Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Perovskite-type $Nd_{0.75}Sr_{0.25}Co_{0.8}Fe_{0.2}O_{3-\delta}$ cathode for advanced solid oxide fuel cells Suresh Mulmi^a and Venkataraman Thangadurai^a*

Figures

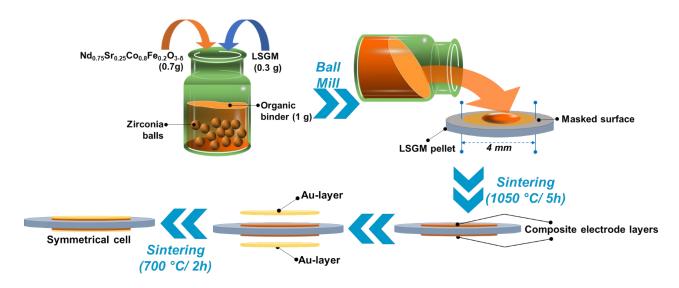


Figure S1. Schematic diagram illustrating the half-cell preparation using Nd-based perovskties.

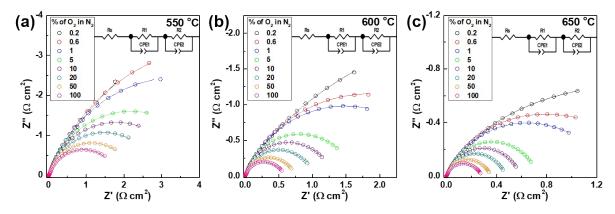
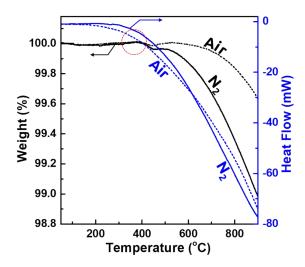
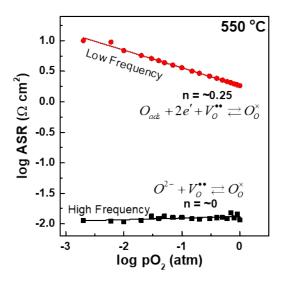




Figure S2. Typical Nyquist plot of a symmetrical cell with composite electrode (NSCF+LSGM) layer (electrolyte: LSGM) under OCP at (a) 550 °C, (b) 600 °C and (c) 650 °C with various pO_2 concentrations ranging from 0.2-100 % (bal. gas = N_2). Data is fitted with two parallel RC circuits (inset) and shown as solid line passing through the original data points (open circles). (Frequency range = 1MHz – 0.1 Hz).

a. Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N-1N4, Canada. E-mail: vthangad@ucalgary.ca; Tel: +1-403-210-8649

Figure S3. TGA (black) and DSC (blue) curves of $Nd_{0.75}Sr_{0.25}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (NSCF) in N_2 (solid) and air (dotted), respectively. (Heating rate = 5 °C/min)

Figure S4. Variation of ASRs as a function of pO_2 at 550 °C for a symmetrical cell with composite electrode (NSCF+LSGM) layer (electrolyte: LSGM) under OCP. "n" indicates the slope obtained from $ASR = ASR_o$ (pO_2) $^{-n}$ and can be translated into the typical reactions occurring at high (\blacksquare) and low (\bullet) frequency arcs. (Total gas flow = 100 sccm).

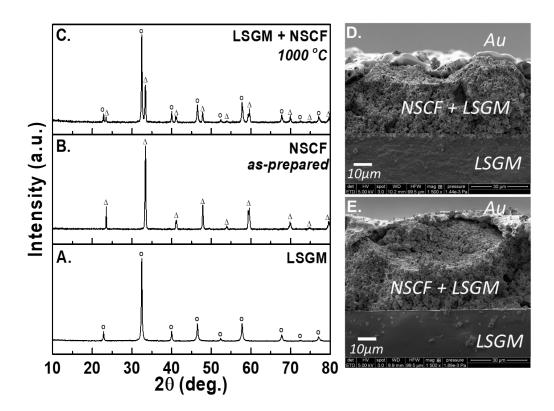


Figure S5. PXRD patterns of starting material for composite layer (A) LSGM, (B) as-prepared NSCF and (C) the mixture LSGM+NSCF sintered at 1000 °C for 12 h in air followed by 12 h in CO_2 . Typical cross-section SEM images of a symmetrical cell composed with dense LSGM electrolyte, NSCF+LSGM composite electrode layer and Au current collector (from bottom to top) (D) before and (E) after the half-cell measurements + 24 h pure CO_2 treatment at 800 °C.

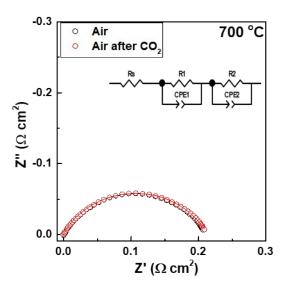
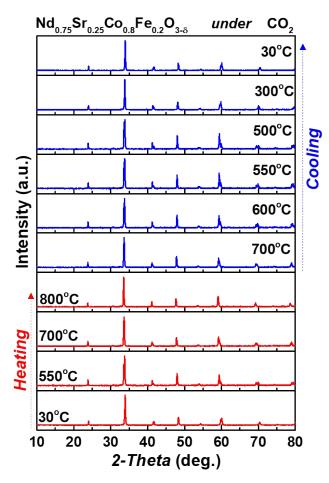
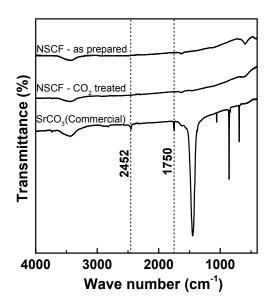




Figure S6. Typical Nyquist plot of a symmetrical cell with composite electrode (NSCF+LSGM) layer (electrolyte: LSGM) under OCP at 700 °C in air before (black open circles) and after (red open circles) CO_2 exposure for 24 h. Data is fitted with two parallel RC circuits (inset) and shown as solid line passing through the original data points (open circles). Ultrapure N_2 was used as balance gas to adjust the pO_2 . (Frequency range = 1MHz – 0.1 Hz).

Figure S7. In-situ high temperature PXRD patterns of as-prepared $Nd_{0.75}Sr_{0.25}Co_{0.8}Fe_{0.2}O_{3-\delta}$ under pure CO_2 obtained from heating (30 – 800 °C; red patterns) and cooling (800 – 30 °C; blue patterns) cycles. (Total gas flow = 20 sccm).

Figure S8. FT-IR spectra obtained on $Nd_{0.75}Sr_{0.25}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (NSCF) before and after CO_2 -treatemnt at 800 °C for 24h.

Tables

Table S1.: The powder X-ray Rietveld refinement results for $Nd_{0.75}Sr_{0.25}Co_{0.8}Fe_{0.2}O_{3-\delta}$. ($R_{\rho} = 7.22$; $R_{w\rho} = 9.12$; $\chi^2 = 1.23$; $\alpha = 5.3816(3)$ Å, b = 7.6218(1) Å, c = 5.4191(7) Å; space group = Pnma)

Atom	Wyckoff-site	x/a	y/b	z/c	Occupancy	U _{iso} (Ų)
Nd	4 <i>c</i>	-0.0192(2)	1/4	-0.0002(3)	0.75	0.0195(3)
Sr	4 <i>c</i>	-0.0192(2)	1/4	-0.0002(3)	0.25	0.0195(3)
Co	4 <i>b</i>	0	0	1/2	0.80	0.0222(9)
Fe	4 <i>b</i>	0	0	1/2	0.20	0.0081(8)
01	4 <i>c</i>	1/2	1/4	0.0726	1.00	0.1016(3)
02	8 <i>d</i>	0.2459(4)	0.0239(6)	0.7947(2)	0.99	0.0257(6)

Table S2. ASRs under various pO_2 (~10⁻² – 1 atm) in the temperature range 550-700 °C.

pO ₂	$R_p\left(\Omega.\ \mathrm{cm^2}\right)$				
<i>p</i> O₂ (atm)	550 °C	600 °C	650 °C	700 °C	
0.02	10.04	5.82	3.12	2.14	
0.2	2.95	1.02	0.48	0.21	
1	1.85	0.58	0.28	0.12	

Table S3a. 2-Theta, d-spacing and corresponding (hkl) of La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3- δ} (LSGM) and LSGM in composite with NSCF as illustrated in Figs. S5A and S5C, respectively.

$La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-\delta}$ (LSGM)			LSGM in composite*	
2ϑ	d-spacing	(hkl)	2ϑ	d-spacing
(deg.)	(Å)	(11K1)	(deg.)	(Å)
22.847	3.8892	(001)	22.859	3.8872
32.549	2.7561	(011)	32.462	2.7538
40.001	2.2521	(111)	40.019	2.2511
46.499	1.9514	(002)	46.521	1.9505
52.359	1.7459	(012)	52.426	1.7439
57.778	1.5944	(112)	57.767	1.5947
67.759	1.3818	(022)	67.772	1.3816
72.456	1.3033	(122)	72.537	1.3025
77.04	1.2368	(013)	77.074	1.2364

Table S3b. 2-Theta, d-spacing and corresponding (hkl) of as-prepared Nd_{0.75}Sr_{0.25}Co_{0.8}Fe_{0.2}O_{3- δ} (NSCF) and NSCF in composite with LSGM as illustrated in Figs. S5B and S5C, respectively.

Nd _{0.75} Sr _{0.25} Co _{0.8} Fe _{0.2} O _{3-δ} (NSCF)			NSCF in composite*		
2ϑ (deg.)	d-spacing (Å)	(hkl)	2ϑ (deg.)	d-spacing (Å))	
23.477	3.7861	(101)	23.476	3.7863	
33.358	2.6838	(121)	33.377	2.6823	
41.048	2.1986	(022)	41.019	2.1985	
41.222	2.1882	(220)	41.246	2.1869	
47.78	1.902	(202)	47.806	1.9011	
47.891	1.8979	(040)	47.931	1.8964	
53.877	1.7003	(222)	53.93	1.6987	
59.32	1.5566	(123)	59.399	1.5547	
59.561	1.5509	(240)	59.621	1.5494	
69.839	1.3456	(242)	69.898	1.3447	
70.039	1.3423	(400)	70.101	1.3413	
74.713	1.2695	(143)	74.899	1.2668	
79.579	1.2036	(323)	79.694	1.2022	

^{*}composite made of 1:1 weight ratio of LSGM+NSCF.