Divergent synthesis of polysubstituted cyclopropanes and β-silyoxy imidates via

switchable additions of *N-tert*-butanesulfinylimidates to acylsilanes

Fan Tang, ^{†,§} Peng-Ju Ma, [†] Yun Yao, [‡] Yan-Jun Xu, [†] Chong-Dao Lu *,†,‡

 [†]Key Laboratory of Plant Resources and Chemistry of Arid Zones, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
[‡]School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
[§]University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: clu@ms.xjb.ac.cn

Table of Contents

1. General experimental information	2
2. Calculation of diastereomeric ratio	3
3. Procedure for preparation of products 3	11
4. Procedure for preparation of products 5	18
5. Procedure for preparation of products 4a-c	23
6. Procedure for preparation of product 3s	24
7. Procedures for the manipulations of cyclopropane product 3ad	25
8. ¹ H NMR and ¹³ C NMR spectra for all new compounds	27
9. X-Ray crystal structures	72

1. General experimental information

All reactions were carried out under a positive pressure of argon atmosphere in flame-dried glass ware with magnetic stirring using standard Schlenk techniques. THF and toluene were freshly distilled from sodium/benzophenone under argon. CH2Cl2 was distilled from CaH2 prior to use. Other solvents and commercial reagents were used without additional purification otherwise stated. Purification of the reaction products was carried out by flash column chromatography using 200-300 mesh silica gel. Visualization on TLC (thin layer chromatography) was achieved by the use of UV light (254 nm) and treatment with aqueous ceric ammonium molybdate or aqueous KMnO₄ followed by heating. Melting point (m.p.) were measured using a Buchi melting point apparatus M-560 and are uncorrected. High-resolution mass spectra (HRMS) were recorded with an Agilent 6210 ESI-TOF mass spectrometer. Optical rotations were measured on an Autopol IV (Rudolph Research Analytical). Proton and carbon nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on either a Varian Inova 400 MHz (¹³C NMR at 100 MHz) spectrometer with solvent resonance as the internal standard (¹H NMR: CDCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.2 ppm). ¹H NMR data are reported as follows: chemical shifts, multiplicity (brs = broad singlet, s = singlet, d = doublet, t = triplet, q =quadruplet, m = multiplet), coupling constants (Hz) and integration.

All *N-tert*-butanesulfinyl imidates were prepared from the enantioenriched *tert*-butanesulfinamide $(ee > 99.0\%)^{S1}$ according to the reported procedure.^{S2} Acylsilanes were prepared according to the reported procedure.^{S3}

References

(S1) The enantiomeric excess of the starting *tert*-butylsulfinamide was checked by chiral HPLC: Daicel Chiralpak AD, 25 cm \times 0.46 cm; 93:7 *n*-hexane:*i*-PrOH, 1 mL/min; 220 nm; (*R*) RT = 8.86; (*S*) RT = 11.55.

(S2) (a) Owens, T. D.; Souers, A. J.; Ellman, J. A. J. Org. Chem. 2003, 68, 3. (b) Colpaert, F.; Mangelinckx, S.; Verniest, G.; DeKimpe, N. J. Org. Chem. 2009, 74, 3792. (c) Kochi, T.; Ellman, J. A. J. Am. Chem. Soc. 2004, 126, 15652. (d) Huang, H.-X.; Wang, H.-J.; Tan, L.; Wang, S.-Q.; Tang, P.; Song, H.; Liu, X.-Y.; Qin, Y. J. Org. Chem. 2016, 81, 10506–10516. (e) Ma, P.-J.; Liu, H.; Xu, Y.-J.; Aisa, H. A.; Lu, C.-D. Org. Lett. 2018, 20, 1236–1239. (S3) Linghu, X.; Nicewicz, D. A.; Johnson, J. S. Org. Lett. 2002, 4, 2957.

2. Calculation of diastereomeric ratio

Crude ¹H NMR of **3ad** (Table 1, entry 5, dr \sim 7:1)

Crude ¹H NMR of **4a** (Table 1, entry 7, dr > 20:1)

¹H NMR spectrum (CDCl₃, 400 MHz) of **3ad**

¹H NMR spectrum (CDCl₃, 400 MHz) of **5a**

3. Procedure for preparation of cyclopropane products 3ad and 3b-3r

A solution of *N-tert*-butanesulfinylimidate (0.30 mmol, 1.0 equiv) in 2.0 mL THF was added to a flame-dried schlenk flask equipped with a magnetic stirring bar and purged with argon. The solution was cooled to -78 °C. Then, NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) was added dropwise to the solution by syringe. After the reaction mixture was stirred for 30 min at -78 °C, the solution of acylsilane (0.39 mmol, 1.3 equiv) in 2.0 mL THF was added to the reaction mixture via syringe. The reaction mixture was stirred for 1 h at -78 °C. Then, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

Analytical data for cyclopropane products 3

(3aa) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), LiHMDS (1.2 M in THF, 0.30 mL, 0.36 mmol, 1.2 equiv) and acylsilane 2a (69.5 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 85.4 mg (69 %) of 3aa as a white solid. Analytical data for 3aa: m.p. 131–133 °C; $R_f = 0.30$ (petroleum/ ethyl

acetate = 5:1); $[\alpha]_D^{20} = -25.1$; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.42 (m, 2H), 7.34–7.27 (m, 3H), 4.78 (s, 1H), 3.21 (s, 3H), 2.15 (q, *J* = 6.8 Hz, 1H), 1.32 (d, *J* = 6.4 Hz, 3H), 1.30 (s, 9H), -0.03 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 130.5, 128.1, 127.7, 75.6, 64.9, 56.4, 53.8, 32.2, 22.7, 10.5, 0.81; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₁₈H₃₂NO₃SSi 370.1867, found 370.1865.

(3ab) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), LiHMDS (1.2 M in THF, 0.30 mL, 0.36 mmol, 1.2 equiv) and acylsilane 2b (93.7 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 93.2 mg (72 %) of 3ab as a white amorphous solid. Analytical data for 3ab: $R_f = 0.27$ (petroleum/ ethyl

acetate = 5:1); $[\alpha]_D^{20} = -8.1$ (c 0.31, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.46 (m, 2H), 7.37–7.31 (m, 5H), 7.29–7.26 (m, 3H), 4.87 (s, 1H), 3.22 (s, 3H), 2.18 (q, *J* = 6.8 Hz, 1H), 1.30 (s, 9H), 1.17 (d, *J* = 6.8 Hz, 3H), 0.20 (s, 3H), 0.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 136.1, 133.9, 131.0, 129.7, 128.0, 127.9, 127.7, 75.4, 56.5, 53.9, 32.4, 22.7, 10.8, -0.63, -0.91; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₃H₃₃NNaO₃SSi 454.1843, found 454.1838.

(**3ac**) The title compound was prepared using imidate **1a** (57.4 mg, 0.30 mmol, 1.0 equiv), LiHMDS (1.2 M in THF, 0.30 mL, 0.36 mmol, 1.2 equiv) and acylsilane **2c** (102.4 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 91.2 mg (67 %) of **3ac** as a white amorphous

solid. Analytical data for **3ac**: $R_f = 0.54$ (petroleum / ethyl acetate = 5:1); $[\alpha]_D{}^{20} = -16.9$ (c 0.54, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.43 (m, 2H), 7.33–7.27 (m, 3H), 4.91 (s, 1H), 3.23 (s, 3H), 2.21 (q, J = 6.8 Hz, 1H), 1.34 (d, J = 6.8 Hz, 3H), 1.31 (s, 9H), 1.00–0.98 (m, 9H), 0.86–0.85 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 131.5, 128.1, 127.9, 75.6, 65.1, 56.6, 53.9, 32.5, 22.8, 18.3, 18.0, 13.0, 11.6; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₄H₄₃NNaO₃SSi 476.2625, found 476.2621.

(3ad) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 121.1 mg (98%) of 3ad as a white solid. Analytical data for 3ad: m.p. 62–64 °C; $R_f = 0.32$ (petroleum ether / ethyl

acetate = 8:1); $[\alpha]_D^{20}$ = -33.0 (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.42 (m, 2H), 7.34–7.27 (m, 3H), 4.82 (s, 1H), 3.22 (s, 3H), 2.15 (q, *J* = 6.8 Hz, 1H), 1.39 (d, *J* = 6.8 Hz, 3H), 1.31 (s, 9H), 0.79 (s, 9H), 0.07 (s, 3H), -0.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 131.1, 128.0, 127.9, 75.1, 64.7, 56.4, 53.8, 32.2, 25.8, 22.7, 18.0, 11.3, -4.0, -4.2; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₁H₃₇NNaO₃SSi 434.2156, found 434.2151.

(3b) The title compound was prepared using imidate 1b (61.6 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 127.6 mg (99%) of 3b as a white solid. Analytical data for 3b: m.p. 52–54 °C; R_f = 0.51 (petroleum ether / ethyl acetate = 8:1);

 $[\alpha]_D^{20} = -38.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H), 7.31–7.24 (m, 3H), 4.68 (s, 1H), 3.14 (s, 3H), 2.03–1.93 (m, 2H), 1.74–1.62 (m, 1H), 1.29 (s, 9H), 1.20 (t, *J* = 6.8 Hz, 3H), 0.81 (s, 9H), 0.09 (s, 3H), -0.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 130.7, 127.8, 75.4, 64.9, 56.1, 52.9, 39.9, 25.8, 22.6, 19.8, 18.0, 15.0, -4.0, -4.1; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₂H₃₉NNaO₃SSi 448.2312, found 448.2316.

(3c) The title compound was prepared using imidate 1c (65.8 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 128.0 mg (97%) of 3c as a white solid. Analytical data for 3c: m.p. 51–52 °C; $R_f = 0.62$ (petroleum ether / ethyl acetate = 8:1); $[\alpha]_D^{20} = -46.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.46

(m, 2H), 7.32–7.24 (m, 3H), 4.68 (s, 1H), 3.13 (s, 3H), 2.08–2.04 (m, 1H), 1.94–1.85 (m, 1H), 1.70–1.60 (m, 3H), 1.29 (s, 9H), 1.01 (t, J = 7.2 Hz, 3H), 0.82 (s, 9H), 0.09 (s, 3H), -0.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 130.6, 127.79, 127.77, 75.4, 64.7, 56.1, 52.8, 38.2, 28.6, 25.9, 23.8, 22.7, 18.0, 14.3, -4.0, -4.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₃H₄₁NNaO₃SSi 462.2469, found 462.2465.

(3d) The title compound was prepared using imidate 1d (80.2 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 122.8 mg (84%) of 3d as a colorless oil. Analytical data for 3d: $R_f = 0.41$ (petroleum ether / ethyl acetate = 8:1); $[\alpha]_D^{20} = -55.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J =

8.0, 2.0 Hz, 2H), 7.41 (d, J = 7.6 Hz, 2H), 7.36–7.31 (m, 5H), 7.21 (t, J = 7.2 Hz, 1H), 4.79 (s, 1H), 3.23 (dd, J = 15.2, 5.6 Hz, 1H), 3.14 (s, 3H), 3.00 (dd, J = 15.2, 8.8 Hz, 1H), 2.53 (dd, J = 8.8, 5.6 Hz, 1H), 1.27 (s, 9H), 0.81 (s, 9H), 0.04 (s, 3H), -0.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 136.7, 131.0, 128.6, 128.5, 128.03, 127.97, 126.1, 75.3, 65.2, 56.3, 53.5, 37.5, 32.0, 25.8, 22.6, 18.0, -3.9, -4.2 ; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₇H₄₁NNaO₃SSi 510.2469, found 510.2465.

(3e) The title compound was prepared using imidate 1e (104.9 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 164.2 mg (96%) of 3e as a colorless oil. Analytical data for 3d: $R_f = 0.61$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = -37.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.47 (m, 2H), 7.32–7.24 (m, 3H), 4.68 (s, 1H), 3.78–3.65 (m, 2H), 3.13 (s, 3H),

2.12–2.02 (m, 2H), 1.86–1.79 (m, 2H), 1.69–1.61 (m, 1H), 1.29 (s, 9H), 0.90 (s, 9H), 0.82 (s, 9H), 0.09 (s, 3H), 0.06 (s, 6H), -0.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 130.7, 127.83, 127.80, 75.4, 64.8, 63.0, 56.2, 52.8, 37.9, 33.6, 26.2, 25.9, 22.74, 22.68, 18.5, 18.0, -3.9, -4.1, -5.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₉H₅₅NNaO₄SSi₂ 592.3283, found 592.3289.

(3f) The title compound was prepared using imidate 1f (106.6 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 150.3 mg (87%) of 3f as a colorless oil. Analytical data for 3f: $R_f = 0.32$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = -40.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (m, 2H), 7.32–7.28 (m, 5H), 6.89–6.85 (m, 2H), 4.68 (s, 1H), 4.46 (s, 2H), 3.80 (s,

3H), 3.61–3.52 (m, 2H), 3.14 (s, 3H), 2.15–2.04 (m, 2H), 1.98–1.86 (m, 2H), 1.73–1.65 (m, 1H), 1.30 (s, 9H), 0.82 (s, 9H), 0.08 (s, 3H), -0.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 137.3, 131.1, 130.8, 129.4, 127.9, 113.9, 110.2, 75.3, 72.6, 69.9, 64.8, 56.2, 55.4, 52.8, 37.8, 30.5, 25.9, 23.1, 22.7, 18.0, -3.9, -4.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₁H₄₉NNaO₅SSi 598.2993, found 598.2988.

(3g) The title compound was prepared using imidate 1g (65.2 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 111.7 mg (85%) of 3g as a white solid. Analytical data for 3g: m.p. 56–57 °C; R_f = 0.32 (petroleum ether / ethyl acetate = 8:1); $[\alpha]_D^{20} = -50.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45

(m, 2H), 7.34–7.28 (m, 3H), 6.05 (m, 1H), 5.26 (dd, J = 17.2, 1.6 Hz, 1H), 5.13 (dd, J = 10.4, 1.6 Hz, 1H), 4.77 (s, 1H), 3.19 (s, 9H), 2.67–2.60 (m, 1H), 2.46–2.38 (m, 1H), 2.17 (dd, J = 8.8, 6.0 Hz, 1H), 1.31 (s, 9H), 0.81 (s, 9H), 0.08 (s, 3H), -0.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 136.7, 130.9, 128.03, 127.96, 115.9, 77.4, 75.1, 64.9, 56.4, 53.5, 36.7, 30.5, 25.8, 22.7, 18.0, -3.9, -4.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₃H₃₉NNaO₃SSi 460.2312, found 460.2305.

(3h) The title compound was prepared using imidate 1h (73.6 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 123.0 mg (88%) of 3h as a white solid. Analytical data for 3h: m.p. 84–86 °C; R_f = 0.60 (petroleum ether / ethyl acetate = 8:1); $[\alpha]_D^{20} = -43.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H), 7.33–7.27 (m, 3H), 5.91–5.81 (m, 1H), 5.05–5.02 (m, 1H),

4.98–4.94 (m, 1H), 4.68 (s, 1H), 3.14 (s, 3H), 2.21–2.16 (m, 2H), 2.07–2.03 (m, 1H), 1.99–1.92 (m, 1H), 1.75–1.62 (m, 3H), 1.30 (s, 9H), 0.82 (s, 9H), 0.09 (s, 3H), -0.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 137.4, 130.7, 127.9, 114.7, 75.4, 64.8, 56.2, 52.8, 38.0, 33.9, 29.9, 29.7, 25.9, 22.7, 18.0, -4.0, -4.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₅H₄₃NNaO₃SSi 488.2625, found 488.2619.

(3i) The title compound was prepared using imidate 1i (68.8 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 113.1 mg (84%) of 3i as a white solid. Analytical data for 4i: m.p. 76–78 °C; $R_f = 0.26$ (petroleum ether / ethyl acetate = 8:1); $[\alpha]_D^{20} = -108.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.59 (m, 2H), 7.36–7.28 (m, 3H), 4.76 (s, 1H), 3.20 (s, 3H), 2.69–2.62 (m, 1H),

2.42–2.33 (m, 1H), 2.30 (dd, J = 10.0, 4.4 Hz, 1H), 1.85 (t, J = 2.4 Hz, 3H), 1.31 (s, 9H), 0.80 (s, 9H), 0.17 (s, 3H), -0.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 131.0, 128.2, 128.1, 78.3, 77.7, 74.6, 65.1, 56.5, 53.5, 36.4, 25.8, 22.7, 18.0, 16.7, 3.7, -4.2, -4.3; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₉NNaO₃SSi 472.2312, found 472.2314.

(3j) The title compound was prepared using imidate 1j (87.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 130.2 mg (85%) of 3j as a colorless oil. Analytical data for 3j: $R_f = 0.47$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = -112.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.66 (m, 2H), 7.48–7.45 (m, 2H), 7.37–7.30 (m, 6H), 4.80 (s, 1H), 3.24 (s, 3H), 2.97 (dd, *J*)

= 17.6, 4.8 Hz, 1H), 2.65 (dd. J = 17.6, 10.0 Hz, 1H), 2.44 (dd, J = 10.4, 4.8 Hz, 1H), 1.32 (s, 9H), 0.81 (s, 9H), 0.21 (s, 3H), -0.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.1, 131.7, 131.0, 128.4, 128.3, 128.2, 127.8, 124.0, 89.2, 82.5, 74.6, 65.2, 56.5, 53.5, 35.8, 25.8, 22.7, 18.0, 17.4, -4.0, -4.2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₉H₄₁NNaO₃SSi 534.2469, found 534.2461.

(3k) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2e (91.4 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 119.8 mg (94%) of 3k as a white amorphous solid. Analytical data for 3k: $R_f = 0.30$ (petroleum ether / ethyl acetate =

8:1); $[\alpha]_D^{20} = -31.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 7.6 Hz, 2H), 4.82 (s, 1H), 3.23 (s, 3H), 2.34 (s, 3H), 2.12 (q, J = 6.8 Hz, 1H), 1.37 (d, J = 6.8 Hz, 3H), 1.30 (s, 9H), 0.80 (s, 9H), 0.07 (s, 3H), -0.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 133.6, 131.0, 128.7, 75.2, 64.5, 56.4, 53.8, 32.1, 25.9, 22.7, 21.4, 18.0, 11.3, -4.0, -4.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₉NNaO₃SSi 448.2312, found 448.2307.

(31) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2f (107.8 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 126.1 mg (90%) of 3l as a white solid. Analytical data for 3l: m.p. 134–136 °C; $R_f = 0.29$ (petroleum ether / ethyl acetate = 8:1); $[\alpha]_D^{20} = -29.0$ (c 0.10, MeOH); ¹H NMR

(400 MHz, CDCl₃) δ 7.35–7.30 (m, 4H), 4.82 (s, 1H), 3.24 (s, 3H), 2.12 (q, *J* = 6.8 Hz, 1H), 1.38 (d, *J* = 6.8 Hz, 3H), 1.31 (s, 9H), 0.78 (s, 9H), 0.05 (s, 3H), -0.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 133.5, 130.8, 124.9, 75.2, 64.5, 56.4, 53.8, 34.7, 32.1, 31.5, 25.8, 22.7, 18.0, 11.3, -4.1, -4.3; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₅H₄₅NNaO₃SSi 490.2782, found 490.2786.

(3m) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2g (96.9 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 127.8 mg (97%) of 3m as a white solid. Analytical data for 3m: m.p. 68–70 °C; $R_f = 0.31$ (petroleum ether / ethyl

acetate = 8:1); $[\alpha]_D^{20}$ = -34.0 (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 1.6 Hz, 1H), 7.14 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 4.82 (s, 1H), 3.23 (s, 3H), 2.25 (s, 3H), 2.24 (s, 3H), 2.11 (q, *J* = 6.8 Hz, 1H), 1.38 (d, *J* = 6.8 Hz, 3H), 1.31 (s, 9H), 0.80 (s, 9H), 0.06 (s, 3H), -0.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.2, 136.0, 133.9, 132.4, 129.2, 128.5, 75.2, 64.5, 56.4, 32.1, 25.9, 22.7, 19.9, 19.7, 18.0, 11.3, -4.0, -4.1; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₃H₄₁NNaO₃SSi 462.2469, found 462.2461.

(3n) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2h (93.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 128.7 mg (99%) of 3n as a white solid. Analytical data for 3n: m.p. 49–51 °C; $R_f = 0.18$ (petroleum ether / ethyl acetate = 8:1); $[\alpha]_D^{20} = -33.0$ (c 0.10, MeOH); ¹H NMR (400 MHz,

CDCl₃) δ 7.41–7.37 (m, 2H), 7.05–6.98 (m, 2H), 4.81 (s, 1H), 3.22 (s, 3H), 2.15 (q, *J* = 6.8 Hz, 1H), 1.36 (d, *J* = 6.8 Hz, 3H), 1.31 (s, 9H), 0.79 (s, 9H), 0.07 (s, 3H), -0.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, *J* = 245.5 Hz), 132.8 (d, *J* = 8.1 Hz), 132.66 (d, *J* = 3.3 Hz), 115.0 (d, *J* = 21.0 Hz), 75.0, 64.1, 56.5, 53.9, 32.2, 25.8, 22.7, 18.0, 11.3, -3.9, -4.0; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₁H₃₇FNNaO₃SSi 452.2061, found 452.2068.

(30) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2i (97.7 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 131.2 mg (99%) of 3o as a white solid. Analytical data for 3o: m.p. 95–97 °C; $R_f = 0.32$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = -26.0$ (c 0.10, MeOH); ¹H NMR (400

MHz, CDCl₃) δ 7.36–7.32 (m, 2H), 6.87–6.83 (m, 2H), 4.82 (s, 1H), 3.81 (s, 3H), 3.24 (s, 3H), 2.11 (q, *J* = 6.8 Hz, 1H), 1.36 (d, *J* = 6.8 Hz, 3H), 1.30 (s, 9H), 0.80 (s, 9H), 0.07 (s, 3H), -0.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 132.4, 128.8, 113.4, 75.2, 64.3, 56.4, 55.3, 53.9, 32.2, 25.9, 22.7, 18.0, 11.4, -4.02, -4.04; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₂H₃₉NNaO₄SSi 464.2261, found 464.2268.

 $(3\mathbf{p} + 3\mathbf{p'})$ The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2j (97.7 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 107.3 mg (81%) of 3p as a white solid and 21.2 mg (16%) of 3p' as a white solid. Analytical

data for **3p** (major diastereoisomer): m.p. 66–68 °C; $R_f = 0.27$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = -32.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 7.6 Hz, 1H), 6.99 (t, J = 2.0 Hz, 1H), 6.83 (dd, J = 8.0, 2.4 Hz, 1H), 4.79 (s, 1H), 3.81 (s, 3H), 3.22 (s, 3H), 2.13 (q, J = 6.8 Hz, 1H), 1.41 (d, J = 6.8 Hz, 3H), 1.31 (s, 9H), 0.81 (s, 9H), 0.08 (s, 3H), -0.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 138.2, 128.9, 123.6, 117.0,

113.2, 75.2, 64.5, 56.5, 55.4, 53.7, 32.3, 25.9, 22.7, 18.0, 11.2, -4.0, -4.1; HRMS (ESI-TOF) m/z[M + Na]⁺ calcd for C₂₂H₃₉NNaO₄SSi 464.2261, found 464.2265. Analytical data for **3p'** (minor diastereoisomer): m.p. 70–71 °C; R_f = 0.29 (petroleum ether / ethyl acetate = 3:1); $[\alpha]_D^{20} = -24.0$ (c 0.05, MeOH);¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.87 (t, J = 2.0 Hz, 1H), 6.83 (dd, J = 8.0, 2.4 Hz, 1H), 3.81 (s, 3H), 3.55 (s, 3H), 3.31 (s, 1H), 2.11 (q, J = 6.4 Hz, 1H), 1.28 (d, J = 7.2 Hz, 3H), 1.01 (s, 9H), 0.86 (s, 9H), 0.02 (s, 3H), -0.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 139.4, 130.1, 122.1, 115.6, 113.9, 74.1, 67.6, 55.7, 55.5, 54.0, 27.4, 26.1, 22.3, 18.5, 7.6, -3.4, -3.6; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₉NNaO₄SSi 464.2261, found 464.2256.

(3q) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2k (102.7 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 65.5 mg (48%) of 3q as a white solid. Analytical data for 3q: m.p. 68–70 °C; $R_f = 0.39$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = -13.0$ (c 0.10,

MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 8.8, 2H), 4.83 (s, 1H), 3.25 (s, 3H), 2.95 (s, 6H), 2.07 (q, J = 6.8 Hz, 1H), 1.36 (d, J = 6.8 Hz, 3H), 1.30 (s, 9H), 0.81 (s, 9H), 0.06 (s, 3H), -0.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 132.1, 123.9, 111.7, 75.3, 64.5, 56.4, 53.9, 40.5, 32.1, 25.9, 22.8, 18.0, 11.4, -4.0, -4.1; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₃H₄₃N₂O₃SSi 455.2758, found 455.2762.

(3r) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), NaHMDS (2.0 M in THF, 180 µL, 0.36 mmol, 1.2 equiv) and acylsilane 2l (82.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 120.3 mg (99%) of 3r as a light yellow oil. Analytical data for 3r: $R_f = 0.48$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = -2.0$ (c 0.10,

MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.41 (m, 1H), 6.37–6.34 (m, 2H), 4.86 (s, 1H), 3.21 (s, 3H), 2.07 (q, *J* = 6.8 Hz, 1H), 1.33 (d, *J* = 6.4 Hz, 3H), 1.28 (s, 9H), 0.85 (s, 9H), 0.08 (s, 3H), -0.25 (3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 141.8, 111.1, 110.6, 75.6, 59.0, 56.3, 53.6, 33.0, 25.8, 22.6, 17.9, 10.0, -4.6, -4.9; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₁₉H₃₅NNaO₄SSi 424.1948, found 424.1955.

Procedure for 1-gram scale preparation of 3ad

A solution of *N-tert*-butanesulfinylimidate **1a** (956.5 mg, 5.0 mmol, 1.0 equiv) in 50 mL THF was added to a flame-dried schlenk flask equipped with a magnetic stirring bar and purged with argon. The solution was cooled to -78 °C. Then, NaHMDS (2.0 M in THF, 3.0 mL, 6.0 mmol, 1.2 equiv) was added dropwise to the solution by syringe. After the reaction mixture was stirred for 30 min at -78 °C, the solution of acylsilane **2d** (1432.5 mg, 6.5 mmol, 1.3 equiv) in 20 mL THF was added to the reaction mixture via syringe. The reaction mixture was stirred for 1 h at -78 °C. Then,

the reaction was quenched with 10.0 mL saturated aqueous ammonium chloride and extracted with ethyl acetate (50 mL x 3). The combined organic layers were washed with brine, dried over Na_2SO_4 , filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

4. Procedure for preparation of product 5

To a solution of *N-tert*-butanesulfinylimidate (0.30 mmol, 1.0 equiv) and acylsilane (0.39 mmol, 1.3 equiv) in 4.0 mL toluene was added *t*-BuOK (1.0 M in THF, 360μ L, 0.36 mmol, 1.2 equiv) at -78 °C. After the reaction mixture was stirred for 60 min at -78 °C, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

Analytical data for β-silyloxy imidates 5

(5a) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 116.2 mg (94%) of 5a as a white solid.

Analytical data for **5a**: m.p. 78–80 °C; $R_f = 0.33$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -105.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.24 (m, 5H), 4.71 (d, J = 9.6 Hz, 1H), 3.79 (s, 3H), 3.71–3.63 (m, 1H), 1.20 (s, 9H), 0.82 (d, J = 7.2 Hz, 3H), 0.81 (s, 9H), -0.04 (s, 3H), -0.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 142.6, 128.3, 128.0, 127.5, 55.9, 54.1, 46.3, 25.8, 22.2, 18.1, 14.2, -4.5, -5.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₃₇NNaO₃SSi 434.2156, found 434.2151.

(**5b**) The title compound was prepared using imidate **1b** (61.6 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane **2d** (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 108.4 mg (85%) of **5b** as a colorless oil.

Analytical data for **5b**: $R_f = 0.33$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -119.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.23 (m, 5H), 4.70 (d, J = 9.2 Hz, 1H), 3.76 (s, 3H), 3.73–3.70 (m, 1H), 1.45–1.36 (m, 1H), 1.23 (s, 9H), 1.15–1.00 (m, 3H), 0.79 (s, 9H), 0.74 (t, J = 7.2 Hz, 3H), -0.06 (s, 3H), -0.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 143.1, 128.2, 127.9, 127.6, 76.9, 56.0, 53.8, 51.9, 31.3, 25.8, 22.4, 20.7, 18.1, 14.3, -4.6, -5.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₉NNaO₃SSi 448.2312, found 448.2319.

(5c) The title compound was prepared using imidate 1c (65.8 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 126.6 mg (96%) of 5c as a colorless oil. Analytical data for 5c: $R_f = 0.57$ (petroleum ether / ethyl acetate =

10:1); $[\alpha]_D^{20} = -138.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.23 (m, 5H), 4.70 (d, J = 9.2 Hz, 1H), 3.75 (s, 3H), 3.73–3.70 (m, 1H), 1.45–1.36 (m, 1H), 1.23 (s, 9H), 1.14–1.02 (m, 3H), 0.79 (s, 9H), 0.73 (t, J = 7.2 Hz, 3H), -0.06 (s, 3H), -0.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 143.1, 128.2, 127.9, 127.6, 76.9, 56.0, 53.8, 51.9, 31.3, 25.8, 22.4, 20.7, 18.1, 14.3, -4.6, -5.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₃H₄₁NNaO₃SSi 462.2469, found 462.2466.

(5d) The title compound was prepared using imidate 1d (80.2 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 145.9 mg (99%) of 5d as a colorless oil.

Analytical data for **5d**: $R_f = 0.20$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -102.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.2 Hz, 2H), 7.37–7.28 (m, 3H), 7.17–7.07 (m, 3H), 6.99–6.93 (m, 2H), 4.85 (d, J = 8.8 Hz, 1H), 4.02–3.96 (m, 1H), 3.72 (s, 3H), 2.72–2.66 (m, 1H), 2.49 (dd, J = 13.2, 4.0 Hz, 1H), 0.89 (s, 9H), 0.82 (s, 9H), -0.01 (s, 3H), -0.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 142.8, 138.7, 129.1, 128.5, 128.4, 128.1, 127.6, 126.5, 76.8, 55.4, 54.3, 53.6, 35.0, 25.8, 21.9, 18.2, -4.6, -5.0; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₇H₄₁NNaO₃SSi 510.2469, found 510.2461.

(5e) The title compound was prepared using imidate 1e (104.9 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 155.5 mg (91%) of 5e as a colorless oil. Analytical data for 5e: $R_f = 0.38$ (petroleum ether / ethyl acetate =

10:1); $[\alpha]_D^{20} = -95.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.22 (m, 5H), 4.72 (d, J = 8.8 Hz, 1H), 3.76 (s, 3H), 3.73–3.65 (m, 1H), 3.46–3.37 (m, 2H), 1.61–1.59 (m, 1H), 1.49–1.39 (m, 1H), 1.33–1.27 (m, 1H), 1.23 (s, 9H), 1.19–1.13 (m, 1H), 0.80 (s, 18H), -0.05 (s, 3H), -0.06 (s, 6H), -0.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 143.0, 128.3, 127.9, 127.6, 76.8, 62.9, 56.1, 53.9, 51.8, 30.8, 26.0, 25.8, 25.5, 22.4, 18.4, 18.1, -4.5, -5.1, -5.2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₉H₅₅NNaO₄SSi₂ 592.3283, found 592.3281.

(5f) The title compound was prepared using imidate 1f (106.6 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 155.2 mg (90%) of 5f as a colorless oil. Analytical data for 5f: $R_f = 0.19$ (petroleum ether / ethyl acetate =

10:1); $[\alpha]_D^{20} = -89.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.22 (m, 5H), 7.12 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 4.71 (d, J = 9.2 Hz, 1H), 4.28 (s, 2H), 3.78 (s, 3H), 3.76–3.71 (m, 4H), 3.29–3.19 (m, 1H), 1.53–1.30 (m, 3H), 1.26–1.13 (m, 10H), 0.78 (s, 9H), -0.07 (s, 3H), -0.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 159.2, 143.0, 130.7, 129.3, 128.3, 127.9, 127.6, 113.8, 76.8, 72.5, 69.8, 56.2, 55.4, 53.9, 51.6, 27.6, 25.8, 25.7, 22.4, 18.1, -4.6, -5.0; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₁H₄₉NNaO₅SSi 598.2993, found 598.2998.

(5g) The title compound was prepared using imidate 1g (65.2 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 115.4 mg (88%) of 5g as a colorless oil.

Analytical data for **5g**: $R_f = 0.20$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -132.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.24 (m, 5H), 5.60–5.49 (m,1H), 4.89 (t, J = 9.2 Hz, 2H), 4,76 (d, J = 9.2 Hz, 1H), 3.87–3.81 (m, 1H), 3.74 (s, 3H), 2.17–2.08 (m, 1H), 1.94–1.88 (m, 1H), 1.22 (s, 9H), 0.80 (s, 9H), -0.04 (s, 3H), -0.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 142.6, 135.2, 128.3, 128.1, 127.6, 117.1, 76.6, 56.1, 53.8, 51.7, 33.7, 25.8, 22.5, 18.1, -4.6, -5.0; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₃H₃₉NNaO₃SSi 460.2312, found 460.2314.

(5h) The title compound was prepared using imidate 1h (73.6 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 125.6 mg (90%) of 5h as a colorless oil. Analytical data for 5h: $R_f = 0.30$ (petroleum ether / ethyl acetate =

10:1); $[\alpha]_D^{20} = -118.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.22 (m, 5H), 5.66–5.56 (m, 1H), 4.87–4.82 (m, 2H), 4.69 (d, J = 9.2 Hz, 1H), 3.75 (s, 3H), 3.73–3.69 (m, 1H), 1.94–1.78 (m, 2H), 1.48–1.38 (m, 1H), 1.22 (s, 9H), 1.19–1.08 (m, 3H), 0.78 (s, 9H), -0.07 (s, 3H), -0.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 143.1, 138.3, 128.2, 127.9, 127.6, 114.7, 76.8, 56.1, 53.8, 51.8, 33.7, 28.6, 26.7, 25.8, 22.4, 18.1, -4.5, -5.0; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₅H₄₃NNaO₃SSi 488.2625, found 488.2629.

(5i) The title compound was prepared using imidate 1i (68.8 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 124.9 mg (93%) of 5i as a white solid.

Analytical data for **5i**: m.p. 63–65 °C; $R_f = 0.35$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -157.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.25 (m, 5H), 4.74 (d, J = 8.8 Hz, 1H), 3.89 (ddd, J = 10.4, 8.8, 4.4 Hz, 1H), 3.77 (s, 3H), 2.26–2.18 (m, 1H), 2.04–1.97 (m, 1H), 1.64 (t, J = 2.4 Hz, 3H), 1.24 (s, 9H), 0.80 (s, 9H), -0.03 (s, 3H), -0.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 142.1, 128.4, 128.2, 127.4, 76.1, 75.8, 56.0, 54.0, 51.0, 25.8, 22.4, 18.8, 18.2, 3.6, -4.6, -5.0; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₉NNaO₃SSi 472.2312, found 472.2308.

(5j) The title compound was prepared using imidate 1j (87.4 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 136.3 mg (89%) of 5j as a white solid. Analytical data for 5j: m.p. 64–66 °C; R_f = 0.38 (petroleum ether /

ethyl acetate = 10:1); $[\alpha]_D^{20}$ = -152.0 (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.34 (m, 3H), 7.32–7.30 (m, 2H), 7.29–7.28 (m, 2H), 7.26–7.24 (m, 3H), 4.88 (d, *J* = 8.8 Hz, 1H), 4.04 (ddd, *J* = 9.6, 9.2, 4.4 Hz, 1H), 3.79 (s, 3H), 2.49 (dd, *J* = 16.8, 10.0 Hz, 1H), 2.34 (dd, *J* = 16.8, 4.4 Hz, 1H), 1.21 (s, 9H), 0.83 (s, 9H), 0.00 (s, 3H), -0.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 141.9, 131.6, 128.4, 128.3, 127.9, 127.7, 127.4, 123.7, 86.7, 82.3, 75.9, 56.2, 54.1, 50.7, 29.9, 25.8, 22.4, 19.4, 18.2, -4.6, -5.0; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₉H₄₁NNaO₃SSi 534.2469, found 534.2473.

(5k) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2e (91.4 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 103.3 mg (81%) of 5k as a white

solid. Analytical data for **5**k: m.p. 80–82 °C; $R_f = 0.22$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -109.0$ (c 0.10, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 7.6 Hz, 2H), 4.67 (d, J = 9.2 Hz, 1H), 3.79 (s, 3H), 3.67–3.60 (m, 1H), 2.33 (s, 3H), 1.20 (s, 9H), 0.82–0.81 (m, 12H), -0.05, -0.35; ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 139.6, 137.6, 128.9, 127.4, 55.9, 54.0, 46.3, 25.8, 22.2, 21.3, 18.1, 14.2, -4.5, -5.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₉NNaO₃SSi 448.2312, found 448.2305.

(51) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2f (107.8 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 95.6 mg

(68%) of **5**I as a white solid. Analytical data for **5**I: m.p. 95–97 °C; $R_f = 0.50$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -116.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 4.67 (d, J = 9.6 Hz, 1H), 3.80 (s, 3H), 3.68–3.60 (m, 1H), 1.30 (s, 9H), 1.20 (s, 9H), 0.83–0.81 (m, 12H), -0.05 (s, 3H), -0.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 150.9, 139.4, 127.1, 125.0, 55.8, 54.0, 46.3, 34.7, 31.5, 25.8, 22.2, 18.1, 14.3, -4.5, -5.2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₅H₄₅NNaO₃SSi 490.2782, found 490.2779.

(5m) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2g (96.9 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 96.3 mg (73%) of 5m as

a white solid. Analytical data for 5m: m.p. 96–98 °C; $R_f = 0.33$ (petroleum ether / ethyl acetate =

10:1); $[\alpha]_D^{20} = -107.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.08–7.01 (m, 3H), 4.64 (d, J = 9.2 Hz, 1H), 3.80 (s, 3H), 3.65–3.57 (m, 1H), 2.25 (s, 3H), 2.24 (s, 3H), 1.20 (s, 9H), 0.82–0.81 (m, 12H), -0.05 (s, 3H), -0.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 139.9, 136.3, 136.1, 129.4, 128.6, 125.0, 55.8, 54.1, 46.3, 25.8, 22.2, 19.9, 19.7, 18.1, 14.3, -4.4, -5.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₃H₄₁NNaO₃SSi 462.2469, found 462.2476.

(5n) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2h (93.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 117.3 mg (91%) of 5n as

a white solid. Analytical data for **5n**: m.p. 87–88 °C; $R_f = 0.44$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -102.0$ (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J = 8.4, 5.6 Hz, 2H), 7.00 (t, J = 8.8 Hz, 2H), 4.72 (d, J = 9.6 Hz, 1H), 3.77 (s, 3H), 3.68–3.59 (m, 1H), 1.20 (s, 9H), 0.82 (d, J = 6.8 Hz, 3H), 0.80 (s, 9H), -0.04 (s, 3H), -0.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 162.5 (d, J = 244.4), 138.5 (d, J = 3.2 Hz), 129.0 (d, J = 8.0 Hz), 15.2 (d, J = 21.2 Hz), 76.6, 56.0, 54.1, 46.3, 25.8, 22.2, 18.0, 14.0, -4.5, -5.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₃₆FNNaO₃SSi 452.2061, found 452.2058.

(50 + 50') The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2i (97.7 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 51.4 mg

(39%) of **50** as a colorless oil and 10.3 mg (8%) of **50'** as a colorless oil. Analytical data for **50** (major diastereoisomer): $R_f = 0.33$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} = -114.6$ (c 0.37, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 4.66 (d, J = 9.6 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.66–3.59 (m, 1H), 1.20 (s, 9H), 0.82–0.80 (m, 12H), -0.05 (s, 3H), -0.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 159.4, 134.8, 128.5, 113.6, 77.0, 55.9, 55.3, 54.0, 46.4, 25.8, 22.2, 18.1, 14.2, -4.5, -5.1; HRMS (ESI-TOF) m/z [M +]⁺ calcd for C₂₂H₃₉NNaO₄SSi 464.2261, found 464.2255. Analytical data for **50'** (minor diastereoisomer): $R_f = 0.31$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = +10.2$ (c 0.24, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 8.4 Hz, 2H), 4.88 (d, J = 6.6 Hz, 1H), 3.77 (s, 3H), 3.64 (s, 3H), 3.57–3.51 (m, 1H), 1.19 (d, J = 7.2 Hz, 3H), 0.86 (s, 9H), -0.01 (s, 3H), -0.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 158.9, 134.9, 127.8, 113.3, 75.9, 55.9, 55.1, 53.7, 46.4, 25.7, 22.0, 18.1, 13.1, -4.6, -5.2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₉NNaO₄SSi 464.2261, found 464.2259.

(5p) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), *t*-BuOK (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2j (97.7 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 121.8 mg (92%) of 5p as a white solid.

Analytical data for **5p**: m.p. 86–88 °C; $R_f = 0.14$ (petroleum ether / ethyl acetate = 10:1); $[\alpha]_D^{20} =$

-102.0 (c 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, J = 8.4 Hz, 1H), 6.96–6.90 (m, 2H), 6.82–6.79 (m, 1H), 4.69 (d, J = 9.6 Hz,, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.66–3.59 (m, 1H), 1.20 (s, 9H), 0.84–0.82 (m, 12H), -0.03 (s, 3H), -0.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 159.6, 144.2, 129.2, 120.0, 113.6, 112.7, 55.9, 55.4, 54.1, 46.2, 25.8, 22.2, 18.1, 14.3, -4.5, -5.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₉NNaO₄SSi 464.2261, found 464.2266.

Procedure for 1-gram scale preparation of 5a

To a solution of *N-tert*-butanesulfinylimidate **1a** (956.5 mg, 5.0 mmol, 1.0 equiv) and **3a** (1432.5 mg, 6.5 mmol, 1.3 equiv) in 60 mL toluene was added *t*-BuOK (1.0 M in THF, 6.0 mL, 6.0 mmol, 1.2 equiv) at -78 °C. After the reaction mixture was stirred for 60 min at -78 °C, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (50 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

5. General procedure for preparation of cyclopropane products 4a-c

A solution of *N-tert*-butanesulfinylimidate (0.30 mmol, 1.0 equiv) in 2.0 mL THF was added to a flame-dried schlenk flask equipped with a magnetic stirring bar and purged with argon. The solution was cooled to -78 °C. Then, KHMDS (1.0 M in THF, 360 µL, 0.36 mmol, 1.2 equiv) was added dropwise to the solution by syringe. After the reaction mixture was stirred for 30 min at -78 °C, the solution of acylsilane **2d** (86.0 mg, 0.39 mmol, 1.3 equiv) in 2.0 mL THF was added to the reaction mixture via syringe. The reaction mixture was stirred for 1 h at -78 °C. Then, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

(4a) The title compound was prepared using imidate 1a (57.4 mg, 0.30 mmol, 1.0 equiv), KHMDS (1.0 M in THF, 360 μ L, 0.36 mmol, 1.2 equiv) and acylsilane 2d (86.0 mg, 0.39 mmol, 1.3 equiv). Column chromatography afforded 86.5 mg (70%) of 4a as a white solid. Analytical data for 4a: m.p. 94–96 °C; $R_f = 0.34$ (petroleum ether / ethyl acetate = 3:1);

 $[\alpha]_{D}^{20} = -32.6$ (c 0.46, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.27 (m, 5H), 3.57 (s, 3H), 3.24 (s, 1H), 2.15 (q, J = 6.4 Hz, 1H), 1.30 (d, J = 6.4 Hz, 3H), 0.99 (s, 9H), 0.86 (s, 9H), 0.01 (s, 3H), -0.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 129.8, 129.0, 128.6, 74.1, 67.6, 55.7, 54.1, 27.2, 26.1, 22.2, 18.5, 7.6, -3.4, -3.6; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₃₇NNaO₃SSi 434.2156, found 434.2158.

(4b) The title compound was prepared using imidate 1b (41.1 mg, 0.20 mmol, 1.0 equiv), KHMDS (1.0 M in THF, 240 μ L, 0.24 mmol, 1.2 equiv) and acylsilane 2d (57.3 mg, 0.26 mmol, 1.3 equiv). Column chromatography afforded 59.0 mg (69%) of 4b as a colorless oil. Analytical

data for **4b**: $R_f = 0.2$ (petroleum ether/ethyl acetate = 5:1); $[\alpha]_D^{20} = -37.6$ (c 0.49, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.27 (m, 5H), 3.55 (s, 3H), 3.21 (s, 1H), 2.01–1.98 (m, 1H), 1.80–1.60 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H), 1.00 (s, 9H), 0.84 (s, 9H), -0.02 (s, 3H), -0.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 129.9, 129.0, 128.6, 74.4, 68.0, 55.6, 54.0, 35.0, 26.1, 22.3, 18.5, 16.4, 14.0, -3.4, -3.5; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₉NNaO₃SSi 448.2312, found 448.2307.

(4c) The title compound was prepared using imidate 1c (43.9 mg, 0.20 mmol, 1.0 equiv), KHMDS (1.0 M in THF, 240 μ L, 0.24 mmol, 1.2 equiv) and acylsilane 2d (57.3 mg, 0.26 mmol, 1.3 equiv). Column chromatography afforded 58.7 mg (67%) of 4c as a colorless oil. $R_f = 0.2$ (petroleum ether/ethyl acetate = 5:1); $[\alpha]_D^{20} = -35.2$ (c 0.21, MeOH); ¹H NMR

(400 MHz, CDCl₃) δ 7.39–7.28 (m, 5H), 3.56 (s, 3H), 3.21 (s, 1H), 2.06–2.02 (m, 1H), 1.76–1.68 (m, 1H), 1.65–1.52 (m, 3H), 1.03 (t, *J* = 7.2 Hz, 3H), 1.00 (s, 9H), 0.85 (s, 9H), -0.02 (s, 3H), -0.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 129.9, 129.0, 128.6, 74.4, 67.9, 55.6, 54.0, 33.2, 26.1, 25.3, 22.8, 22.3, 18.5, 14.5, -3.4, -3.5; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₃H₄₁NNaO₃SSi 462.2469, found 462.2461.

6. Procedure for preparation of cyclopropane products 3s

A solution of *N-tert*-butanesulfinylimidate **1k** (76.0 mg, 0.30 mmol, 1.0 equiv) in 2.0 mL THF was added to a flame-dried schlenk flask equipped with a magnetic stirring bar and purged with argon. The solution was cooled to -78 °C. Then, LiHMDS (1.2 M in THF, 300 µL, 0.36 mmol, 1.2 equiv) was added dropwise to the solution by syringe. After the reaction

mixture was stirred for 30 min at -78 °C, the solution of acylsilane **2a** (69.5 mg, 0.39 mmol, 1.3 equiv) in 2.0 mL THF was added to the reaction mixture via syringe. The reaction mixture was stirred for 1 h at -78 °C and was gradually warmed to -60 °C. At which time, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and

concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give 98.3 mg (76%) of **3s** as a white solid. Analytical data for **3s**: m.p. 136–138 °C; $R_f = 0.45$ (petroleum ether / ethyl acetate = 5:1); $[\alpha]_D^{20} = -79.8$ (c 0.36, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.20 (m, 5H), 7.18–7.13 (m, 5H), 4.85 (s, 1H), 3.42 (s, 1H), 2.97 (s, 3H), 1.34 (s, 9H), 0.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 133.8, 130.4, 129.9, 128.0, 127.5, 127.3, 126.4, 77.9, 66.4, 56.5, 53.7, 42.6, 22.6, 1.1; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₃H₃₄NO₃SSi 432.2023, found 432.2028.

7. Procedure for the manipulations of cyclopropane product 3ad

Preparation of alcohol **6** via desilylation of **3ad**: Cyclopropane **3ad** (411.7 mg, 1.0 mmol, 1.0 equiv) was dissolved in 10.0 mL of anhydrous THF and placed under stirring in an ice bath, 189.8 mg (5.0 mmol, 5.0 equiv) of LiAlH₄ were added in batches. The reaction was checked by TLC examination of an aliquot

which was separately hydrolyzed. After ~10 min, the reaction was hydrolyzed with saturated potassium sodium tartrate aqueous solution (5.0 mL) and extracted with ethyl acetate. The organic layer was separated and the aqueous layer extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to yield 277.4 mg (93%) of **6** as a white solid. Analytical data for compound **6**: Analytical data for **6**: m.p. 86–87 °C; $R_f = 0.1$ (petroleum ether/ethyl acetate = 2:1); $[\alpha]_D^{20} = +22.4$ (c 0.21, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.52 (m, 2H), 7.37–7.33 (m, 2H), 7.31–7.28 (m, 1H), 4.93 (s, 1H), 3.77 (s, 1H), 3.30 (s, 3H), 2.06 (q, *J* = 6.8 Hz, 1H), 1.33 (s, 9H), 1.10 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.1, 130.0, 128.2, 127.7, 78.3, 64.1, 56.8, 54.0, 30.9, 22.9, 9.6. HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₅H₂₃NNaO₃S 320.1291, found 320.1296.

Preparation of benzoic ester 7 via benzoylation of **6**: To a stirred solution of **6** (59.5 mg, 0.20 mmol, 1.0 equiv) in 5.0 mL CH_2Cl_2 at 0 °C was added 4–dimethylaminopyridine (48.9 mg, 0.40 mmol, 2.0 equiv), followed by benzoyl chloride (30 μ L, 0.26 mmol, 1.3 equiv). The resultant solution was

stirred at 0 °C for 5 min and then warmed to room temperature. When the starting material was completely consumed, the reaction mixture was quenched with 5.0 mL saturated aqueous

NaHCO₃. The organic layer was separated and the aqueous layer extracted with CH₂Cl₂. The combined organic extracts were washed with 1.0 M HCl aqueous solution and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to yield 78.9 mg (98%) of 7 as a white solid. Analytical data for compound 7: m.p. 150–151 °C; $R_f = 0.2$ (petroleum ether/ethyl acetate = 2:1); $[\alpha]_D^{20} = +46.3$ (c 0.18, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.95 (m, 2H), 7.65–7.62 (m, 2H), 7.53–7.48 (m, 1H), 7.39–7.27 (m, 5H), 5.10 (s, 1H), 3.37 (s, 3H), 2.51 (q, *J* = 6.8 Hz, 1H), 1.22 (s, 9H), 1.21 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 133.3, 132.9, 131.6, 130.2, 129.9, 128.4, 128.3, 128.0, 77.7, 68.1, 56.8, 53.7, 29.8, 22.9, 9.6. HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₂H₂₇NNaO₄S 424.1553, found 424.1557.

Procedure for ring-opening reaction of cyclopropane **3ad** with L-selectride: To the cyclopropane **3ad** (41.2 mg, 0.10 mmol, 1.0 equiv) in THF (2.0 mL) was added L-selectride (0.40 mL, 1.0 M in THF, 0.40 mmol, 4.0 equiv) at -40 °C. The resulting solution was gradually allowed to warm to 0 °C. Then the solution was quenched with saturated aqueous ammonium chloride and diluted with ethyl acetate. The organic layer was separated and the aqueous layer extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to yield 24.4 mg (59%) of **5a** as a white solid. For characterization data of compound **5a**, see page 18.

Procedure for ring-opening reaction of cyclopropane **3ad** with LiHMDS: Cyclopropane **3ad** (41.2 mg, 0.10 mmol, 1.0 equiv) was dissolved in THF (2.0 mL). The solution was cooled to -78 °C and LiHMDS (1.2 M in THF, 0.10 mL, 0.12 mmol, 1.2 equiv) was then added to the solution. The reaction mixture was stirred for 30 min at -78 °C and then gradually warmed up to room temperature. When the starting material was completely consumed, the reaction mixture was quenched with saturated aqueous ammonium chloride and diluted with ethyl acetate. The organic layer was separated and the aqueous layer extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to yield 37.4 mg (91%) of **5a** as a white solid. For characterization data of compound **5a**, see page 18.

¹³C NMR spectrum (CDCl₃, 100 MHz) of **3aa**

¹³C NMR spectrum (CDCl₃, 100 MHz) of **3ab**

¹³C NMR spectrum (CDCl₃, 100 MHz) of **3ac**

190

-]

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of **3ad**

¹H NMR spectrum (CDCl₃, 400 MHz) of **3b**

-1

100 90 fl (ppm)

¹H NMR spectrum (CDCl₃, 400 MHz) of **3c**

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3c

¹H NMR spectrum (CDCl₃, 400 MHz) of **3d**

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3d

¹H NMR spectrum (CDCl₃, 400 MHz) of **3e**

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3e

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3g

¹H NMR spectrum (CDCl₃, 400 MHz) of **3h**

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3h

 ^{13}C NMR spectrum (CDCl_3, 100 MHz) of 3i

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3j

¹³C NMR spectrum (CDCl₃, 100 MHz) of **3**k

 ^{13}C NMR spectrum (CDCl_3, 100 MHz) of 3l

¹H NMR spectrum (CDCl₃, 400 MHz) of 3m

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3m

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3n

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3o

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3p (major diastereomer)

¹³C NMR spectrum (CDCl₃, 100 MHz) of **3p'** (minor diastereomer)

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3q

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3r

¹³C NMR spectrum (CDCl₃, 100 MHz) of **5a**

 ^{13}C NMR spectrum (CDCl_3, 100 MHz) of 5d

7,7349 7,7260 7,727 7,727 7,7280 7,7280 7,729 7,

7,7345 7,7259 7,7259 7,7257 7,7257 7,7257 7,7259 7,

 ^{13}C NMR spectrum (CDCl_3, 100 MHz) of 5g

 ^{13}C NMR spectrum (CDCl_3, 100 MHz) of 5i

 ^{13}C NMR spectrum (CDCl_3, 100 MHz) of 5j

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 5k

 ^{13}C NMR spectrum (CDCl_3, 100 MHz) of 5l

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 5m

¹³C NMR spectrum (CDCl₃, 100 MHz) of **50** (major diastereomer)

¹³C NMR spectrum (CDCl₃, 100 MHz) of **50'** (minor diastereomer)

 13 C NMR spectrum (CDCl₃, 100 MHz) of **4a**

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of **4b**

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of 3s

 ^{13}C NMR spectrum (CDCl₃, 100 MHz) of **6**

9. X-Ray crystal structures of products

Figure S1. X-Ray crystal structure of the compound 31

The single crystals of compound **31** for X-ray structure studies were obtained by evaporation its solution of CH_2Cl_2 /petroleum ether (1:6, v/v) at room temperature. X-Ray crystal structure (ORTEP) of compound **31** with the thermal ellipsoids shown at a 50% probability level.

Identification code	31
Empirical formula	C ₂₅ H ₄₅ NO ₃ SSi
Formula weight	467.77
Temperature/K	296.15
Crystal system	monoclinic
Space group	P2 ₁
a/Å	10.328(5)
b/Å	12.879(6)
c/Å	10.995(5)
$\alpha/^{\circ}$	90
β/°	96.809(7)
$\gamma/^{\circ}$	90
Volume/Å ³	1452.1(11)
Ζ	2
$\rho_{calc}g/cm^3$	1.070
μ/mm^{-1}	0.176
F(000)	512.0
Crystal size/mm ³	$0.272 \times 0.184 \times 0.117$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.078 to 55.01
Index ranges	$-13 \le h \le 13, -16 \le k \le 14, -7 \le l \le 14$
Reflections collected	8972
Independent reflections	$6082 [R_{int} = 0.0409, R_{sigma} = 0.0907]$
Data/restraints/parameters	6082/1/293
Goodness-of-fit on F ²	0.969
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0641, wR_2 = 0.1389$
Final R indexes [all data]	$R_1 = 0.1407, wR_2 = 0.1777$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.22
Flack parameter	0.16(9

 Table S1 Crystal data and structure refinement for 31

Table S2 Bond Lengths for 31

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	N1	1.678(5)	C3AA	C9	1.372(8)
S1	015	1.481(6)	C7	C8	1.362(9)

S 1	C18	1.818(7)	C7	C12	1.373(9)
Si2	017	1.639(4)	C7	C14	1.534(9)
Si2	C16	1.838(8)	C9	C12	1.387(9)
Si2	C24	1.844(9)	C10	C11	1.501(8)
Si2	C26	1.833(8)	C10	C13	1.503(8)
017	C1AA	1.423(6)	C14	C23	1.484(11)
016	C11	1.392(6)	C14	C2	1.523(13)
O16	C20	1.400(8)	C14	C4	1.473(13)
C1AA	C3AA	1.490(8)	C16	C25	1.540(10)
C1AA	C10	1.516(8)	C16	C1	1.523(13)
C1AA	C11	1.513(8)	C16	C3	1.554(13)
N1	C11	1.426(7)	C17	C18	1.550(10)
C2AA	C3AA	1.362(8)	C18	C19	1.479(10)
C2AA	C8	1.387(9)	C18	C21	1.518(10)

Table S3 Bond Angles for 31

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	S 1	C18	98.1(3)	C11	C10	C13	121.5(5)
015	S 1	N1	108.6(3)	C13	C10	C1AA	126.1(5)
015	S 1	C18	105.8(3)	016	C11	C1AA	119.1(5)
017	Si2	C16	105.7(3)	016	C11	N1	115.7(5)
017	Si2	C24	106.8(4)	016	C11	C10	112.9(5)
017	Si2	C26	111.4(3)	N1	C11	C1AA	116.2(5)
C16	Si2	C24	110.3(5)	N1	C11	C10	121.5(5)
C26	Si2	C16	113.6(4)	C10	C11	C1AA	60.4(4)
C26	Si2	C24	108.8(5)	C7	C12	C9	123.0(6)
C1AA	017	Si2	127.8(3)	C23	C14	C7	108.5(6)
C11	016	C20	114.6(5)	C23	C14	C2	106.1(9)
017	C1AA	C3AA	113.1(5)	C2	C14	C7	112.1(6)
017	C1AA	C10	114.6(4)	C4	C14	C7	109.8(7)
017	C1AA	C11	111.4(4)	C4	C14	C23	115.0(10)
C3AA	C1AA	C10	125.9(5)	C4	C14	C2	105.3(9)
C3AA	C1AA	C11	121.6(5)	C25	C16	Si2	110.8(6)
C11	C1AA	C10	59.4(4)	C25	C16	C3	109.4(8)
C11	N1	S 1	116.6(4)	C1	C16	Si2	110.7(6)

C3AA	C2AA	C8	122.3(6)	C1	C16	C25	109.6(8)
C2AA	C3AA	C1AA	119.6(5)	C1	C16	C3	107.9(10)
C2AA	C3AA	C9	117.0(5)	C3	C16	Si2	108.3(6)
C9	C3AA	C1AA	123.3(5)	C17	C18	S 1	103.1(5)
C8	C7	C12	116.0(6)	C19	C18	S1	112.8(5)
C8	C7	C14	123.0(6)	C19	C18	C17	110.4(7)
C12	C7	C14	120.9(6)	C19	C18	C21	112.9(7)
C7	C8	C2AA	121.5(7)	C21	C18	S1	106.9(5)
C3AA	C9	C12	120.2(6)	C21	C18	C17	110.3(7)
C11	C10	C1AA	60.2(4)				

Figure S2. X-Ray crystal structure of the compound 5k

The single crystals of compound **5k** for X-ray structure studies were obtained by evaporation its solution of CH_2Cl_2 /petroleum ether (1:4, v/v) at room temperature. X-Ray crystal structure (ORTEP) of compound **5k** with the thermal ellipsoids shown at a 50% probability level.

Identification code	5k
Empirical formula	C ₂₂ H ₃₉ NO ₃ SSi
Formula weight	425.69
Temperature/K	296.15
Crystal system	triclinic
Space group	P1
a/Å	7.182(8)
b/Å	9.354(10)
c/Å	10.768(11)
α/°	108.471(14)
β/°	90.746(16)
γ/°	107.794(15)
Volume/Å ³	648.4(12)
Z	1
$\rho_{calc}g/cm^3$	1.090
μ/mm ⁻¹	0.191
F(000)	232.0
Crystal size/mm ³	$0.207 \times 0.198 \times 0.128$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.858 to 54.448
Index ranges	$-8 \le h \le 9, -11 \le k \le 11, -13 \le l \le 11$
Reflections collected	3863
Independent reflections	3317 [$R_{int} = 0.0367, R_{sigma} = 0.1025$]
Data/restraints/parameters	3317/6/264
Goodness-of-fit on F ²	0.974
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0828, wR_2 = 0.2133$
Final R indexes [all data]	$R_1 = 0.1590, wR_2 = 0.2894$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.29
Flack parameter	-0.10(19)

Table S4 Crystal data and structure refinement for 5k

Table 5 Bond Lengths for 5k

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Si1	015	1.657(7)	C6	C7	1.392(14)

Si1	C16	1.846(15)	C6	C11	1.355(14)
Si1	C19	1.880(14)	C7	C10	1.359(15)
Si1	C22	1.850(15)	C8	C13	1.549(16)
S2	N1	1.707(10)	C9	C11	1.348(16)
S2	014	1.502(11)	C9	C12	1.306(19)
S2	C1	1.787(15)	C9	C24	1.559(17)
015	C5	1.442(11)	C10	C12	1.419(15)
02	C4	1.333(13)	C17	C1	1.526(17)
02	C15	1.463(11)	C18	C19	1.569(17)
N1	C4	1.219(14)	C19	C20	1.512(17)
C4	C8	1.510(13)	C19	C23	1.481(19)
C5	C7	1.481(12)	C21	C1	1.540(15)
C5	C8	1.580(14)	C1	C2	1.555(17)

Table 6 Bond Angles for 5k

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
015	Si1	C16	109.4(6)	C4	C8	C5	109.2(8)
015	Si1	C19	103.0(5)	C4	C8	C13	110.3(9)
015	Si1	C22	109.3(6)	C13	C8	C5	109.0(9)
C16	Si1	C19	113.4(6)	C11	C9	C24	117.6(14)
C16	Si1	C22	110.4(9)	C12	C9	C11	115.6(10)
C22	Si1	C19	111.1(7)	C12	C9	C24	126.8(14)
N1	S2	C1	94.5(6)	C7	C10	C12	118.1(11)
O14	S2	N1	108.0(6)	C9	C11	C6	124.2(11)
O14	S2	C1	106.8(7)	C9	C12	C10	124.6(13)
C5	015	Si1	124.1(7)	C18	C19	Si1	108.2(11)
C4	02	C15	116.7(9)	C20	C19	Si1	109.8(9)
C4	N1	S2	119.1(7)	C20	C19	C18	107.7(10)
O2	C4	C8	111.1(11)	C23	C19	Si1	111.4(9)
N1	C4	02	120.8(9)	C23	C19	C18	109.4(12)
N1	C4	C8	128.0(11)	C23	C19	C20	110.4(14)
015	C5	C7	112.0(8)	C17	C1	S2	110.4(11)
015	C5	C8	102.7(7)	C17	C1	C21	114.8(16)
C7	C5	C8	110.1(7)	C17	C1	C2	108.6(18)

C11	C6	C7	119.5(11)	C21	C1	S2	111.4(11)
C6	C7	C5	120.1(10)	C21	C1	C2	104.7(16)
C10	C7	C5	122.3(10)	C2	C1	S2	106.3(15)
C10	C7	C6	117.6(9)				

Figure S3. X-Ray crystal structure of the compound 4a

The single crystals of compound **4a** for X-ray structure studies were obtained by evaporation its solution of CH_2Cl_2 /petroleum ether (1:8, v/v) at room temperature. X-Ray crystal structure (ORTEP) of compound **4a** with the thermal ellipsoids shown at a 50% probability level.

Identification code	4a
Empirical formula	C ₂₁ H ₃₉ NO ₄ SSi
Formula weight	429.68
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	13.2420(5)
b/Å	6.4724(3)
c/Å	14.3242(5)
α'°	90
β/°	92.113(3)
γ/°	90
Volume/Å ³	1226.86(8)
Z	2
$\rho_{calc}g/cm^3$	1.163
μ/mm ⁻¹	1.833
F(000)	468.0
Crystal size/mm ³	$0.14\times0.13\times0.12$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	6.174 to 147.848
Index ranges	$-16 \le h \le 16, -7 \le k \le 7, -17 \le l \le 17$
Reflections collected	9985
Independent reflections	4600 [$R_{int} = 0.0439, R_{sigma} = 0.0498$]
Data/restraints/parameters	4600/1/266
Goodness-of-fit on F ²	1.027
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0625, wR_2 = 0.1695$
Final R indexes [all data]	$R_1 = 0.0634, wR_2 = 0.1701$
Largest diff. peak/hole / e Å ⁻³	0.96/-0.49
Flack parameter	0.027(16)

Table S7 Crystal data and structure refinement for 4a

Table S8 Bond Lengths for 4a

Atom A	Atom	Length/Å	Atom	Atom	Length/Å
S(001) 0	0(3)	1.504(5)	C(5)	C(6)	1.401(9)

S(001)	N(1)	1.661(5)	C(1)	C(3)	1.512(8)
S(001)	C(18)	1.859(6)	C(1)	C(2)	1.535(8)
Si(02)	O(1)	1.663(4)	C(3)	C(2)	1.507(9)
Si(02)	C(12)	1.874(6)	C(6)	C(7)	1.379(9)
Si(02)	C(14)	1.896(6)	C(9)	C(8)	1.400(11)
Si(02)	C(13)	1.870(7)	C(16)	C(14)	1.535(8)
O(1)	C(1)	1.384(7)	C(17)	C(14)	1.536(10)
O(2)	C(3)	1.405(7)	C(7)	C(8)	1.380(11)
O(2)	C(11)	1.426(7)	C(4)	C(2)	1.505(8)
N(1)	C(3)	1.429(8)	C(14)	C(15)	1.522(9)
C(10)	C(5)	1.388(9)	C(18)	C(19)	1.515(9)
C(10)	C(9)	1.395(9)	C(18)	C(20)	1.498(9)
C(5)	C(1)	1.509(8)	C(18)	C(21)	1.532(10)

Table S9 Bond Angles for 4a

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O(3)	S(001)	N(1)	110.5(3)	O(2)	C(3)	C(2)	118.4(5)
O(3)	S(001)	C(18)	104.3(3)	N(1)	C(3)	C(1)	120.2(5)
N(1)	S(001)	C(18)	100.2(3)	N(1)	C(3)	C(2)	115.1(5)
O(1)	Si(02)	C(12)	111.1(3)	C(2)	C(3)	C(1)	61.1(4)
O(1)	Si(02)	C(14)	103.9(2)	C(7)	C(6)	C(5)	119.6(7)
O(1)	Si(02)	C(13)	111.0(3)	C(10)	C(9)	C(8)	118.7(6)
C(12)	Si(02)	C(14)	110.8(3)	C(6)	C(7)	C(8)	121.2(7)
C(13)	Si(02)	C(12)	108.0(3)	C(3)	C(2)	C(1)	59.6(4)
C(13)	Si(02)	C(14)	112.1(3)	C(4)	C(2)	C(1)	122.3(5)
C(1)	O(1)	Si(02)	129.0(4)	C(4)	C(2)	C(3)	122.7(5)
C(3)	O(2)	C(11)	113.1(5)	C(7)	C(8)	C(9)	120.0(6)
C(3)	N(1)	S(001)	116.2(4)	C(16)	C(14)	Si(02)	109.7(4)
C(5)	C(10)	C(9)	121.3(6)	C(16)	C(14)	C(17)	109.5(5)
C(10)	C(5)	C(1)	121.9(6)	C(17)	C(14)	Si(02)	109.4(4)
C(10)	C(5)	C(6)	119.2(6)	C(15)	C(14)	Si(02)	109.8(4)
C(6)	C(5)	C(1)	118.7(6)	C(15)	C(14)	C(16)	109.2(5)
O(1)	C(1)	C(5)	114.4(5)	C(15)	C(14)	C(17)	109.2(6)
O(1)	C(1)	C(3)	114.5(5)	C(19)	C(18)	S(001)	108.6(4)

O(1)	C(1)	C(2)	117.9(5)	C(19)	C(18)	C(21)	110.4(6)
C(5)	C(1)	C(3)	120.0(5)	C(20)	C(18)	S(001)	110.4(5)
C(5)	C(1)	C(2)	119.7(5)	C(20)	C(18)	C(19)	113.2(7)
C(3)	C(1)	C(2)	59.3(4)	C(20)	C(18)	C(21)	110.8(6)
O(2)	C(3)	N(1)	117.2(5)	C(21)	C(18)	S(001)	103.0(5)
O(2)	C(3)	C(1)	113.1(5)				