7.72–7.70 (m, 2H), 7.59 (td, J = 8.0, 1.0 Hz, 1H), 7.49 (td, J = 7.5, 1.0 Hz, 1H), 7.46–7.40 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 194.0, 146.4, 138.0, 136.7, 136.2, 134.2, 133.9, 133.4, 130.8, 130.1, 129.5, 129.4, 128.8, 128.8, 128.5, 126.9, 126.7, 125.0, 124.6, 118.8, 118.4. MS (*m/z*) [M⁺⁺, 280.10] (M⁺, 100%), (M+1, 20%), 252.10 (18%), 251.10 (6%), 250.10 (23%), 249.10 (4%), 248.10 (5%), 224.10 (4%). HRMS calculated for C₂₁H₁₃O (M + H⁺): 281.0961, found 281.0963.

5H-Benzo[5,6]indeno[1,2-*c*]pyridin-5-one (3va), a yellow solid (16.2 mg, 35%), mp 182.2–185.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.08 (s, 1H), 8.70 (d, *J* = 3.0 Hz, 1H), 8.21 (s, 1H), 7.95 (s, 1H), 7.89 (d, *J* = 8.5 Hz, 1H), 7.84 (d, *J* = 8.5 Hz, 1H), 7.59 (td, *J* = 8.0, 1.0 Hz, 1H), 7.55 (d, *J* = 4.5 Hz, 1H), 7.51 (td, *J* = 8.0, 1.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 192.3, 151.0, 143.5, 141.8, 138.0, 137.0, 136.5, 133.7, 131.6, 131.1, 129.7, 129.0, 127.6, 127.2, 120.3, 117.2. MS (*m*/*z*) [M⁺⁺, 231.10] (M⁺, 100%), (M+1, 24%), 204.10 (9%), 203.10 (21%), 202.10 (8%), 201.10 (7%), 177.00 (10%), 176.10 (25%), 175.10 (14%), 174.10 (10%), 150.00 (9%), 149.05 (4%). HRMS calculated for C₁₆H₁₀NO (M + H⁺): 232.0757, found 232.0757.

mg, 73%), mp 224.0–227.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (s, 1H), 7.67 (s, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.58 (s, 1H), 7.53 (s, 1H), 7.45 (s, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 2.45 (s, 3H), 2.41 (s, 3H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 192.8, 145.9, 145.4, 139.0, 137.7, 136.6, 135.6, 134.0, 132.7, 132.4, 130.4, 129.6, 128.6, 124.6, 124.2, 121.4, 117.9, 22.2, 20.3, 20.0. MS (*m/z*) [M⁺⁺, 272.10] (M⁺, 100%), (M+1, 19%), 271.10 (10%), 257.10 (25%), 242.20 (3%), 239.20 (5%), 229.10 (16%), 228.10 (12%), 227.10 (7%), 226.10 (11%), 215.10 (6%), 214.10 (2%), 213.20 (5%), 202.00 (7%). HRMS calculated for C₂₀H₁₇O (M + H⁺): 273.1274, found 273.1274.

7,8-Dimethoxy-3-methyl-11*H***-benzo[***b***]fluoren-11-one (3bc), a yellow solid (44.3 mg, 73%), mp 181.2–183.9 °C. ¹H NMR (500 MHz, CDCl₃) \delta 7.96 (s, 1H), 7.65 (s, 1H), 7.58 (d,** *J* **= 8.0 Hz, 1H), 7.40 (s, 1H), 7.13 (s, 1H), 7.09–7.08 (m, 2H), 4.02 (s, 3H), 4.00 (s, 3H), 2.44 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) \delta 192.9, 151.6, 149.9, 145.8, 145.4, 137.7, 133.8, 133.0, 132.0, 129.4, 129.1, 124.2, 123.9, 121.2, 117.4, 109.3, 107.6, 56.0, 22.2. MS (***m/z***) [M⁺⁺, 304.10] (M⁺, 100%), (M+1, 22%), 289.10 (7%), 262.10 (7%), 261.10 (37%), 246.10 (7%), 243.10 (5%), 233.10 (9%), 232.10 (5%), 231.10 (20%), 219.00 (9%), 218.10 (48%), 215.10 (5%), 203.10 (5%), 202.10 (9%), 190.10 (6%), 189.05 (23%), 188.20 (5%), 187.10 (6%). HRMS calculated for C₂₀H₁₇O₃ (M + H⁺): 305.1172, found 305.1170.**

6,9-Dimethoxy-3-methyl-11*H***-benzo[***b***]fluoren-11-one (3bd), a yellow solid (49.2 mg, 81%), mp 209.0–211.0 °C. ¹H NMR (400 MHz, CDCl₃) \delta 8.48 (d, J = 0.4 Hz, 1H), 8.11 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.46 (s, 1H), 7.08 (dd, J = 7.6, 0.4 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 8.4 Hz, 1H), 3.92 (s, 3H), 3.91 (s, 3H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): \delta 192.9, 151.6, 149.8, 145.8, 145.3, 138.3, 133.8, 132.6, 129.6, 128.9, 126.0, 124.1, 121.6, 119.8, 113.0, 107.2, 104.7, 55.7, 22.1. MS (***m/z***) [M⁺⁺, 304.10] (M⁺, 71%), (M+1, 16%), 290.10 (22%), 289.10 (100%), 274.10 (18%), 273.10 (4%), 261.10 (9%), 247.10 (6%), 246.10 (31%), 218.10 (13%), 192.00 (12%), 190.95 (3%), 189.95 (10%), 189.05 (21%), 163.00 (10%). HRMS calculated for C₂₀H₁₇O₃ (M + H⁺): 305.1172, found 305.1171.**

7-Methyl-10*H*-indeno[1',2':6,7]naphtho[2,3-*d*][1,3]dioxol-10-one (3be), a yellow solid (37.4 mg, 65%), mp 246.0–249.0 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (s, 1H), 7.65 (s, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.43 (s, 1H), 7.15 (s, 1H), 7.11–7.10 (m, 2H), 6.08 (s, 2H), 2.45 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 192.9, 149.9, 148.2, 145.8, 145.3, 138.0, 134.6, 133.7, 132.2, 130.6, 129.6, 124.3, 124.3, 121.2, 118.1, 106.8, 105.2, 101.6, 22.2. MS (*m/z*)

 $[M^{+}, 288.10] (M^{+}, 100\%), (M^{+}1, 20\%), 287.10 (17\%), 232.00 (7\%), 231.10 (7\%), 230.10 (6\%), 229.00 (2\%), 203.10 (8\%), 202.10 (22\%), 201.00 (13\%), 200.10 (18\%).$ HRMS calculated for $C_{19}H_{13}O_3$ (M + H⁺): 289.0859, found 289.0858.

3-Methyl-13*H***-indeno[1,2-***b***]anthracen-13-one (3bf), a yellow solid (40.1 mg, 68%), mp 220.0–222.0 °C. ¹H NMR (400 MHz, CDCl₃) \delta 8.33 (s, 1H), 8.24 (s, 1H), 8.22 (s, 1H), 7.91 (s, 1H), 7.89 (s, 1H), 7.84 (s, 1H), 7.63 (d,** *J* **= 7.6 Hz, 1H), 7.50–7.43 (m, 3H), 7.11 (d,** *J* **= 7.6 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 192.0, 146.1, 145.1, 136.2, 134.6, 133.4, 133.4, 133.2, 132.1, 131.1, 130.4, 130.1, 128.3, 128.0, 127.3, 126.9, 126.3, 126.1, 124.2, 121.7, 118.5, 22.2. MS (***m***/***z***) [M⁺⁺, 294.10] (M⁺, 100%), (M+1, 23%), 266.10 (7%), 265.10 (27%), 264.10 (5%), 263.10 (15%), 132.65 (4%). HRMS calculated for C₂₂H₁₅O (M + H⁺): 295.1117, found 295.1118.**

3bg

3,5,10-Trimethyl-11*H***-benzo[***b***]fluoren-11-one (3bg), a yellow solid (35.3 mg, 65%), mp 143.0–145.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d,** *J* **= 8.4 Hz, 1H), 8.04 (d,** *J* **= 8.4 Hz, 1H), 7.64–7.61 (m, 2H), 7.56 (td,** *J* **= 8.0, 1.2 Hz, 1H), 7.51–7.47 (m, 1H), 7.10 (d,** *J* **= 7.6 Hz, 1H), 2.98 (s, 3H), 2.80 (s, 3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 145.2, 145.2,**

136.4, 136.1, 135.4, 134.8, 134.0, 129.1, 128.8, 128.2, 127.6, 126.4, 126.2, 125.2, 124.9, 123.9, 22.5, 14.9, 12.2. MS (*m/z*) [M⁺⁺, 272.10] (M⁺, 100%), (M+1, 20%), 271.10 (8%), 257.10 (21%), 243.10 (5%), 242.20 (3%), 241.10 (4%), 240.20 (3%), 239.10 (8%), 230.10 (9%), 229.10 (49%), 228.10 (37%), 227.10 (12%), 226.10 (16%), 215.10 (7%), 202.10 (10%). HRMS calculated for $C_{20}H_{17}O$ (M + H⁺): 273.1274, found 273.1271.

6. Preliminary Mechanistic Experiments

Deuterium labeling experiment

Ring-opening/dehydration:

A 25-mL oven-dried sealed tube was charged with **4aa** (49.6 mg, 0.20 mmol), $Co(OAc)_2$ (10.6 mg, 0.06 mmol), and Cs_2CO_3 (325.8 mg, 1.00 mmol). The tube was evacuated and filled with O_2 (1 atm), and TFE (2.0 mL) was added. The tube was stirred at 140 °C for 36 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (5.0 mL), filtered through a plug of *Celite*, and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with *n*-hexanes/EtOAc (40:1, v/v) to afford corresponding product **3aa** in 97% yield.

A 25-mL oven-dried sealed tube was charged with **4aa** (49.6 mg, 0.20 mmol), Cs_2CO_3 (130.3 mg, 0.40 mmol). The tube was evacuated and filled with Ar (1 atm), and TFE (2.0 mL) was added. The tube was stirred at specified temperature for 36 h. After cooling to room temperature, the reaction mixture was concentrated in vacuo and purified by column chromatography on silica gel, eluting with *n*-hexanes/EtOAc (40:1, v/v) to afford corresponding product **3aa**.

7. References

1. a) S. Zhai, S. Qiu, X. Chen, J. Wu, H. Zhao, C. Tao, Y. Li, B. Cheng, H. Wang and H.

Zhai, *Chem. Commun.*, 2018, **54**, 98; b) S. Qiu, S. Zhai, H. Wang, C. Tao, H. Zhao and H. Zhai, *Adv. Synth. Catal.*, 2018, **360**, 3271.

2. S.-Y. Yan, Y.-J. Liu, B. Liu, Y.-H. Liu and B.-F. Shi, Chem. Commun., 2015, 51, 4069.

3. P. Gandeepan, P. Rajamalli and C.-H. Cheng, Angew. Chem., Int. Ed., 2016, 55, 4308.

- 4. a) Y. Cheng, K. Parthasarathy and C. Bolm, Eur. J. Org. Chem., 2017, 2017, 1203; b)
- M. Christl and S. Groetsch, Eur. J. Org. Chem., 2000, 2000, 1871; c) M. S. Newman, H.

M. Dali and W. M. Hung, J. Org. Chem., 1975, 40, 262; d) D. Yang, P. Hu, Y. Long, Y.

A1.56

<2.30 Z2.89

Wu, H. Zeng, H. Wang and X. Zuo, Beilstein J. Org. Chem., 2009, 5, 53.

ĩ

8. ¹H, ¹³C and ¹⁹F NMR Spectra

Fig. S3. ¹H NMR Spectrum of 3aa

Fig. S9. ¹H NMR Spectrum of 3da

S31

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 Fig. S13. ¹⁹F NMR Spectrum of **3ea**

S33

Fig. S19. ¹³C NMR Spectrum of **3ha**

¹H NMR (500 MHz, CDCl₃)

3ja ¹H NMR (500 MHz, CDCl₃)

Fig. S23. ¹³C NMR Spectrum of 3ja

Fig. S25. ¹³C NMR Spectrum of 3ka

Fig. S31. ¹H NMR Spectrum of 3na

S43

S44

Fig. S39. ¹H NMR Spectrum of 3ra

Fig. S47. ¹H NMR Spectrum of 3va

Fig. S53. ¹H NMR Spectrum of 3bd

