Divergent synthesis of polysubstituted cyclopropanes and $\boldsymbol{\beta}$-silyoxy imidates via switchable additions of \boldsymbol{N}-tert-butanesulfinylimidates to acylsilanes
Fan Tang ${ }^{\dagger, \S}$ Peng-Ju Ma, ${ }^{\dagger}$ Yun Yao, ${ }^{\dagger}$ Yan-Jun Xu, ${ }^{\dagger}$ Chong-Dao Lu ${ }^{*}{ }^{, \dagger, \dagger}$
${ }^{\dagger}$ Key Laboratory of Plant Resources and Chemistry of Arid Zones, Xinjiang Technical Institute of Physics \& Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
${ }^{\dagger}$ School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
${ }^{\S}$ University of Chinese Academy of Sciences, Beijing 100049, China
E-mail: clu@ms.xjb.ac.cn

Table of Contents

1. General experimental information 2
2. Calculation of diastereomeric ratio 3
3. Procedure for preparation of products 3 11
4. Procedure for preparation of products 5 18
5. Procedure for preparation of products 4a-c 23
6. Procedure for preparation of product 3 s 24
7. Procedures for the manipulations of cyclopropane product 3ad 25
8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds 27
9. X-Ray crystal structures 72

1. General experimental information

All reactions were carried out under a positive pressure of argon atmosphere in flame-dried glass ware with magnetic stirring using standard Schlenk techniques. THF and toluene were freshly distilled from sodium/benzophenone under argon. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} prior to use. Other solvents and commercial reagents were used without additional purification otherwise stated. Purification of the reaction products was carried out by flash column chromatography using 200-300 mesh silica gel. Visualization on TLC (thin layer chromatography) was achieved by the use of UV light (254 nm) and treatment with aqueous ceric ammonium molybdate or aqueous KMnO_{4} followed by heating. Melting point (m.p.) were measured using a Buchi melting point apparatus M-560 and are uncorrected. High-resolution mass spectra (HRMS) were recorded with an Agilent 6210 ESI-TOF mass spectrometer. Optical rotations were measured on an Autopol IV (Rudolph Research Analytical). Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded on either a Varian Inova 400 MHz $\left({ }^{13} \mathrm{C}\right.$ NMR at 100 MHz$)$ spectrometer with solvent resonance as the internal standard (${ }^{1} \mathrm{H}$ NMR: CDCl_{3} at $7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: CDCl_{3} at 77.2 ppm$) .{ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shifts, multiplicity $(\mathrm{brs}=$ broad singlet, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $m=$ multiplet), coupling constants (Hz) and integration.

All N-tert-butanesulfinyl imidates were prepared from the enantioenriched tert-butanesulfinamide $(e e>99.0 \%)^{\mathrm{S} 1}$ according to the reported procedure. ${ }^{\mathrm{S} 2}$ Acylsilanes were prepared according to the reported procedure. ${ }^{\text {S3 }}$

References

(S1) The enantiomeric excess of the starting tert-butylsulfinamide was checked by chiral HPLC: Daicel Chiralpak AD, $25 \mathrm{~cm} \times 0.46 \mathrm{~cm} ; 93: 7 n$-hexane: i-PrOH, $1 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ;(R) \mathrm{RT}=8.86 ;(S) \mathrm{RT}=11.55$.
(S2) (a) Owens, T. D.; Souers, A. J.; Ellman, J. A. J. Org. Chem. 2003, 68, 3. (b) Colpaert, F.; Mangelinckx, S.; Verniest, G.; DeKimpe, N. J. Org. Chem. 2009, 74, 3792. (c) Kochi, T.; Ellman, J. A. J. Am. Chem. Soc. 2004, 126, 15652. (d) Huang, H.-X.; Wang, H.-J.; Tan, L.; Wang, S.-Q.; Tang, P.; Song, H.; Liu, X.-Y.; Qin, Y. J. Org. Chem. 2016, 81, 10506-10516. (e) Ma, P.-J.; Liu, H.; Xu, Y.-J.; Aisa, H. A.; Lu, C.-D. Org. Lett. 2018, 20, 1236-1239. (S3) Linghu, X.; Nicewicz, D. A.; Johnson, J. S. Org. Lett. 2002, 4, 2957.

2. Calculation of diastereomeric ratio

Crude ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a c}$ (Table 1, entry 3, $\mathrm{dr} \sim 7.5: 1$)

Crude ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a d}$ (Table 1, entry 4, dr $\sim 7: 1$)

Crude ${ }^{1}$ H NMR of 3ad (Table 1, entry 6, $\mathrm{dr}>20: 1$)

Crude ${ }^{1}$ H NMR of $\mathbf{5 a}$ (Table 1, entry $8, \mathrm{dr} \sim 8: 1$)

Crude ${ }^{1}$ H NMR of 5 a (Table 1, entry $9, \mathrm{dr}>20: 1$)

Crude ${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 a}$ (Table 1, entry 12, $\mathrm{dr} \sim 20: 1$)

3. Procedure for preparation of cyclopropane products 3ad and 3b-3r

A solution of N-tert-butanesulfinylimidate ($0.30 \mathrm{mmol}, 1.0$ equiv) in 2.0 mL THF was added to a flame-dried schlenk flask equipped with a magnetic stirring bar and purged with argon. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Then, NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) was added dropwise to the solution by syringe. After the reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, the solution of acylsilane ($0.39 \mathrm{mmol}, 1.3$ equiv) in 2.0 mL THF was added to the reaction mixture via syringe. The reaction mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. Then, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

Analytical data for cyclopropane products 3

(3aa) The title compound was prepared using imidate 1a $(57.4 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), LiHMDS (1.2 M in THF, $0.30 \mathrm{~mL}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2a ($69.5 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $85.4 \mathrm{mg}(69 \%)$ of $\mathbf{3 a a}$ as a white solid. Analytical data for 3aa: m.p. $131-133{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (petroleum/ ethyl acetate $=5: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-25.1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}$, $3 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$, $-0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.5,130.5,128.1,127.7,75.6,64.9,56.4,53.8$, 32.2, 22.7, 10.5, 0.81; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SSi} 370.1867$, found 370.1865 .

(3ab) The title compound was prepared using imidate 1a (57.4 $\mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), LiHMDS (1.2 M in THF, $0.30 \mathrm{~mL}, 0.36$ mmol, 1.2 equiv) and acylsilane $\mathbf{2 b}(93.7 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $93.2 \mathrm{mg}(72 \%)$ of $\mathbf{3 a b}$ as a white amorphous solid. Analytical data for 3ab: $\mathrm{R}_{f}=0.27$ (petroleum/ ethyl acetate $=5: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-8.1(\mathrm{c} 0.31, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30$ $(\mathrm{s}, 9 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5$, $136.1,133.9,131.0,129.7,128.0,127.9,127.7,75.4,56.5,53.9,32.4,22.7,10.8,-0.63,-0.91$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NNaO}_{3} \mathrm{SSi} 454.1843$, found 454.1838.

(3ac) The title compound was prepared using imidate $\mathbf{1 a}(57.4 \mathrm{mg}$, 0.30 mmol , 1.0 equiv), LiHMDS (1.2 M in THF, $0.30 \mathrm{~mL}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $2 \mathbf{2 c}(102.4 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $91.2 \mathrm{mg}(67 \%)$ of $\mathbf{3 a c}$ as a white amorphous
solid. Analytical data for 3ac: $\mathrm{R}_{f}=0.54$ (petroleum / ethyl acetate $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-16.9$ (c 0.54 , $\mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.23$ $(\mathrm{s}, 3 \mathrm{H}), 2.21(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.00-0.98(\mathrm{~m}, 9 \mathrm{H})$, $0.86-0.85(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4,131.5,128.1,127.9,75.6,65.1,56.6$, 53.9, 32.5, 22.8, 18.3, 18.0, 13.0, 11.6; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{NNaO}_{3} \mathrm{SSi} 476.2625$, found 476.2621.

(3ad) The title compound was prepared using imidate $\mathbf{1 a}(57.4 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $2 \mathbf{d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $121.1 \mathrm{mg}(98 \%)$ of $\mathbf{3 a d}$ as a white solid. Analytical data for 3ad: m.p. $62-64{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.32$ (petroleum ether / ethyl acetate $=8: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-33.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.31(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.39(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.7, 131.1, 128.0, 127.9, 75.1, 64.7, 56.4, 53.8, 32.2, 25.8, 22.7, 18.0, 11.3, -4.0, -4.2; HRMS (ESI-TOF) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NNaO}_{3} \mathrm{SSi} 434.2156$, found 434.2151.

(3b) The title compound was prepared using imidate $\mathbf{1 b}(61.6 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d $(86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $127.6 \mathrm{mg}(99 \%)$ of $\mathbf{3 b}$ as a white solid. Analytical data for 3b: m.p. 52-54 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.51$ (petroleum ether $/$ ethyl acetate $=8: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-38.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}$, $3 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}),-0.39(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.4,130.7$, $127.8,75.4,64.9,56.1,52.9,39.9,25.8,22.6,19.8,18.0,15.0,-4.0,-4.1$; HRMS (ESI-TOF) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi} 448.2312$, found 448.2316.

(3c) The title compound was prepared using imidate $\mathbf{1 c}(65.8 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d $(86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $128.0 \mathrm{mg}(97 \%)$ of $\mathbf{3 c}$ as a white solid. Analytical data for $\mathbf{3 c}$: m.p. $51-52{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.62$ (petroleum ether / ethyl acetate $=8: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-46.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.46$ $(\mathrm{m}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}),-0.38(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 137.5,130.6,127.79,127.77,75.4,64.7,56.1,52.8,38.2,28.6$, 25.9, 23.8, 22.7, 18.0, 14.3, -4.0, -4.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi} 462.2469$, found 462.2465 .

(3d) The title compound was prepared using imidate $\mathbf{1 d}(80.2 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d $(86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $122.8 \mathrm{mg}(84 \%)$ of $\mathbf{3 d}$ as a colorless oil. Analytical data for $\mathbf{3 d}$: $\mathrm{R}_{f}=0.41$ (petroleum ether / ethyl acetate $=8: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-55.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{dd}, J=$ 8.0, 2.0 Hz, 2H), 7.41 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}$, $1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=15.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=$ 8.8, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.41(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.8,136.7,131.0,128.6,128.5,128.03,127.97,126.1,75.3,65.2,56.3,53.5,37.5$, 32.0, 25.8, 22.6, 18.0, -3.9, -4.2; HRMS (ESI-TOF) $m / z[M+N a]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi}^{2}$ 510.2469 , found 510.2465 .

TBSO
(3e) The title compound was prepared using imidate $\mathbf{1 e}(104.9 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d ($86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $164.2 \mathrm{mg}(96 \%)$ of $\mathbf{3 e}$ as a colorless oil. Analytical data for 3d: $\mathrm{R}_{f}=0.61$ (petroleum ether / ethyl acetate $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-37.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H})$, 2.12-2.02 (m, 2H), 1.86-1.79 (m, 2H), 1.69-1.61 (m, 1H), $1.29(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),-0.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.4,130.7,127.83$, $127.80,75.4,64.8,63.0,56.2,52.8,37.9,33.6,26.2,25.9,22.74,22.68,18.5,18.0,-3.9,-4.1,-5.1$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{NNaO}_{4} \mathrm{SSi}_{2}$ 592.3283, found 592.3289.

7.32-7.28 (m, 5H), 6.89-6.85 (m, 2H), $4.68(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.61-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}),-0.39(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,137.3$, $131.1,130.8,129.4,127.9,113.9,110.2,75.3,72.6,69.9,64.8,56.2,55.4,52.8,37.8,30.5,25.9$, 23.1, 22.7, 18.0, -3.9, -4.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{NNaO}_{5} \mathrm{SSi}$ 598.2993, found 598.2988.

($\mathbf{3 g}$) The title compound was prepared using imidate $\mathbf{1 g}(65.2 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d $(86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $111.7 \mathrm{mg}(85 \%)$ of $\mathbf{3 g}$ as a white solid. Analytical data for 3g: m.p. $56-57{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.32$ (petroleum ether / ethyl acetate $=8: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-50.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.45$ (m, 2H), 7.34-7.28 (m, 3H), $6.05(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.4,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 9 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=8.8,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}),-0.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $137.7,136.7,130.9,128.03,127.96,115.9,77.4,75.1,64.9,56.4,53.5,36.7,30.5,25.8,22.7$, 18.0, -3.9, -4.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi}_{460} 4612$, found 460.2305 .

(3h) The title compound was prepared using imidate $\mathbf{1 h}(73.6 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $2 \mathbf{2 d}(86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $123.0 \mathrm{mg}(88 \%)$ of $\mathbf{3 h}$ as a white solid. Analytical data for 3 h : m.p. $84-86{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.60$ (petroleum ether / ethyl acetate $=8: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-43.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.91-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.02(\mathrm{~m}, 1 \mathrm{H})$, 4.98-4.94 (m, 1H), $4.68(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}),-0.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,137.4,130.7,127.9,114.7,75.4,64.8,56.2,52.8,38.0,33.9,29.9,29.7$, 25.9, 22.7, 18.0, -4.0, -4.1; HRMS (ESI-TOF) $m / z[M+N a]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NNaO}_{3} \mathrm{SSi}$ 488.2625 , found 488.2619 .

(3i) The title compound was prepared using imidate $\mathbf{1 i}(68.8 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d ($86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $113.1 \mathrm{mg}(84 \%)$ of $\mathbf{3 i}$ as a white solid. Analytical data for 4i: m.p. $76-78{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.26$ (petroleum ether / ethyl acetate $=8: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-108.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.59$ $(\mathrm{m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H})$, $2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=10.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}$, $9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}),-0.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.3,131.0,128.2,128.1,78.3$, $77.7,74.6,65.1,56.5,53.5,36.4,25.8,22.7,18.0,16.7,3.7,-4.2,-4.3$; HRMS (ESI-TOF) $m / z[M$ $+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi} 472.2312$, found 472.2314.

(3j) The title compound was prepared using imidate $\mathbf{1 j}$ ($87.4 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d ($86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $130.2 \mathrm{mg}(85 \%)$ of $\mathbf{3} \mathbf{j}$ as a colorless oil. Analytical data for $\mathbf{3 j}$: $\mathrm{R}_{f}=0.47$ (petroleum ether / ethyl acetate $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-112.0$ (c $0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.66(\mathrm{~m}, 2 \mathrm{H})$, $7.48-7.45$ (m, 2H), 7.37-7.30 (m, 6H), 4.80 (s, 1H), 3.24 (s, 3H), 2.97 (dd, J $=17.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd} . J=17.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=10.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$, $0.81(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}),-0.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.1, 131.7, 131.0, 128.4, 128.3, 128.2, 127.8, 124.0, 89.2, 82.5, 74.6, 65.2, 56.5, 53.5, 35.8, 25.8, 22.7, 18.0, 17.4, $-4.0,-4.2$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi} 534.2469$, found 534.2461 .

($\mathbf{3 k}$) The title compound was prepared using imidate $\mathbf{1 a}$ (57.4 mg , 0.30 mmol , 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 e}$ ($91.4 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $119.8 \mathrm{mg}(94 \%)$ of $\mathbf{3 k}$ as a white amorphous solid. Analytical data for $\mathbf{3 k}$: $\mathrm{R}_{f}=0.30$ (petroleum ether $/$ ethyl acetate $=$ 8:1); $[\alpha]_{\mathrm{D}}{ }^{20}=-31.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.6, 133.6, 131.0, 128.7, 75.2, 64.5, 56.4, 53.8, 32.1, 25.9, 22.7, 21.4, 18.0, 11.3, -4.0, -4.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi} 448.2312$, found 448.2307.

(31) The title compound was prepared using imidate $\mathbf{1 a}(57.4 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$, 1.2 equiv) and acylsilane $\mathbf{2 f}$ ($107.8 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $126.1 \mathrm{mg}(90 \%)$ of $\mathbf{3 1}$ as a white solid. Analytical data for 31: m.p. $134-136{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.29$ (petroleum ether / ethyl acetate $=8: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-29.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.43(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 150.9,133.5,130.8,124.9,75.2,64.5,56.4,53.8,34.7,32.1,31.5,25.8,22.7,18.0,11.3$, $-4.1,-4.3$; HRMS (ESI-TOF) $m / z[M+N a]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NNaO}_{3} \mathrm{SSi} 490.2782$, found 490.2786.

($\mathbf{3 m}$) The title compound was prepared using imidate $\mathbf{1 a}$ (57.4 mg , $0.30 \mathrm{mmol}, 1.0$ equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$, 1.2 equiv) and acylsilane $\mathbf{2 g}$ ($96.9 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $127.8 \mathrm{mg}(97 \%)$ of $\mathbf{3 m}$ as a white solid. Analytical data for $\mathbf{3 m}$: m.p. $68-70^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.31$ (petroleum ether / ethyl
acetate $=8: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-34.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.25$ (s, $3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H})$, $0.06(\mathrm{~s}, 3 \mathrm{H}),-0.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,136.0,133.9,132.4,129.2$, 128.5, 75.2, 64.5, 56.4, 32.1, 25.9, 22.7, 19.9, 19.7, 18.0, 11.3, -4.0, -4.1; HRMS (ESI-TOF) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi}^{462.2469}$, found 462.2461.

(3n) The title compound was prepared using imidate $\mathbf{1 a}(57.4 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 h}(93.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $128.7 \mathrm{mg}(99 \%)$ of $\mathbf{3 n}$ as a white solid. Analytical data for $\mathbf{3 n}$: m.p. $49-51{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.18$ (petroleum ether / ethyl acetate $=8: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-33.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 132.66(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 115.0(\mathrm{~d}, J$ $=21.0 \mathrm{~Hz}$), $75.0,64.1,56.5,53.9,32.2,25.8,22.7,18.0,11.3,-3.9,-4.0$; HRMS (ESI-TOF) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{FNNaO}_{3} \mathrm{SSi} 452.2061$, found 452.2068.

(30) The title compound was prepared using imidate $\mathbf{1 a}$ (57.4 mg , $0.30 \mathrm{mmol}, 1.0$ equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$, 1.2 equiv) and acylsilane $\mathbf{2 i}$ ($97.7 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $131.2 \mathrm{mg}(99 \%)$ of $\mathbf{3 o}$ as a white solid. Analytical data for 3o: m.p. $95-97{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.32$ (petroleum ether / ethyl acetate $=5: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-26.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $2.11(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.37(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.2, 132.4, 128.8, 113.4, 75.2, 64.3, 56.4, 55.3, 53.9, 32.2, $25.9,22.7,18.0,11.4,-4.02,-4.04$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{4} \mathrm{SSi}$ 464.2261 , found 464.2268 .

$\left(\mathbf{3 p}+\mathbf{3} \mathbf{p}^{\prime}\right)$ The title compound was prepared using imidate $\mathbf{1 a}$ ($57.4 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}$, $0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 j}(97.7 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $107.3 \mathrm{mg}(81 \%)$ of $\mathbf{3 p}$ as a white solid and $21.2 \mathrm{mg}(16 \%)$ of $\mathbf{3 p}$ ' as a white solid. Analytical data for $\mathbf{3 p}$ (major diastereoisomer): m.p. $66-68{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.27$ (petroleum ether / ethyl acetate $=$ $5: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-32.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 3 \mathrm{H}),-0.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,138.2,128.9,123.6,117.0$,
113.2, 75.2, 64.5, 56.5, 55.4, 53.7, 32.3, 25.9, 22.7, 18.0, 11.2, -4.0, -4.1; HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{4} \mathrm{SSi} 464.2261$, found 464.2265. Analytical data for $\mathbf{3} \mathbf{p}^{\prime}$ (minor diastereoisomer): m.p. $70-71{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.29$ (petroleum ether $/$ ethyl acetate $=3: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-24.0$ (c $0.05, \mathrm{MeOH}){ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.87(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H})$, $2.11(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-.0 .47(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,139.4,130.1,122.1,115.6,113.9,74.1,67.6,55.7$, $55.5,54.0,27.4,26.1,22.3,18.5,7.6,-3.4,-3.6$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{4} \mathrm{SSi} 464.2261$, found 464.2256 .

($\mathbf{3 q}$) The title compound was prepared using imidate 1a (57.4 $\mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36$ mmol, 1.2 equiv) and acylsilane $\mathbf{2 k}(102.7 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $65.5 \mathrm{mg}(48 \%)$ of $\mathbf{3 q}$ as a white solid. Analytical data for $\mathbf{3 q}$: m.p. $68-70{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.39$ (petroleum ether / ethyl acetate $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-13.0$ (c 0.10, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8,2 \mathrm{H}), 4.83$ (s, $1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$, $0.81(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),-0.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,132.1,123.9$, 111.7, $75.3,64.5,56.4,53.9,40.5,32.1,25.9,22.8,18.0,11.4,-4.0,-4.1$; HRMS (ESI-TOF) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi} 455.2758$, found 455.2762.

(3r) The title compound was prepared using imidate $\mathbf{1 a}$ ($57.4 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), NaHMDS (2.0 M in THF, $180 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $2 \mathbf{2 l}(82.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $120.3 \mathrm{mg}(99 \%)$ of $\mathbf{3 r}$ as a light yellow oil. Analytical data for $\mathbf{3 r}$: $\mathrm{R}_{f}=0.48$ (petroleum ether $/$ ethyl acetate $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-2.0(\mathrm{c} 0.10$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.37-6.34(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.21$ ($\mathrm{s}, 3 \mathrm{H}$), $2.07(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, $-0.25(3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,141.8,111.1,110.6,75.6,59.0,56.3,53.6,33.0$, $25.8,22.6,17.9,10.0,-4.6,-4.9$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NNaO}_{4} \mathrm{SSi}$ 424.1948 , found 424.1955 .

Procedure for 1-gram scale preparation of 3ad

A solution of N-tert-butanesulfinylimidate $\mathbf{1 a}(956.5 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) in 50 mL THF was added to a flame-dried schlenk flask equipped with a magnetic stirring bar and purged with argon. The solution was cooled to $-78^{\circ} \mathrm{C}$. Then, NaHMDS (2.0 M in THF, $3.0 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.2$ equiv) was added dropwise to the solution by syringe. After the reaction mixture was stirred for 30 \min at $-78^{\circ} \mathrm{C}$, the solution of acylsilane $\mathbf{2 d}(1432.5 \mathrm{mg}, 6.5 \mathrm{mmol}, 1.3$ equiv) in 20 mL THF was added to the reaction mixture via syringe. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Then,
the reaction was quenched with 10.0 mL saturated aqueous ammonium chloride and extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

4. Procedure for preparation of product 5

To a solution of N-tert-butanesulfinylimidate ($0.30 \mathrm{mmol}, 1.0$ equiv) and acylsilane (0.39 mmol, 1.3 equiv) in 4.0 mL toluene was added t-BuOK (1.0 M in $\mathrm{THF}, 360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) at $-78^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 60 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

Analytical data for $\boldsymbol{\beta}$-silyloxy imidates 5

(5a) The title compound was prepared using imidate $\mathbf{1 a}(57.4 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d ($86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $116.2 \mathrm{mg}(94 \%)$ of $\mathbf{5 a}$ as a white solid. Analytical data for 5a: m.p. $78-80^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.33$ (petroleum ether / ethyl acetate $=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=$ $-105.0(\mathrm{c} 0.20, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.71(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}$, $3 \mathrm{H}),-0.35(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.1,142.6,128.3,128.0,127.5,55.9,54.1$, $46.3,25.8,22.2,18.1,14.2,-4.5,-5.1 ;$ HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NNaO}_{3} \mathrm{SSi} 434.2156$, found 434.2151.

$\mathbf{(5 b)}$ The title compound was prepared using imidate $\mathbf{1 b}(61.6 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $2 \mathbf{d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $108.4 \mathrm{mg}(85 \%)$ of $\mathbf{5 b}$ as a colorless oil. Analytical data for $\mathbf{5 b}$: $\mathrm{R}_{f}=0.33$ (petroleum ether / ethyl acetate $=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-119.0(\mathrm{c} 0.10$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.70(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.73-3.70(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.15-1.00(\mathrm{~m}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9,143.1,128.2$, $127.9,127.6,76.9,56.0,53.8,51.9,31.3,25.8,22.4,20.7,18.1,14.3,-4.6,-5.1$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi} 448.2312$, found 448.2319.

(5c) The title compound was prepared using imidate $\mathbf{1 c}(65.8 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $126.6 \mathrm{mg}(96 \%)$ of $\mathbf{5 c}$ as a colorless oil. Analytical data for 5c: $\mathrm{R}_{f}=0.57$ (petroleum ether / ethyl acetate $=$ $10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-138.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.70(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.14-1.02(\mathrm{~m}$, $3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.9,143.1,128.2,127.9,127.6,76.9,56.0,53.8,51.9,31.3,25.8,22.4,20.7,18.1$, 14.3, -4.6, -5.1 ; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi} 462.2469$, found 462.2466.

(5d) The title compound was prepared using imidate $\mathbf{1 d}(80.2 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $2 \mathbf{d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $145.9 \mathrm{mg}(99 \%)$ of $\mathbf{5 d}$ as a colorless oil. Analytical data for 5d: $\mathrm{R}_{f}=0.20$ (petroleum ether / ethyl acetate $=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-102.0(\mathrm{c} 0.20$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.07$ $(\mathrm{m}, 3 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.66$ (m, 1H), $2.49(\mathrm{dd}, J=13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.27(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 174.4,142.8,138.7,129.1,128.5,128.4,128.1,127.6,126.5,76.8$, $55.4,54.3,53.6,35.0,25.8,21.9,18.2,-4.6,-5.0$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi} 510.2469$, found 510.2461.

(5e) The title compound was prepared using imidate $\mathbf{1 e}$ (104.9 $\mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), t - $\mathrm{BuOK}(1.0 \mathrm{M}$ in $\mathrm{THF}, 360 \mu \mathrm{~L}, 0.36$ mmol, 1.2 equiv) and acylsilane $\mathbf{2 d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $155.5 \mathrm{mg}(91 \%)$ of $\mathbf{5 e}$ as a colorless oil. Analytical data for $\mathbf{5 e}: \mathrm{R}_{f}=0.38$ (petroleum ether / ethyl acetate $=$ $10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-95.0(\mathrm{c} 0.20, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.72(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.37(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.59(\mathrm{~m}, 1 \mathrm{H})$, $1.49-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 18 \mathrm{H}),-0.05(\mathrm{~s}$, $3 \mathrm{H}),-0.06(\mathrm{~s}, 6 \mathrm{H}),-0.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,143.0,128.3,127.9,127.6$, $76.8,62.9,56.1,53.9,51.8,30.8,26.0,25.8,25.5,22.4,18.4,18.1,-4.5,-5.1,-5.2$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{NNaO}_{4} \mathrm{SSi}_{2}$ 592.3283, found 592.3281.
(5f) The title compound was prepared using imidate $\mathbf{1 f}(106.6 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $155.2 \mathrm{mg}(90 \%)$ of $\mathbf{5 f}$ as a colorless oil. Analytical data for $\mathbf{5 f}: \mathrm{R}_{f}=0.19$ (petroleum ether $/$ ethyl acetate $=$
$10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-89.0(\mathrm{c} 0.20, \mathrm{MeOH}){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.76-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 10 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}),-0.07$ ($\mathrm{s}, 3 \mathrm{H}$), -0.36 ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.4,159.2,143.0,130.7,129.3,128.3$, $127.9,127.6,113.8,76.8,72.5,69.8,56.2,55.4,53.9,51.6,27.6,25.8,25.7,22.4,18.1,-4.6,-5.0$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{NNaO}_{5} \mathrm{SSi} 598.2993$, found 598.2998.

$(\mathbf{5 g})$ The title compound was prepared using imidate $\mathbf{1 g}(65.2 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 d}$ ($86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $115.4 \mathrm{mg}(88 \%)$ of $\mathbf{5 g}$ as a colorless oil. Analytical data for $\mathbf{5 g}$: $\mathrm{R}_{f}=0.20$ (petroleum ether / ethyl acetate $=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-132.0(\mathrm{c} 0.20$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.60-5.49(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4,76(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6$, 142.6, 135.2, 128.3, 128.1, 127.6, 117.1, 76.6, 56.1, 53.8, 51.7, 33.7, 25.8, 22.5, 18.1, -4.6, -5.0; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi} 460.2312$, found 460.2314.

$\mathbf{(5 h})$ The title compound was prepared using imidate $\mathbf{1 h}(73.6 \mathrm{mg}$, $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $125.6 \mathrm{mg}(90 \%)$ of $\mathbf{5 h}$ as a colorless oil. Analytical data for $\mathbf{5 h}: \mathrm{R}_{f}=0.30$ (petroleum ether / ethyl acetate $=$ $10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-118.0(\mathrm{c} 0.20, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.22(\mathrm{~m}, 5 \mathrm{H})$, $5.66-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H})$, $1.94-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.08(\mathrm{~m}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}$, $3 \mathrm{H}),-0.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7,143.1,138.3,128.2,127.9,127.6,114.7$, $76.8,56.1,53.8,51.8,33.7,28.6,26.7,25.8,22.4,18.1,-4.5,-5.0$; HRMS (ESI-TOF) $m / z[M+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NNaO}_{3} \mathrm{SSi} 488.2625$, found 488.2629.

(5i) The title compound was prepared using imidate $\mathbf{1 i}$ (68.8 mg , $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $124.9 \mathrm{mg}(93 \%)$ of $\mathbf{5 i}$ as a white solid. Analytical data for 5i: m.p. $63-65^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (petroleum ether $/$ ethyl acetate $=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=$ $-157.0(\mathrm{c} 0.20, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89$ (ddd, $J=10.4,8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.64(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}),-0.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,142.1,128.4,128.2,127.4,76.1,75.8,56.0,54.0,51.0,25.8,22.4,18.8$, 18.2, 3.6, -4.6, -5.0; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi}^{472.2312 \text {, }}$ found 472.2308.

(5j) The title compound was prepared using imidate $\mathbf{1 j}$ (87.4 mg , $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $136.3 \mathrm{mg}(89 \%)$ of $\mathbf{5 j}$ as a white solid. Analytical data for $\mathbf{5 j}$: m.p. $64-66{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.38$ (petroleum ether $/$ ethyl acetate $=10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-152.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.34$ $(\mathrm{m}, 3 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 3 \mathrm{H}), 4.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (ddd, $J=9.6,9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{dd}, J=16.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=16.8$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.3,141.9,131.6,128.4,128.3,127.9,127.7,127.4,123.7,86.7,82.3,75.9,56.2,54.1,50.7$, 29.9, 25.8, 22.4, 19.4, 18.2, -4.6, -5.0; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi} 534.2469$, found 534.2473.

(5k) The title compound was prepared using imidate 1a (57.4 $\mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36$ mmol, 1.2 equiv) and acylsilane $\mathbf{2 e}(91.4 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $103.3 \mathrm{mg}(81 \%)$ of $\mathbf{5 k}$ as a white solid. Analytical data for $\mathbf{5 k}$: m.p. $80-82{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.22$ (petroleum ether $/$ ethyl acetate $=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-109.0(\mathrm{c} 0.10, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}$, $9 \mathrm{H}), 0.82-0.81(\mathrm{~m}, 12 \mathrm{H}),-0.05,-0.35 ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,139.6,137.6,128.9$, $127.4,55.9,54.0,46.3,25.8,22.2,21.3,18.1,14.2,-4.5,-5.1$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi} 448.2312$, found 448.2305.

(51) The title compound was prepared using imidate $\mathbf{1 a}$ ($57.4 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), t - BuOK (1.0 M in THF, 360 $\mu \mathrm{L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 f}(107.8 \mathrm{mg}, 0.39$ mmol, 1.3 equiv). Column chromatography afforded 95.6 mg (68\%) of $\mathbf{5 l}$ as a white solid. Analytical data for $\mathbf{5 l}$: m.p. $95-97^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.50$ (petroleum ether / ethyl acetate $=10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-116.0(\mathrm{c} 0.20, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 0.83-0.81(\mathrm{~m}, 12 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.4,150.9,139.4,127.1,125.0,55.8,54.0,46.3,34.7,31.5,25.8,22.2,18.1,14.3$, $-4.5,-5.2$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NNaO}_{3} \mathrm{SSi} 490.2782$, found 490.2779 .

(5m) The title compound was prepared using imidate 1a (57.4 $\mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), t - $\mathrm{BuOK}(1.0 \mathrm{M}$ in THF, $360 \mu \mathrm{~L}, 0.36$ mmol, 1.2 equiv) and acylsilane $\mathbf{2 g}(96.9 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $96.3 \mathrm{mg}(73 \%)$ of $\mathbf{5 m}$ as a white solid. Analytical data for 5 m : m.p. $96-98^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.33$ (petroleum ether / ethyl acetate $=$
$10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-107.0(\mathrm{c} 0.20, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08-7.01(\mathrm{~m}, 3 \mathrm{H}), 4.64(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$, $0.82-0.81(\mathrm{~m}, 12 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.35(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,139.9$, $136.3,136.1,129.4,128.6,125.0,55.8,54.1,46.3,25.8,22.2,19.9,19.7,18.1,14.3,-4.4,-5.1$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi} 462.2469$, found 462.2476.

(5n) The title compound was prepared using imidate 1a (57.4 $\mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36$ mmol, 1.2 equiv) and acylsilane $\mathbf{2 h}(93.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $117.3 \mathrm{mg}(91 \%)$ of $\mathbf{5 n}$ as a white solid. Analytical data for $\mathbf{5 n}$: m.p. $87-88^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.44$ (petroleum ether / ethyl acetate $=$ $10: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-102.0(\mathrm{c} 0.20, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}$, $9 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 175.9,162.5(\mathrm{~d}, J=244.4), 138.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 15.2(\mathrm{~d}, J=21.2$ Hz), 76.6, 56.0, 54.1, 46.3, 25.8, 22.2, 18.0, 14.0, -4.5, -5.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{FNNaO}_{3} \mathrm{SSi} 452.2061$, found 452.2058.

$\left(\mathbf{5 0}+\mathbf{5 0}^{\prime}\right)$ The title compound was prepared using imidate $1 \mathrm{a}(57.4 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), t - $\mathrm{BuOK}(1.0 \mathrm{M}$ in THF , $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 i}$ ($97.7 \mathrm{mg}, 0.39$ mmol, 1.3 equiv). Column chromatography afforded 51.4 mg (39%) of $\mathbf{5 0}$ as a colorless oil and $10.3 \mathrm{mg}(8 \%)$ of $\mathbf{5 0}^{\prime}$ as a colorless oil. Analytical data for $\mathbf{5 0}$ (major diastereoisomer): $\mathrm{R}_{f}=0.33$ (petroleum ether / ethyl acetate $=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-114.6$ (c $0.37, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.66(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 0.82-0.80(\mathrm{~m}$, $12 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,159.4,134.8,128.5$, $113.6,77.0,55.9,55.3,54.0,46.4,25.8,22.2,18.1,14.2,-4.5,-5.1$; HRMS (ESI-TOF) $m / z[M+]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{4} \mathrm{SSi}$ 464.2261, found 464.2255. Analytical data for $\mathbf{5 o}^{\mathbf{\prime}}$ (minor diastereoisomer): $\mathrm{R}_{f}=0.31$ (petroleum ether / ethyl acetate $=5: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=+10.2(\mathrm{c} 0.24, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, $-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.4,158.9,134.9,127.8,113.3$, $75.9,55.9,55.1,53.7,46.4,25.7,22.0,18.1,13.1,-4.6,-5.2$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{4} \mathrm{SSi} 464.2261$, found 464.2259.

(5p) The title compound was prepared using imidate $\mathbf{1 a}$ (57.4 mg , $0.30 \mathrm{mmol}, 1.0$ equiv), t-BuOK (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane $\mathbf{2 j}$ ($97.7 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $121.8 \mathrm{mg}(92 \%)$ of $\mathbf{5 p}$ as a white solid. Analytical data for 5p: m.p. $86-88^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.14$ (petroleum ether / ethyl acetate $=10: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=$
$-102.0(\mathrm{c} 0.20, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}$, $2 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H})$, $1.20(\mathrm{~s}, 9 \mathrm{H}), 0.84-0.82(\mathrm{~m}, 12 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}),-0.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.2,159.6,144.2,129.2,120.0,113.6,112.7,55.9,55.4,54.1,46.2,25.8,22.2,18.1,14.3,-4.5$, -5.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{4} \mathrm{SSi} 464.2261$, found 464.2266 .

Procedure for 1-gram scale preparation of 5a

To a solution of N-tert-butanesulfinylimidate $\mathbf{1 a}(956.5 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) and 3a $(1432.5 \mathrm{mg}, 6.5 \mathrm{mmol}, 1.3$ equiv) in 60 mL toluene was added t-BuOK (1.0 M in THF, 6.0 mL , $6.0 \mathrm{mmol}, 1.2$ equiv) at $-78^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 60 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

5. General procedure for preparation of cyclopropane products 4a-c

A solution of N-tert-butanesulfinylimidate ($0.30 \mathrm{mmol}, 1.0$ equiv) in 2.0 mL THF was added to a flame-dried schlenk flask equipped with a magnetic stirring bar and purged with argon. The solution was cooled to $-78^{\circ} \mathrm{C}$. Then, KHMDS (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) was added dropwise to the solution by syringe. After the reaction mixture was stirred for 30 min at -78 ${ }^{\circ} \mathrm{C}$, the solution of acylsilane $\mathbf{2 d}(86.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv) in 2.0 mL THF was added to the reaction mixture via syringe. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Then, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel.

(4a) The title compound was prepared using imidate $\mathbf{1 a}(57.4 \mathrm{mg}, 0.30$ mmol, 1.0 equiv), KHMDS (1.0 M in THF, $360 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d $(86.0 \mathrm{mg}, \quad 0.39 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $86.5 \mathrm{mg}(70 \%)$ of $\mathbf{4 a}$ as a white solid. Analytical data for 4a: m.p. $94-96{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.34$ (petroleum ether / ethyl acetate $=3: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=-32.6(\mathrm{c} 0.46, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$, $3.24(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}$, $3 \mathrm{H}),-0.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.8,129.8,129.0,128.6,74.1,67.6,55.7$, 54.1, 27.2, 26.1, 22.2, 18.5, 7.6, -3.4, -3.6; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NNaO}_{3} \mathrm{SSi} 434.2156$, found 434.2158 .

(4b) The title compound was prepared using imidate $\mathbf{1 b}(41.1 \mathrm{mg}, 0.20$ mmol, 1.0 equiv), KHMDS (1.0 M in THF, $240 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) and acylsilane 2d (57.3 mg, $0.26 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $59.0 \mathrm{mg}(69 \%)$ of $\mathbf{4 b}$ as a colorless oil. Analytical data for 4b: $\mathrm{R}_{f}=0.2$ (petroleum ether/ethyl acetate $\left.=5: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=-37.6(\mathrm{c} 0.49, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 2.01-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.60$ $(\mathrm{m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.9,129.9,129.0,128.6,74.4,68.0,55.6,54.0,35.0,26.1,22.3,18.5,16.4$, 14.0, -3.4, -3.5; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{3} \mathrm{SSi} 448.2312$, found 448.2307.

(4c) The title compound was prepared using imidate $1 \mathbf{c}(43.9 \mathrm{mg}, 0.20$ mmol, 1.0 equiv), $\operatorname{KHMDS}(1.0 \mathrm{M}$ in THF, $240 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) and acylsilane $2 \mathbf{2 d}(57.3 \mathrm{mg}, \quad 0.26 \mathrm{mmol}, 1.3$ equiv). Column chromatography afforded $58.7 \mathrm{mg}(67 \%)$ of $\mathbf{4 c}$ as a colorless oil. $\mathrm{R}_{f}=0.2$ (petroleum ether/ethyl acetate $=5: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-35.2(\mathrm{c} 0.21, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H})$, $-0.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.9,129.9,129.0,128.6,74.4,67.9,55.6,54.0$, $33.2,26.1,25.3,22.8,22.3,18.5,14.5,-3.4,-3.5$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NNaO}_{3} \mathrm{SSi} 462.2469$, found 462.2461.

6. Procedure for preparation of cyclopropane products 3 s

A solution of N-tert-butanesulfinylimidate $\mathbf{1 k}(76.0 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.0 equiv) in 2.0 mL THF was added to a flame-dried schlenk flask equipped with a magnetic stirring bar and purged with argon. The solution was cooled to $-78^{\circ} \mathrm{C}$. Then, LiHMDS (1.2 M in THF, $300 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$, 1.2 equiv) was added dropwise to the solution by syringe. After the reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, the solution of acylsilane $\mathbf{2 a}(69.5 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.3$ equiv) in 2.0 mL THF was added to the reaction mixture via syringe. The reaction mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and was gradually warmed to $-60{ }^{\circ} \mathrm{C}$. At which time, the reaction was quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give $98.3 \mathrm{mg}(76 \%)$ of $\mathbf{3 s}$ as a white solid. Analytical data for $\mathbf{3 s}: \mathrm{m} . \mathrm{p} .136-138{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=$ 0.45 (petroleum ether / ethyl acetate $=5: 1) ;[\alpha]_{\mathrm{D}}{ }^{20}=-79.8(\mathrm{c} 0.36, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.25-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 5 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}$, $9 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.1,133.8,130.4,129.9,128.0,127.5,127.3$, 126.4, 77.9, 66.4, 56.5, 53.7, 42.6, 22.6, 1.1; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{SSi} 432.2023$, found 432.2028 .

7. Procedure for the manipulations of cyclopropane product 3ad

Preparation of alcohol 6 via desilylation of 3ad: Cyclopropane 3ad (411.7 mg, $1.0 \mathrm{mmol}, 1.0$ equiv) was dissolved in 10.0 mL of anhydrous THF and placed under stirring in an ice bath, 189.8 mg ($5.0 \mathrm{mmol}, 5.0$ equiv) of LiAlH_{4} were added in batches. The reaction was checked by TLC examination of an aliquot which was separately hydrolyzed. After $\sim 10 \mathrm{~min}$, the reaction was hydrolyzed with saturated potassium sodium tartrate aqueous solution $(5.0 \mathrm{~mL})$ and extracted with ethyl acetate. The organic layer was separated and the aqueous layer extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to yield $277.4 \mathrm{mg}(93 \%)$ of 6 as a white solid. Analytical data for compound 6: Analytical data for 6: m.p. $86-87{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.1$ (petroleum ether/ethyl acetate $\left.=2: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=+22.4(\mathrm{c} 0.21, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 136.1,130.0,128.2,127.7,78.3,64.1,56.8,54.0,30.9,22.9,9.6$ HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S} 320.1291$, found 320.1296 .

Preparation of benzoic ester 7 via benzoylation of $\mathbf{6}$: To a stirred solution of $\mathbf{6}$ ($59.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) in $5.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added 4-dimethylaminopyridine ($48.9 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv), followed by benzoyl chloride ($30 \mu \mathrm{~L}, 0.26 \mathrm{mmol}, 1.3$ equiv). The resultant solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min and then warmed to room temperature. When the starting material was completely consumed, the reaction mixture was quenched with 5.0 mL saturated aqueous
NaHCO_{3}. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with 1.0 M HCl aqueous solution and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to yield $78.9 \mathrm{mg}(98 \%)$ of 7 as a white solid. Analytical data for compound 7: m.p. $150-151^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.2$ (petroleum ether/ethyl acetate $=2: 1$); $[\alpha]_{\mathrm{D}}{ }^{20}=+46.3$ (c $0.18, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48$ $(\mathrm{m}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.21$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,133.3,132.9,131.6,130.2,129.9$, 128.4, 128.3, 128.0, 77.7, 68.1, 56.8, 53.7, 29.8, 22.9, 9.6. HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NNaO}_{4} \mathrm{~S} 424.1553$, found 424.1557 .

Procedure for ring-opening reaction of cyclopropane 3ad with L-selectride: To the cyclopropane $\mathbf{3 a d}(41.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) in THF $(2.0 \mathrm{~mL})$ was added L -selectride $(0.40 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, $0.40 \mathrm{mmol}, 4.0$ equiv) at $-40^{\circ} \mathrm{C}$. The resulting solution was gradually allowed to warm to 0 ${ }^{\circ} \mathrm{C}$. Then the solution was quenched with saturated aqueous ammonium chloride and diluted with ethyl acetate. The organic layer was separated and the aqueous layer extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to yield $24.4 \mathrm{mg}(59 \%)$ of $\mathbf{5 a}$ as a white solid. For characterization data of compound $\mathbf{5 a}$, see page 18 .

Procedure for ring-opening reaction of cyclopropane 3ad with LiHMDS: Cyclopropane 3ad (41.2 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF $(2.0 \mathrm{~mL})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ and LiHMDS (1.2 M in THF, $0.10 \mathrm{~mL}, 0.12 \mathrm{mmol}, 1.2$ equiv) was then added to the solution. The reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$ and then gradually warmed up to room temperature. When the starting material was completely consumed, the reaction mixture was quenched with saturated aqueous ammonium chloride and diluted with ethyl acetate. The organic layer was separated and the aqueous layer extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to yield $37.4 \mathrm{mg}(91 \%)$ of $\mathbf{5 a}$ as a white solid. For characterization data of compound $\mathbf{5 a}$, see page 18 .
8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{3 a c}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{3 c}$

(

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{5 f}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{5 f}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{5 h}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{5 h}$

(
${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{5 j}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{5 k}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{5 k}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of 5 m

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{5 n}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{5 0}$ (major diastereomer)

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{5 p}$

$\begin{aligned} & \text { 冗} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{array}{r}\infty \\ 0 \\ 0 \\ \stackrel{0}{6} \\ \hline\end{array}$	$\begin{aligned} & \text { y } \\ & \text { M } \\ & \frac{\square}{寸} \\ & \text { I } \end{aligned}$	$\begin{gathered} \text { ส̀ } \\ \text { à } \end{gathered}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\rightharpoonup}{=} \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{6}{0} \\ & \stackrel{0}{0} \\ & =\frac{1}{7} \\ & / \end{aligned}$		둥웅紜孚 \／

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{5 p}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{3 s}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{3 s}$

9. X-Ray crystal structures of products

Figure S1. X-Ray crystal structure of the compound 31

The single crystals of compound 31 for X-ray structure studies were obtained by evaporation its solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether ($1: 6$, v/v) at room temperature. X-Ray crystal structure (ORTEP) of compound $\mathbf{3 1}$ with the thermal ellipsoids shown at a 50% probability level.

Table S1 Crystal data and structure refinement for 31

Identification code	31
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NO}_{3} \mathrm{SSi}$
Formula weight	467.77
Temperature/K	296.15
Crystal system	monoclinic
Space group	P 21
a / \AA	10.328(5)
b / \AA	12.879(6)
c/Å	10.995(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	96.809(7)
γ^{\prime}	90
Volume/ \AA^{3}	1452.1(11)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.070
μ / mm^{-1}	0.176
$F(000)$	512.0
Crystal size $/ \mathrm{mm}^{3}$	$0.272 \times 0.184 \times 0.117$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.078 to 55.01
Index ranges	$-13 \leq \mathrm{h} \leq 13,-16 \leq \mathrm{k} \leq 14,-7 \leq 1 \leq 14$
Reflections collected	8972
Independent reflections	$6082\left[\mathrm{R}_{\text {int }}=0.0409, \mathrm{R}_{\text {sigma }}=0.0907\right]$
Data/restraints/parameters	6082/1/293
Goodness-of-fit on F^{2}	0.969
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0641, \mathrm{wR}_{2}=0.1389$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1407, \mathrm{wR}_{2}=0.1777$
Largest diff. peak/hole / e \AA^{-3}	0.25/-0.22
Flack parameter	0.16(9

Table S2 Bond Lengths for 31

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \AA$
S1	N1	$1.678(5)$	C3AA	C9	$1.372(8)$
S1	O15	$1.481(6)$	C7	C8	$1.362(9)$

S 1	C 18	$1.818(7)$	C 7	C 12	$1.373(9)$
Si 2	O 17	$1.639(4)$	C 7	C 14	$1.534(9)$
Si 2	C 16	$1.838(8)$	C 9	C 12	$1.387(9)$
Si 2	C 24	$1.844(9)$	C 10	C 11	$1.501(8)$
Si 2	C 26	$1.833(8)$	C 10	C 13	$1.503(8)$
O 17	C 1 AA	$1.423(6)$	C 14	C 23	$1.484(11)$
O 16	C 11	$1.392(6)$	C 14	C 2	$1.523(13)$
O 16	C 20	$1.400(8)$	C 14	C 4	$1.473(13)$
C 1 AA	C 3 AA	$1.490(8)$	C 16	C 25	$1.540(10)$
C 1 AA	C 10	$1.516(8)$	C 16	C 1	$1.523(13)$
C 1 AA	C 11	$1.513(8)$	C 16	C 3	$1.554(13)$
N 1	C 11	$1.426(7)$	C 17	C 18	$1.550(10)$
C 2 AA	C 3 AA	$1.362(8)$	C 18	C 19	$1.479(10)$
C 2 AA	C 8	$1.387(9)$	C 18	C 21	$1.518(10)$

Table S3 Bond Angles for 31

Atom	Atom	Atom	Angle $^{\circ}$		Atom	Atom	Atom
Angle ${ }^{\circ}$							
N 1	S 1	C 18	$98.1(3)$	C 11	C 10	C 13	$121.5(5)$
O 15	S 1	N 1	$108.6(3)$	C 13	C 10	C 1 AA	$126.1(5)$
O 15	S 1	C 18	$105.8(3)$	O 16	C 11	C 1 AA	$119.1(5)$
O 17	Si 2	C 16	$105.7(3)$	O 16	C 11	N 1	$115.7(5)$
O 17	Si 2	C 24	$106.8(4)$	O 16	C 11	C 10	$112.9(5)$
O 17	Si 2	C 26	$111.4(3)$	N 1	C 11	C 1 AA	$116.2(5)$
C 16	Si 2	C 24	$110.3(5)$	N 1	C 11	C 10	$121.5(5)$
C 26	Si 2	C 16	$113.6(4)$	C 10	C 11	C 1 AA	$60.4(4)$
C 26	Si 2	C 24	$108.8(5)$	C 7	C 12	C 9	$123.0(6)$
C 1 AA	O 17	$\mathrm{Si2}$	$127.8(3)$	C 23	C 14	C 7	$108.5(6)$
C 11	O 16	C 20	$114.6(5)$	C 23	C 14	C 2	$106.1(9)$
O 17	C 1 AA	C 3 AA	$113.1(5)$	C 2	C 14	C 7	$112.1(6)$
O 17	C 1 AA	C 10	$114.6(4)$	C 4	C 14	C 7	$109.8(7)$
O 17	C 1 AA	C 11	$111.4(4)$	C 4	C 14	C 23	$115.0(10)$
C 3 AA	C 1 AA	C 10	$125.9(5)$	C 4	C 14	C 2	$105.3(9)$
C 3 AA	C 1 AA	C 11	$121.6(5)$	C 25	C 16	Si 2	$110.8(6)$
C 11	C 1 AA	C 10	$59.4(4)$	C 25	C 16	C 3	$109.4(8)$
C 11	N 1	S 1	$116.6(4)$	C 1	C 16	Si 2	$110.7(6)$

C3AA	C2AA	C8	122.3(6)	C1	C16	C25	109.6(8)
C2AA	C3AA	C1AA	119.6(5)	C1	C16	C3	107.9(10)
C2AA	C3AA	C9	117.0(5)	C3	C16	Si2	108.3(6)
C9	C3AA	C1AA	123.3(5)	C17	C18	S1	103.1(5)
C8	C7	C12	116.0(6)	C19	C18	S1	112.8(5)
C8	C7	C14	123.0(6)	C19	C18	C17	110.4(7)
C12	C7	C14	120.9(6)	C19	C18	C21	112.9(7)
C7	C8	C2AA	121.5(7)	C21	C18	S1	106.9(5)
C3AA	C9	C12	120.2(6)	C21	C18	C17	110.3(7)
C11	C10	C1AA	60.2(4)				

Figure S2. X-Ray crystal structure of the compound 5k

The single crystals of compound $\mathbf{5 k}$ for X-ray structure studies were obtained by evaporation its solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether ($1: 4, \mathrm{v} / \mathrm{v}$) at room temperature. X-Ray crystal structure (ORTEP) of compound $\mathbf{5 k}$ with the thermal ellipsoids shown at a 50% probability level.

Table S4 Crystal data and structure refinement for 5k

Identification code	5k
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SSi}$
Formula weight	425.69
Temperature/K	296.15
Crystal system	triclinic
Space group	P1
a / \AA	7.182(8)
b/Å	9.354(10)
c/A	10.768(11)
$\alpha /{ }^{\circ}$	108.471(14)
$\beta /{ }^{\circ}$	90.746(16)
γ^{10}	107.794(15)
Volume $/ \AA^{3}$	648.4(12)
Z	1
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.090
μ / mm^{-1}	0.191
F(000)	232.0
Crystal size $/ \mathrm{mm}^{3}$	$0.207 \times 0.198 \times 0.128$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	4.858 to 54.448
Index ranges	$-8 \leq h \leq 9,-11 \leq k \leq 11,-13 \leq 1 \leq 11$
Reflections collected	3863
Independent reflections	$3317\left[\mathrm{R}_{\text {int }}=0.0367, \mathrm{R}_{\text {sigma }}=0.1025\right]$
Data/restraints/parameters	3317/6/264
Goodness-of-fit on F^{2}	0.974
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0828, \mathrm{wR}_{2}=0.2133$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1590, \mathrm{wR}_{2}=0.2894$
Largest diff. peak/hole / e \AA^{-3}	0.39/-0.29
Flack parameter	-0.10(19)

Table 5 Bond Lengths for 5k

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \AA$
Si1	O15	$1.657(7)$	C6	C7	$1.392(14)$

Si 1	C 16	$1.846(15)$	C 6	C 11	$1.355(14)$
Si 1	C 19	$1.880(14)$	C 7	C 10	$1.359(15)$
Si 1	C 22	$1.850(15)$	C 8	C 13	$1.549(16)$
S 2	N 1	$1.707(10)$	C 9	C 11	$1.348(16)$
S 2	O 14	$1.502(11)$	C 9	C 12	$1.306(19)$
S 2	C 1	$1.787(15)$	C 9	C 24	$1.559(17)$
O 15	C 5	$1.442(11)$	C 10	C 12	$1.419(15)$
O 2	C 4	$1.333(13)$	C 17	C 1	$1.526(17)$
O 2	C 15	$1.463(11)$	C 18	C 19	$1.569(17)$
N 1	C 4	$1.219(14)$	C 19	C 20	$1.512(17)$
C 4	C 8	$1.510(13)$	C 19	C 23	$1.481(19)$
C 5	C 7	$1.481(12)$	C 21	C 1	$1.540(15)$
C 5	C 8	$1.580(14)$	C 1	C 2	$1.555(17)$

Table 6 Bond Angles for 5k

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O15	Sil	C16	109.4(6)	C4	C8	C5	109.2(8)
O15	Sil	C19	103.0(5)	C4	C8	C13	110.3(9)
O15	Sil	C22	109.3(6)	C13	C8	C5	109.0(9)
C16	Sil	C19	113.4(6)	C11	C9	C24	117.6(14)
C16	Sil	C22	110.4(9)	C12	C9	C11	115.6(10)
C22	Sil	C19	111.1(7)	C12	C9	C24	126.8(14)
N1	S2	C1	94.5(6)	C7	C10	C12	118.1(11)
O14	S2	N1	108.0(6)	C9	C11	C6	124.2(11)
O14	S2	C1	106.8(7)	C9	C12	C10	124.6(13)
C5	O15	Sil	124.1(7)	C18	C19	Sil	108.2(11)
C4	O2	C15	116.7(9)	C20	C19	Sil	109.8(9)
C4	N1	S2	119.1(7)	C20	C19	C18	107.7(10)
O2	C4	C8	111.1(11)	C23	C19	Sil	111.4(9)
N1	C4	O2	120.8(9)	C23	C19	C18	109.4(12)
N1	C4	C8	128.0(11)	C23	C19	C20	110.4(14)
O15	C5	C7	112.0(8)	C17	C1	S2	110.4(11)
O15	C5	C8	102.7(7)	C17	C1	C21	114.8(16)
C7	C5	C8	110.1(7)	C17	C1	C2	108.6(18)

C11	C6	C 7	$119.5(11)$	C 21	C 1	S 2	$111.4(11)$
C 6	C 7	C 5	$120.1(10)$	C 21	C 1	C 2	$104.7(16)$
C 10	C 7	C 5	$122.3(10)$	C 2	C 1	S 2	$106.3(15)$
C 10	C 7	C 6	$117.6(9)$				

Figure S3. X-Ray crystal structure of the compound 4a

The single crystals of compound $\mathbf{4 a}$ for X-ray structure studies were obtained by evaporation its solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether ($1: 8$, v/v) at room temperature. X-Ray crystal structure (ORTEP) of compound $\mathbf{4 a}$ with the thermal ellipsoids shown at a 50% probability level.

Table S7 Crystal data and structure refinement for 4a

Identification code	4a
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{SSi}$
Formula weight	429.68
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	P2 ${ }_{1}$
a/ A	13.2420(5)
b/A	6.4724(3)
c/ \AA	14.3242(5)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.113(3)
γ^{10}	90
Volume/ \AA^{3}	1226.86(8)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.163
μ / mm^{-1}	1.833
F(000)	468.0
Crystal size/mm ${ }^{3}$	$0.14 \times 0.13 \times 0.12$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	6.174 to 147.848
Index ranges	$-16 \leq h \leq 16,-7 \leq k \leq 7,-17 \leq 1 \leq 17$
Reflections collected	9985
Independent reflections	$4600\left[\mathrm{R}_{\text {int }}=0.0439, \mathrm{R}_{\text {sigma }}=0.0498\right]$
Data/restraints/parameters	4600/1/266
Goodness-of-fit on F^{2}	1.027
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0625, \mathrm{wR}_{2}=0.1695$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0634, \mathrm{wR}_{2}=0.1701$
Largest diff. peak/hole / e \AA^{-3}	0.96/-0.49
Flack parameter	0.027(16)

Table S8 Bond Lengths for 4a

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \AA$
$\mathrm{S}(001)$	$\mathrm{O}(3)$	$1.504(5)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.401(9)$

$\mathrm{S}(001)$	$\mathrm{N}(1)$	$1.661(5)$	$\mathrm{C}(1)$	$\mathrm{C}(3)$	$1.512(8)$
$\mathrm{S}(001)$	$\mathrm{C}(18)$	$1.859(6)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.535(8)$
$\mathrm{Si}(02)$	$\mathrm{O}(1)$	$1.663(4)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$1.507(9)$
$\mathrm{Si}(02)$	$\mathrm{C}(12)$	$1.874(6)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.379(9)$
$\mathrm{Si}(02)$	$\mathrm{C}(14)$	$1.896(6)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$1.400(11)$
$\mathrm{Si}(02)$	$\mathrm{C}(13)$	$1.870(7)$	$\mathrm{C}(16)$	$\mathrm{C}(14)$	$1.535(8)$
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$1.384(7)$	$\mathrm{C}(17)$	$\mathrm{C}(14)$	$1.536(10)$
$\mathrm{O}(2)$	$\mathrm{C}(3)$	$1.405(7)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.380(11)$
$\mathrm{O}(2)$	$\mathrm{C}(11)$	$1.426(7)$	$\mathrm{C}(4)$	$\mathrm{C}(2)$	$1.505(8)$
$\mathrm{N}(1)$	$\mathrm{C}(3)$	$1.429(8)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$	$1.522(9)$
$\mathrm{C}(10)$	$\mathrm{C}(5)$	$1.388(9)$	$\mathrm{C}(18)$	$\mathrm{C}(19)$	$1.515(9)$
$\mathrm{C}(10)$	$\mathrm{C}(9)$	$1.395(9)$	$\mathrm{C}(18)$	$\mathrm{C}(20)$	$1.498(9)$
$\mathrm{C}(5)$	$\mathrm{C}(1)$	$1.509(8)$	$\mathrm{C}(18)$	$\mathrm{C}(21)$	$1.532(10)$

Table S9 Bond Angles for 4a

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
$\mathrm{O}(3)$	$\mathrm{S}(001)$	$\mathrm{N}(1)$	$110.5(3)$	$\mathrm{O}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$118.4(5)$
$\mathrm{O}(3)$	$\mathrm{S}(001)$	$\mathrm{C}(18)$	$104.3(3)$	$\mathrm{N}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(1)$	$120.2(5)$
$\mathrm{N}(1)$	$\mathrm{S}(001)$	$\mathrm{C}(18)$	$100.2(3)$	$\mathrm{N}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$115.1(5)$
$\mathrm{O}(1)$	$\mathrm{Si}(02)$	$\mathrm{C}(12)$	$111.1(3)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(1)$	$61.1(4)$
$\mathrm{O}(1)$	$\mathrm{Si}(02)$	$\mathrm{C}(14)$	$103.9(2)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$119.6(7)$
$\mathrm{O}(1)$	$\mathrm{Si}(02)$	$\mathrm{C}(13)$	$111.0(3)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$118.7(6)$
$\mathrm{C}(12)$	$\mathrm{Si}(02)$	$\mathrm{C}(14)$	$110.8(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$121.2(7)$
$\mathrm{C}(13)$	$\mathrm{Si}(02)$	$\mathrm{C}(12)$	$108.0(3)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$59.6(4)$
$\mathrm{C}(13)$	$\mathrm{Si}(02)$	$\mathrm{C}(14)$	$112.1(3)$	$\mathrm{C}(4)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$122.3(5)$
$\mathrm{C}(1)$	$\mathrm{O}(1)$	$\mathrm{Si}(02)$	$129.0(4)$	$\mathrm{C}(4)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$122.7(5)$
$\mathrm{C}(3)$	$\mathrm{O}(2)$	$\mathrm{C}(11)$	$113.1(5)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$120.0(6)$
$\mathrm{C}(3)$	$\mathrm{N}(1)$	$\mathrm{S}(001)$	$116.2(4)$	$\mathrm{C}(16)$	$\mathrm{C}(14)$	$\mathrm{Si}(02)$	$109.7(4)$
$\mathrm{C}(5)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$121.3(6)$	$\mathrm{C}(16)$	$\mathrm{C}(14)$	$\mathrm{C}(17)$	$109.5(5)$
$\mathrm{C}(10)$	$\mathrm{C}(5)$	$\mathrm{C}(1)$	$121.9(6)$	$\mathrm{C}(17)$	$\mathrm{C}(14)$	$\mathrm{Si}(02)$	$109.4(4)$
$\mathrm{C}(10)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$119.2(6)$	$\mathrm{C}(15)$	$\mathrm{C}(14)$	$\mathrm{Si}(02)$	$109.8(4)$
$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(1)$	$118.7(6)$	$\mathrm{C}(15)$	$\mathrm{C}(14)$	$\mathrm{C}(16)$	$109.2(5)$
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(5)$	$114.4(5)$	$\mathrm{C}(15)$	$\mathrm{C}(14)$	$\mathrm{C}(17)$	$109.2(6)$
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(3)$	$114.5(5)$	$\mathrm{C}(19)$	$\mathrm{C}(18)$	$\mathrm{S}(001)$	$108.6(4)$

$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$117.9(5)$	$\mathrm{C}(19) \mathrm{C}(18) \mathrm{C}(21)$	$110.4(6)$	
$\mathrm{C}(5)$	$\mathrm{C}(1)$	$\mathrm{C}(3)$	$120.0(5)$	$\mathrm{C}(20)$	$\mathrm{C}(18)$	$\mathrm{S}(001)$
$\mathrm{C}(5)$	$110.4(5)$					
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$119.7(5)$	$\mathrm{C}(20)$	$\mathrm{C}(18)$	$\mathrm{C}(19)$	$113.2(7)$
$\mathrm{C}(3)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$59.3(4)$	$\mathrm{C}(20)$	$\mathrm{C}(18)$	$\mathrm{C}(21)$
$\mathrm{O}(2)$	$\mathrm{C}(3)$	$\mathrm{N}(1)$	$117.2(5)$	$\mathrm{C}(21) \mathrm{C}(18)$	$\mathrm{S}(001)$	$103.0(5)$
$\mathrm{O}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(1)$	$113.1(5)$			

